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Multidimensional Minimization 

I. INTRODUCTION 

This lecture is devoted to the task of minimization in N dimensions, 

which may be stated as follows: 

____________________________________________________________________ 

For a scalar function f(x), where x = [x1, x2,..., xN], find x that minimizes f(x).  

____________________________________________________________________ 

 

Many challenging problems in physics, engineering, operations research, 

economics, etc. require carefully choosing the values of a set of parameters (x) 

to achieve some optimal result. If what is meant by “optimal” can be 

quantified — reduced to a mere number via some function f(x) — then this N-

dimensional optimization problem may be reduced to minimization as defined 

above. Applications of this technique range from experimental tests of 

scientific theories to practical design problems to questions of international 

trade policy. 

Minimization is difficult. In 2 or more dimensions, it is not possible to 

“bracket” a minimum. Convergence cannot be guaranteed. It is impossible to 

guarantee that a minimum, once found, is the global minimum of the 

function.  

The design of minimization algorithms is part deduction and part 

intuition. The programs used for minimizing tend to be finicky about which 

problems they will solve. In this handout I’ll describe the downhill simplex 

method (“amoeba”) which is the basis of MATLAB’s fminsearch.  My own 

amoeba implementation is also included with an example. 

 

II. THE AMOEBA METHOD 

Nelder and Meade in 1965 invented one of the simplest and most robust 

minimization methods. It is called the downhill simplex, or simply the 

amoeba. Not all problems are susceptible to the amoeba, but surprisingly 

many are. A simplex, or amoeba, is like a little animal with N+1 feet crawling 

around in a hot world, looking for a cool, comfortable spot. The feet move 

around in response to the local “temperature”, f(x).  

Whether N is large or small, the amoeba utilizes the value of f at only 

three of its feet at any one time: the hottest (P), the second hottest (Q), and 



the coolest (R). The basic moves used by the amoeba are summarized in 

figure 1, which is simplified by assuming a two-dimensional space (N = 2, so 

the amoeba has 3 feet). The main loop of the program always begins by 

“reflecting” point P through the opposite face of the amoeba, as in [a]. The 

remaining moves are chosen (or not) depending on how f(P) has changed as 

compared to f(Q) and f(R). Figure 2 is a flowchart summarizing the tactics 

that lead from one move to the next. The choice of which points are called P, 

Q, and R is revised after each cycle through the main loop. [Note: the 

flowchart includes a convergence criterion, a decision box that points to END 

when satisfied. The idea here is that if the highest and lowest points are close 

enough to one another, then the amoeba has located the minimum to 

reasonable precision. I don’t use a convergence criterion for the examples. It is 

often sufficient to just run through the main loop a fixed number of times and 

examine the results visually.] 

 
Fig. 1. The basic moves of the amoeba. 

 



 

For a two-dimensional problem, the amoeba’s “feet” consist of three points 

forming a triangle. The three feet are then just P, Q, and R. Figure 3 shows 

two example sequences of moves in two dimensions. These are best followed 

while looking at the flowchart. Following is a short description of each 

sequence moves, identified by the letters [a], [b], [c], or [d] of Figure 1. 

Sequence A. A straightforward example. A1:[a],[b]. The [b] move is risky, 

but it’s a good way of capitalizing on a reflection that turned out very well. 

A2: [a]. A3:[a],[c]. Note how the last move pulls back from an excursion that 

almost left the page. The amoeba doesn’t have eyes, only feet to feel with, and 

so it can be fooled for a little while. But overall, it tends to make progress 

toward a minimum. 

Sequence B. This is a situation contrived to “fool” the amoeba, but only for 

a little while. B1: [a],[c]. This first panel is like A3, a move that turned out to 

be a bad idea. But after pulling point P closer to the center, the value of f gets 

even higher! You can see how I had to draw distorted contour lines to make 

this possible. Real minimization problems are full of such cruel tricks. B2:[d]. 

In the d-type move, the amoeba moves N of its feet at once (instead of just 

one, as in a, b, c-type moves); the amoeba shrinks around the coolest foot as a 

last resort, because every other stratagem has gone bad. 

