

C. C. Kankelborg, 1999-11-18 (rev. 2009-Mar-24)

Multidimensional Minimization

I. INTRODUCTION

This lecture is devoted to the task of minimization in N dimensions,

which may be stated as follows:

__

For a scalar function f(x), where x = [x1, x2,..., xN], find x that minimizes f(x).

__

Many challenging problems in physics, engineering, operations research,

economics, etc. require carefully choosing the values of a set of parameters (x)

to achieve some optimal result. If what is meant by “optimal” can be

quantified — reduced to a mere number via some function f(x) — then this N-

dimensional optimization problem may be reduced to minimization as defined

above. Applications of this technique range from experimental tests of

scientific theories to practical design problems to questions of international

trade policy.

Minimization is difficult. In 2 or more dimensions, it is not possible to

“bracket” a minimum. Convergence cannot be guaranteed. It is impossible to

guarantee that a minimum, once found, is the global minimum of the

function.

The design of minimization algorithms is part deduction and part

intuition. The programs used for minimizing tend to be finicky about which

problems they will solve. In this handout I’ll describe the downhill simplex

method (“amoeba”) which is the basis of MATLAB’s fminsearch. My own

amoeba implementation is also included with an example.

II. THE AMOEBA METHOD

Nelder and Meade in 1965 invented one of the simplest and most robust

minimization methods. It is called the downhill simplex, or simply the

amoeba. Not all problems are susceptible to the amoeba, but surprisingly

many are. A simplex, or amoeba, is like a little animal with N+1 feet crawling

around in a hot world, looking for a cool, comfortable spot. The feet move

around in response to the local “temperature”, f(x).

Whether N is large or small, the amoeba utilizes the value of f at only

three of its feet at any one time: the hottest (P), the second hottest (Q), and

the coolest (R). The basic moves used by the amoeba are summarized in

figure 1, which is simplified by assuming a two-dimensional space (N = 2, so

the amoeba has 3 feet). The main loop of the program always begins by

“reflecting” point P through the opposite face of the amoeba, as in [a]. The

remaining moves are chosen (or not) depending on how f(P) has changed as

compared to f(Q) and f(R). Figure 2 is a flowchart summarizing the tactics

that lead from one move to the next. The choice of which points are called P,

Q, and R is revised after each cycle through the main loop. [Note: the

flowchart includes a convergence criterion, a decision box that points to END

when satisfied. The idea here is that if the highest and lowest points are close

enough to one another, then the amoeba has located the minimum to

reasonable precision. I don’t use a convergence criterion for the examples. It is

often sufficient to just run through the main loop a fixed number of times and

examine the results visually.]

Fig. 1. The basic moves of the amoeba.

For a two-dimensional problem, the amoeba’s “feet” consist of three points

forming a triangle. The three feet are then just P, Q, and R. Figure 3 shows

two example sequences of moves in two dimensions. These are best followed

while looking at the flowchart. Following is a short description of each

sequence moves, identified by the letters [a], [b], [c], or [d] of Figure 1.

Sequence A. A straightforward example. A1:[a],[b]. The [b] move is risky,

but it’s a good way of capitalizing on a reflection that turned out very well.

A2: [a]. A3:[a],[c]. Note how the last move pulls back from an excursion that

almost left the page. The amoeba doesn’t have eyes, only feet to feel with, and

so it can be fooled for a little while. But overall, it tends to make progress

toward a minimum.

Sequence B. This is a situation contrived to “fool” the amoeba, but only for

a little while. B1: [a],[c]. This first panel is like A3, a move that turned out to

be a bad idea. But after pulling point P closer to the center, the value of f gets

even higher! You can see how I had to draw distorted contour lines to make

this possible. Real minimization problems are full of such cruel tricks. B2:[d].

In the d-type move, the amoeba moves N of its feet at once (instead of just

one, as in a, b, c-type moves); the amoeba shrinks around the coolest foot as a

last resort, because every other stratagem has gone bad.

Fig. 2. Amoeba flowchart.

Fig. 3. Sketched examples showing the behavior of the amoeba.

III. SAMPLE PROGRAMS

I will put the .m files on the web in case you want to play with them:

http://solar.physics.montana.edu/kankel/phys567/examples/octave/mi

nimization/amoeba

3.1 Amoeba code

Here is amoeba.m. The idea is simple: you give it an initial guess for x,

and the name of funk, a program that returns f(x). You also tell the amoeba

how many iterations to go through the main loop. The result is what amoeba

thinks is the value of x that minimizes funk. Note that the source code is

divided into four modules: the main program (amoeba), a sorter to choose P,

Q, and R (pickPQR), an implementation of moves [a, b, c] (reflect_foot), and

an implementation of move [d] (ndcontract).

function bestfit=amoeba(funk,xguess,iterations)

% A simple implementation of the downhill simplex method of

% Nelder & Meade (1963), a.k.a. "amoeba". The function funk

% should be a scalar, real-valued function of a vector argument

% of the same size as xguess.

