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1 Introduction

Once upon a time, there were frequentist statistics,
practiced mainly by old white men. That’s all any-
body had in those dark times. Then the prophet
Bayes had a revelation. Bayes’ theorem portended a
revolution, bringing light and understanding to sta-
tistical inference. The Bayesians, disciples of their
prophet, waged war against the frequentists. Al-
though the frequentists were pretty dense, a few saw
the light and converted to the new faith. Most sim-
ply aged out and retired. Actually, none of that is
true. A short historical introduction appears in the
Wikipedia article on Thomas Bayes. Statistical infer-
ence under either a “frequentist” or “Bayesian” name
can be done well or poorly. But even frequentist sta-
tistical work will be less prone to error if we under-
stand the implications of Bayes’ theorem.

What follows is a completely unoriginal introduc-
tion to Bayes’ theorem using the Prosecutor’s Fal-
lacy1 to show why there is more to life than p-values.

2 p-Values

Suppose that we are doing a correlation study. We
have N ordered pairs of data, (xi, yi). From the data,
we calculate a correlation coefficient, τ . Perhaps we
found τ very close to its maximum value of 1, which
makes us think x and y are correlated. How can we
quantify our confidence in this correlation?

We assign the name S to the statistical evidence
actually obtained; in other words, S stands for
the proposition that the correlation coefficient τ is
greater than or equal tothe value we measured. The

1https://en.wikipedia.org/wiki/Prosecutor’s_fallacy

null hyothesis, H, is that the variables x and y are
uncorrelated in the parent population from which my
data were drawn. The virtue of this mode of thought
is that H is a particularly simple assumption, so
starting from this assumption is is straightforward
to calculate the probability of the evidence, S. That
probability is called

α = Pr(S|H),

which we read as “α equals the probability of S given
H”. Another name for α is the “p-value”. We also
use the word “confidence” to describe 1− α. Hence,
if the p-value is 0.001, we might say that “we reject
the null hypothesis with 99.9% confidence.” In other
words, since the null hypothesis H is unlikely to have
given rise to the evidence S that we actually observed,
we cite this as justification to discard hypothesis H.
We do accept the negation of the null hypothesis. In
plain language, x and y are correlated. We celebrate,
and we publish. That is representative of the frequen-
tist approach. For years, this is all I thought about
in the context of statistical significance, and I can’t
honestly say that it led me astray in any important
way.

3 Bayes’ Theorem

In the previous section, we made the tacit assumption
that if the probability of the evidence S given the null
hypothesis H is small, then the likelihood that H is
true given the evidence is also small. Very roughly,
we assumed

Pr(H|S) ≈ Pr(S|H).
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Bayes’ theorem is simply an equation that gives a
rigorous relationship between the above two quanti-
ties. When “Bayesians” are up in arms, they assert
that “frequentists” make an equation out of the above
assumption. Rather than calling people names, let’s
derive the true relationship. Then in the next section,
we’ll see just how far south things can go when the
above assumption is made in a cavalier or thoughtless
manner.

Consider the joint probability distribution
Pr(S,H). This is the probablity that two proposi-
tions, S and H, are both simultaneously true. In
the case we have been considering, the proposition
S refers to our evidence, which consists of the
fact that some statistical quantity is at a specified
(measured) value or greater. Proposition H refers to
a null hypothesis, crafted to make Pr(S|H) easy to
calculate. The joint probability is

Pr(S,H) = Pr(S|H) Pr(H).

In words, the probability that both S and H are true
is equal to the probability of S given H times the
probability of H by itself. Pr(H) is called the prior,
which is short for “the a priori probability, ignoring
the evidence S, that H is true.” I take the above
equation as obvious, but perhaps it is more profound
than I think. Similarly,

Pr(H,S) = Pr(H|S) Pr(S).

The quantity Pr(S) is, as you might imagine, the
probability of the evidence S regardless of whether
the null hypothesis H is true. Now, Pr(H,S) and
Pr(S,H) mean the same thing by definition, so

Pr(H|S) =
Pr(S|H) Pr(H)

Pr(S)
.

This is called Bayes’ theorem.

4 Prosecutor’s Fallacy

Having obtained the exact relationship between
Pr(S|H) and Pr(H|S), we wonder: how different can
they be?