 



 
Fig. 2. Amoeba flowchart. 

 

 



 
Fig. 3. Sketched examples showing the behavior of the amoeba. 

 

III. SAMPLE PROGRAMS 

I will put the .m files on the web in case you want to play with them: 

http://solar.physics.montana.edu/kankel/phys567/examples/octave/mi

nimization/amoeba 

3.1 Amoeba code 

Here is amoeba.m. The idea is simple: you give it an initial guess for x, 

and the name of funk, a program that returns f(x). You also tell the amoeba 

how many iterations to go through the main loop. The result is what amoeba 



thinks is the value of x that minimizes funk. Note that the source code is 

divided into four modules: the main program (amoeba), a sorter to choose P, 

Q, and R (pickPQR), an implementation of moves [a, b, c] (reflect_foot), and 

an implementation of move [d] (ndcontract). 

 

function bestfit=amoeba(funk,xguess,iterations) 

% A simple implementation of the downhill simplex method of 

% Nelder & Meade (1963), a.k.a. "amoeba". The function funk 

% should be a scalar, real-valued function of a vector argument  

% of the same size as xguess. 

 

%Standard scale values for the reflect function 

reflect = 1; 

expand = -0.5; 

contract  = 0.25; 

 

[M,N] = size(xguess); %N will be the number of dimensions. 

if M~=1  

   error('xguess is not a row vector!') 

end 

 

%Define the N+1 'feet' of the amoeba 

basis = eye(N); 

feet = [xguess;ones(N,1)*xguess+basis]; 

 

%Evaluate funk at each of the 'feet' 

f=zeros(1,N+1); 

for i=1:N+1 

   f(i)=feval(funk,feet(i,:)); 

end 

 

for persistence=1:iterations %The main loop 

   [P,Q,R] = pickPQR(f); %Identify highest, second highest, lowest feet 

   [feet,f]=reflect_foot(funk,feet,f,P,reflect); %Reflect 

   if f(P) < f(R) 

      [feet,f]=reflect_foot(funk,feet,f,P,expand); %Expand 

   elseif f(P) > f(Q) 

      w = f(P); %Keep track of the current worst value of f 

      [feet,f]=reflect_foot(funk,feet,f,P,contract); %1-dim Contract 

      if f(P) < w 

         [feet,f]=ndcontract(funk,feet,f,R); %N-dim contract 

      end 

   end 

end 

 



[P,Q,R] = pickPQR(f); %Identify highest, second highest, lowest feet 

bestfit = feet(R,:); %Use lowest foot as best fit. 

%end amoeba 

%-------------------------------------------------------------------- 

 

function [P,Q,R]=pickPQR(f) 

% Identify indices of highest (P), second highest (Q), 

% and lowest (R) feet. 

 

[foo,Nfeet]=size(f); 

if foo ~=1 

   error('f has wrong dimensions!') 

end 

 

P=1; Q=2; R=1; % Initial guess, certainly wrong 

if f(Q) > f(P) % Correct the P/Q order for first 2 feet 

   P=2; Q=1; 

end 

for i=1:Nfeet  % Loop thru feet, finding P,Q,R 

   if f(i) > f(P) 

      Q=P; P=i; 

   elseif (f(i) > f(Q)) & (i ~= P) 

      Q=i; 

   end 

   if f(i) < f(R) 

      R=i; 

   end 

end 

%end pickPQR 

%-------------------------------------------------------------------- 

 

function [feet,f]=reflect_foot(funk,feet,f,j,scale) 

% Reflect the jth foot through the centroid of the other 

% feet of the amoeba. The displacement may be scaled by 

% using scale, whose default value of 1 results in a  

% reflection that preserves the volume of the amoeba. 