%Standard scale values for the reflect function

reflect = 1;

expand = -0.5;

contract = 0.25;

[M,N] = size(xguess); %N will be the number of dimensions.

if M~=1

 error('xguess is not a row vector!')

end

%Define the N+1 'feet' of the amoeba

basis = eye(N);

feet = [xguess;ones(N,1)*xguess+basis];

%Evaluate funk at each of the 'feet'

f=zeros(1,N+1);

for i=1:N+1

 f(i)=feval(funk,feet(i,:));

end

for persistence=1:iterations %The main loop

 [P,Q,R] = pickPQR(f); %Identify highest, second highest, lowest feet

 [feet,f]=reflect_foot(funk,feet,f,P,reflect); %Reflect

 if f(P) < f(R)

 [feet,f]=reflect_foot(funk,feet,f,P,expand); %Expand

 elseif f(P) > f(Q)

 w = f(P); %Keep track of the current worst value of f

 [feet,f]=reflect_foot(funk,feet,f,P,contract); %1-dim Contract

 if f(P) < w

 [feet,f]=ndcontract(funk,feet,f,R); %N-dim contract

 end

 end

end

[P,Q,R] = pickPQR(f); %Identify highest, second highest, lowest feet

bestfit = feet(R,:); %Use lowest foot as best fit.

%end amoeba

%--

function [P,Q,R]=pickPQR(f)

% Identify indices of highest (P), second highest (Q),

% and lowest (R) feet.

[foo,Nfeet]=size(f);

if foo ~=1

 error('f has wrong dimensions!')

end

P=1; Q=2; R=1; % Initial guess, certainly wrong

if f(Q) > f(P) % Correct the P/Q order for first 2 feet

 P=2; Q=1;

end

for i=1:Nfeet % Loop thru feet, finding P,Q,R

 if f(i) > f(P)

 Q=P; P=i;

 elseif (f(i) > f(Q)) & (i ~= P)

 Q=i;

 end

 if f(i) < f(R)

 R=i;

 end

end

%end pickPQR

%--

function [feet,f]=reflect_foot(funk,feet,f,j,scale)

% Reflect the jth foot through the centroid of the other

% feet of the amoeba. The displacement may be scaled by

% using scale, whose default value of 1 results in a

% reflection that preserves the volume of the amoeba.

% A scale of 0.5 should never be used, as this would result

% in a degenerate simplex. Typical scale values:

% 1 reflect through amoeba's opposite face

% -0.5 stretch the foot outward, doubling amoeba size

% 0.25 ... shrink inward, halving amoeba size

% The following variables get updated:

% feet(j,:) -- location of the jth foot

% f(j) -- value of funk at the jth foot

if nargin ~= 5

 scale=1; %default

end

if scale == 0.5

 error('Oops, you squashed the amoeba!')

end

[Nfeet,N]=size(feet); %Get amoeba dimensions

if Nfeet ~= N+1

 error('Not an amoeba: wrong number of feet!')

end

% Calculate displacement vector

cent = (sum(feet,1) - feet(j,:))/N; %centroid of the feet, except the

jth foot.

disp = 2*(cent - feet(j,:));

% Move the foot, and update f

feet(j,:) = feet(j,:) + (scale*disp); %scaled displacement

f(j) = feval(funk,feet(j,:)); %evaluate funk

%end reflection

%---

function [feet,f]=ndcontract(funk,feet,f,j)

% Contract all feet, except jth, toward the jth foot.

% The following variables get updated:

% feet -- location of each foot

% f -- value of funk at each foot

[Nfeet,N]=size(feet); %Get amoeba dimensions

if Nfeet ~= N+1

 error('Not an amoeba: wrong number of feet!')

end

for i=1:Nfeet

 if i ~= j

 feet(i,:) = (feet(i,:) + feet(j,:))/2;

 f(i) = feval(funk,feet(i,:));

 end

end

%end ndcontract

3.2 Application example: least squares fitting

Fitting a line (or a polynomimal) to data can be done most efficiently by

the traditional linear least squares technique, but you could use the strategy

below to fit any sort of complicated, nonlinear multi-parameter model. It

would be easy to modify this code for alternate fit criteria, such as minimum

absolute deviation, which is more robust against outliers than least squares.

The first module is just a main program that picks a random slope and a y-

intercept, creates some pseudo-random noisy data that fluctuates about the

mean of that line, and then tries to find a best fit line by looking only at the

noisy data. The program compares the initial line, the noisy data, and the

best-fit line by plotting all three on a single graph. Note that the number of

data points (20) is much larger than the number of parameters used for the

minimization (N=2, just a slope and a y-intercept).

function no_result=least_squares()

% least_squares.m

% Least Squares Curve Fitting Demonstration

hold off

slope=4*(rand(1)-0.5)

yintercept=2*(rand(1)-0.5)

%Make some data, complete with 'noise'

global datax datay %share these with the badness function (below)

datax = 0:0.05:1.0;

datay = (slope*datax)+yintercept;

plot(datax,datay,'r--'); %Plot the theory used to generate the data

hold; %save current display for overplotting

[M,N] = size(datax);

error = 0.5*(rand(M,N)-0.5).*(max(datay)-min(datay)); %create noise

datay = datay + error; %add noise to data

plot(datax,datay,'ro'); %Overlay more realistic noised data

%Find best fit slope and yintercept from noised data

result = amoeba('badness',[0,0],20);

slope=result(1)

yintercept=result(2)

result = amoeba('badness',result,20);

slope=result(1)

yintercept=result(2)

%Generate best fit curve, plot for comparison

fit_y = (slope*datax)+yintercept;

plot(datax,fit_y,'b-'); %Plot the theory

hold off

%end of main program

Below is the function f(x), which I call “badness” — a measure of how bad

the fit is. This is where least-squares comes in: the badness is the sum of the

squares of the differences between the real data points and a trial fit. The

trial fit is derived from slopint, a 2-vector containing a guess for slope and

y-intercept. The best fit therefore minimizes badness.

function sum_squares=badness(slopint)

global datax datay

[M,N] = size(datax);

theory_y = slopint(1)*datax + slopint(2);

sum_squares = sum((theory_y - datay).^2);

%end badness

