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1 Introduction

We now consider the classical and quantum dynamics of a point particle
on a flat, 2D “table,” with a perfectly reflecting boundary. Specifically, we
will focus on the Bunimovich Stadium. This deceptively simple system is
interesting because:

1. Classically, it exhibits chaotic behavior.

1



2. Quantum mechanically, its eigenmode structure is rich and surprising.

3. The transition between the classical and quantum behaviors is curious
and, to a some extent, mysterious.

Moreover, both the classical and quantum billiard problems illustrate an
important lesson about scientific computation: Generic methods can only
take you so far. Whether we are constructing a model or analyzing data, the
most fruitful approaches are formulated with the specific problem squarely
in mind.

2 The Bunimovich Stadium

Our billiards table is the Bunimovich Stadium (below). It is a rectangle with
circular end caps. Most of my examples use R = 1 and L = 1.

R

L
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3 Classical Stadium Billiards

3.1 Ray Tracing

3.2 Stability of Periodic Orbits

3.3 Lyapunov Exponent

3.4 Ergodicity

4 Quantum Eigenfunctions of the Stadium

In units where h̄ = 2m = 1, the time-independent Schrödinger equation is[
−∇2 + V (r)

]
ψ(r) = E ψ(r). (1)

The potential V (r) is zero inside the stadium, and infinite outside. So, this
is a 2D variation on the particle in a box. Before we embark on this problem,
let me remark on the physical significance of the solutions.

Of course, in an infinite well there are no free particle states. Any initial
condition can be expressed as a linear combination of the bound eigenfunc-
tions:

Ψ(r, 0) =
∞∑
n=1

cn ψn(r). (2)

The subsequent time evolution is given by

Ψ(r, t) =
∞∑
n=1

cn ψn(r) e−iEnt. (3)

In other words, the future evolution of the system is fully, one might even
say trivially, determined by the initial conditions. This is true even in the
classical (large n) limit. Let that sink in. Does this result contradict what
we know about the chaotic dynamics of the classical system?

4.1 Demonstration

Since the solutions to the Schrödinger equation on a flat potential are just
plane waves, the normal modes of the quantum mechanical stadium are iden-
tical those for the wave equation with homogeneous Dirichlet boundary con-
ditions. They can be discovered experimentally in an almost infinite number
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of setups, including acoustic waves, microwaves, or waves on an elastic mem-
brane.

Jerry DiMarco has built an elegant demonstration that uses a function
generator and a loop of wire with a soap film to find the normal modes of
the stadium. See Arcos et al., AJP 1998 66, 601.
Q: How does the time dependence of quantum eigenfunctions differ from that
of the scalar wave equation modes?

4.2 Heller’s PWDM Solution

E. J. Heller (1987 Phys. Rev. Lett. 53: 1515) invented the plane wave de-
composition method (PWDM) to solve the Schrödinger equation on a flat
billard of any shape. This presentation and my example codes closely follow
Li, Robnik and Hu (1988 Phys. Rev. E 57, 4095).

We seek energy eigenfunctions ψ(r) for r ∈ B, with potential V (r) = 0
subject to ψ(r) = 0 on ∂B. We approximate the eigenfunction using a sum
of N plane waves,

ψ(r) =
N∑
j=1

aj cos(k(x cos θj + y sin θj) + φj). (4)

The phases φj are random, and the directions are θj = 2πj/N . This ansatz
(4) satisfies Schrödinger’s equation.

Choose M “primary nodes,” pn ∈ ∂B. A final point, pM+1, is chosen in
the interior. Our Dirichlet boundary condition can be written:

ψ(pn) =

{
0 for n ≤M,

1 for n = M + 1.
(5)

Note that the interior point is being used to avoid the trivial result, aj = 0.
Since only the coefficients aj are unknown, we recast (5) as a matrix equation:

M


a1
a2
a3
...

aM+1

 =


0
0
0
...
1

 . (6)
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The matrixM will generally be ill-conditioned, so we invertM using singular
value decomposition.1

How do we know whether k, or equivalently E = k2, is an eigenvalue?
First, we adjust our aj in concert to normalize ψ since the interior point
choice was quite arbitrary. Now choose mM “secondary nodes,” qn, between
the primary nodes, where m is some integer. We define the tension,

T (k) =
1

mM

mM∑
n=1

ψ2(qn). (7)

The eigenvalues occur at minima of T . Conventional choices are:

N =
bL

λ
, b = 12, M =

5N

3
, m = 3, (8)

where L is the perimeter of the billiard table and λ = 2π/k is the de Broglie
wavelength.

4.3 Scarring

4.4 Comments

• What range of problems can be solved by PWDM?

• Many eigenfunctions exhibit “scarring,” regions of enhanced amplitude
that resemble the classically unstable periodic orbits. Apparently in
QM they are stable, periodic solutions! Are they exact solutions, and
do they exist for arbitrarily large n?

• Describe the symmetry of stadium eigenfunctions.

• Some of the modes found by PWDM do not display the expected sym-
metry. Why? Can all the modes affected by this problem can be
discovered by testing for symmetry?

• It would be interesting to construct a wave packet by superposition of
eigenfunctions. The exact evolution of the wave packet could then be
determined using equation 3. How would you “clean up” the PWDM
results for this task?

1Numerical Recipes § 2.6.
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