A prosecutor introduces forensic evidence from the
scene of a murder that matches the accused with
99.9% confidence.2 When asked by the defense ex-
actly what this confidence means, the forensic pathol-
ogist describes it as one minus a p-value:

Pr(S|H) = 0.001,

where S is the match of the forensic evidence, and
H is the null hypothesis: that the accused is not the
killer. This sounds very damning, especially after
the prosecutor has told the jury every terrible detail
of the crime. For the sake of argument, let us stip-
ulate that the evidence was fresh, almost certainly
associated with the perpetrator. Remembering that
null hypotheses are formulated to be very straight-
forward, then the scenario of H is that the accused
is an individual randomly chosen from the popula-
tion at large, who had nothing to do with the crime.
Thus, Pr(S|H) means the probability that any ran-
dom person would just happen to match the forensic
evidence. What does Pr(S|H) tell us about Pr(H|S),
which our stipulation equates with the likelihood of
guilt?

Suppose the crime occurred in a city of one mil-
lion people. How does Bayes’ theorem illuminate the
problem? The a priori chance that a particular per-
son is the perpetrator is one in a million:

Pr(H̄) = 10−6.

The chance that the opposite is true, which we iden-
tify as the prior for the null hypothesis H, is

Pr(H) = 1− 10−6 ≈ 1.

If we make no assumptions about H, then estimat-
ing the probability that a randomly chosen person
matches the forensic evidence requires marginalizing
over two scenarios: a 0.001 probability of a random
match, and a 10−6 probability that the person hap-
pens to be the perpetrator:

Pr(S) = Pr(S|H) Pr(H) + Pr(S|H̄) Pr(H̄)

= (0.001× 1) + (1× 10−6)

= 0.001001.

2Hair? Fingerprints? I don’t know. You’ve watched CSI;
use your imagination.
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When we put all the factors together, we find

Pr(H|S) =
0.001× 1

0.001001
= 0.999.

In other words, unless the prosecutor has additional
evidence connecting the accused to the crime, there
is a 99.9% chance that the accused is innocent. Care-
fully accounting for all the possibilities, Bayes’ theo-
rem has taken us all the way from 99.9% probability
of guilt to 99.9% probability of innocence.

You don’t have to be a Bayesian to see the fallacy:
There are 0.001×106 = 1, 000 people in this city who
match the forensic evidence. 999 of those 1,000 peo-
ple are not the murderer. If the forensic evidence is
all we have to go on, then there is a 99.9% chance
that the crime was committed by one of the 999 peo-
ple who were not charged with murder. Put this way,
it sounds painfully obvious, but there is a reason this
is called the Prosecutor’s Fallacy. Plenty of people
have gone to prison (or worse) on comparably flimsy
evidence.

A word of caution is in order here. If the detec-
tives went wandering around the city collecting sam-
ples from random people until they found a suspect,
or if they simply picked the first match they found
in a massive database, then the above calculation
holds and the prosecutor’s case is baseless. How-
ever, if the prosecutor has shown that only three
people were in the building at the time, and one
of them is a perfect match, that is a very different
case indeed. If we stipulate that one of the three is
the perpetrator, we would have Pr(H) = 0.667 and
Pr(S) = 0.001+0.333 = 0.334. The result then would
be Pr(H|S) = 0.002. This is twice the raw p-value
presented by the prosecutor, but it is still small. We
are left with a 99.8% chance of guilt. Of course, a re-
sponsible investigator should also test the two other
possible suspects! The lesson of Bayes’ theorem is
that context matters a lot, and we should carefully
take into account all the information at our disposal.

5 Conclusion

We started in section 2 with a simple argument to
interpret one minus the p-value as a confidence that

the null hypothesis can be rejected. In section 4, we
reviewed the classic Prosecutor’s Fallacy, in which the
p-value by itself could send the wrong message.

In today’s parlance, people call the quoting of p-
values “frequentist”, but the content of the relevant
probability theory has not changed much since the
1763 publication of Thomas Bayes’ eponymous theo-
rem.3 The slur “frequentist” derives from “frequency
distribution,” a longstanding term of art for all the
quantities in this essay that begin with Pr. In my
view, the prosecutor’s reasoning is not frequentist,
but sloppy. Call yourself a Bayesian if you want to
be cool, or a frequentist if you prefer to be contrar-
ian. More importantly, think carefully before making
assertions based on the p-value. If you have no useful
prior knowledge (Pr(H)), then the p-value speaks for
itself. If not, make a credible attempt to work out
what your evidence really implies.

Suppose you have performed a study with a very
low p-value, but accounting for prior knowledge puts
Pr(H|S) at an unremarkable 15%. What should you
do? If your evidence has perceptibly moved the nee-
dle compared to previous work, then please, for the
love of Bayes, publish. Do not expect to convince
anyone to reject the received wisdom on your account,
but the community deserves to know that H has been
pushed into ambiguous territory. Science is harmed
by a systematic bias against publishing contrary re-
sults.

3https://en.wikipedia.org/wiki/Bayes%27_theorem#

History
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