% A scale of 0.5 should never be used, as this would result 

% in a degenerate simplex. Typical scale values: 

%  1 ...... reflect through amoeba's opposite face 

%    -0.5 .... stretch the foot outward, doubling amoeba size 

%     0.25 ... shrink inward, halving amoeba size 

% The following variables get updated: 

%     feet(j,:) -- location of the jth foot 

%     f(j) -- value of funk at the jth foot 

if nargin ~= 5 

   scale=1; %default 



end 

if scale == 0.5 

   error('Oops, you squashed the amoeba!') 

end    

 

[Nfeet,N]=size(feet); %Get amoeba dimensions 

if Nfeet ~= N+1 

   error('Not an amoeba: wrong number of feet!') 

end 

 

% Calculate displacement vector 

cent = ( sum(feet,1) - feet(j,:) )/N; %centroid of the feet, except the 

jth foot. 

disp = 2*(cent - feet(j,:)); 

 

% Move the foot, and update f 

feet(j,:) = feet(j,:) + (scale*disp); %scaled displacement 

f(j) = feval(funk,feet(j,:)); %evaluate funk 

 

%end reflection 

%--------------------------------------------------------------------- 

 

function [feet,f]=ndcontract(funk,feet,f,j) 

% Contract all feet, except jth, toward the jth foot. 

% The following variables get updated: 

%     feet -- location of each foot 

%     f -- value of funk at each foot 

 

[Nfeet,N]=size(feet); %Get amoeba dimensions 

if Nfeet ~= N+1 

   error('Not an amoeba: wrong number of feet!') 

end 

 

for i=1:Nfeet 

   if i ~= j 

      feet(i,:) = ( feet(i,:) + feet(j,:) )/2; 

      f(i) = feval(funk,feet(i,:)); 

   end 

end 

%end ndcontract 

 

3.2 Application example: least squares fitting 

Fitting a line (or a polynomimal) to data can be done most efficiently by 

the traditional linear least squares technique, but you could use the strategy 



below to fit any sort of complicated, nonlinear multi-parameter model. It 

would be easy to modify this code for alternate fit criteria, such as minimum 

absolute deviation, which is more robust against outliers than least squares. 

The first module is just a main program that picks a random slope and a y-

intercept, creates some pseudo-random noisy data that fluctuates about the 

mean of that line, and then tries to find a best fit line by looking only at the 

noisy data. The program compares the initial line, the noisy data, and the 

best-fit line by plotting all three on a single graph. Note that the number of 

data points (20) is much larger than the number of parameters used for the 

minimization (N=2, just a slope and a y-intercept). 

 

function no_result=least_squares() 

% least_squares.m 

% Least Squares Curve Fitting Demonstration 

hold off 

 

slope=4*(rand(1)-0.5) 

yintercept=2*(rand(1)-0.5) 

 

%Make some data, complete with 'noise' 

global datax datay %share these with the badness function (below) 

datax = 0:0.05:1.0; 

datay = (slope*datax)+yintercept; 

plot(datax,datay,'r--'); %Plot the theory used to generate the data 

hold; %save current display for overplotting 

[M,N] = size(datax); 

error = 0.5*(rand(M,N)-0.5).*(max(datay)-min(datay)); %create noise 

datay = datay + error; %add noise to data 

plot(datax,datay,'ro'); %Overlay more realistic noised data 

 

%Find best fit slope and yintercept from noised data 

result = amoeba('badness',[0,0],20); 

slope=result(1) 

yintercept=result(2) 

result = amoeba('badness',result,20); 

slope=result(1) 

yintercept=result(2) 

 

%Generate best fit curve, plot for comparison 

fit_y = (slope*datax)+yintercept; 

plot(datax,fit_y,'b-'); %Plot the theory 

hold off 

%end of main program 

 



 

Below is the function f(x), which I call “badness” — a measure of how bad 

the fit is. This is where least-squares comes in: the badness is the sum of the 

squares of the differences between the real data points and a trial fit. The 

trial fit is derived from slopint, a 2-vector containing a guess for slope and 

y-intercept. The best fit therefore minimizes badness. 

 

function sum_squares=badness(slopint) 

global datax datay 

[M,N] = size(datax); 

theory_y = slopint(1)*datax + slopint(2); 

sum_squares = sum((theory_y - datay).^2); 

%end badness 

 


