Bayesian Basketball

Charles Kankelborg
Revised April, 2024

Abstract

I introduce statistical inference using Bayes’ theorem from minimal
assumptions. As an example, I solve the following problem: A bas-
ketball player shoots N free throws, and all of them are good. What
is the probability that she will sink the next shot?

1 Introduction to Bayes’ Theorem

At this point, I will provide the background needed to apply Bayes’ theorem
not only to the free throw problem, but to larger and more difficult problems.
In §1.1) T briefly introduce and justify Bayes’ theorem. Then, in §1.2] T lay
out the application of Bayes’ theorem to parameter estimation.

1.1 Derivation

Two logical propositions, A and B, are capable of being either true or false.
The expression Pr(A) means the probability that A is true. The expression
Pr(A|B) denotes a conditional probability, which is read as the probability
that A is true, given that B is true. Now, the probability that both A and
B are true is given by a fundamental axiom of probability theory,

Pr(A, B) = Pr(A|B) Pr(B).

In words, the probability that both A and B are true equals the probability
of A under the assumption that B is true, multiplied by the probability that
B is true. We take this as given, but I invite you to think about it carefully.



Equivalently, I could have written
Pr(B, A) = Pr(B|A) Pr(A).

Notice, however, that Pr(A, B) and Pr(B, A) mean the same thing, the prob-
ability that both A and B are true. Consequently,

Pr(A|B) Pr(B) = Pr(B|A) Pr(A).

That is, the probability of A given B, multiplied by the probability of B, is
equal to the probability of B given A, multiplied by the probability of A.
The above equation is Bayes’ theorem. It is frequently rearranged to solve
for one of the two conditional probabilities,

Pr(B|A) Pr(A)
Pr(B)

Pr(A|B) =

1.2 Statistical Inference: Parameter Selection

While the above expression of Bayes’ theorem is technically correct, we still
need to develop the conceptual framework to use it for statistical inference.
In particular, we will consider the problem of parameter selection.

Let us suppose that some data, d, has been collected. We now assume
that model M can be used to account for this data. The model has some
number of tunable parameters, given by the parameter vector x. We wish to
use the data to asses the probability distribution for those parameters. We
begin by using Bayes’ theorem:

Pr(d|x, M) Pr(x|M) (1)
Pr(d|M) '

Pr(x|d, M) =

This form of Bayes’ theorem will motivate the rest of the paper. Often, M
is omitted to simplify the notation, but it behooves us to remember that
the model has been assumed to be true. The thing we wish to calculate,
Pr(x|d, M), is called the posterior distribution. Can we evaluate all the
quantities on the right hand side of the equation? The most straightforward
part is probably Pr(d|x, M). After all, if assuming a model and choosing all
its parameters does not give us enough information to assess the likelihood
that our observations turn out a certain way, then the model is not very
useful!



The factors Pr(x| M) and Pr(d| M) require careful thought. The notation
seems to indicate that we are to calculate the probabily of some choice of
model parameters without any knowledge of the data, and the probability
of the data without having the slightest idea about the parameter values.
That seems like an ill-defined problem, so I need to back up and think about
Pr(x|M) and Pr(d|M) in a different way.

1.2.1 The Prior

We cannot calculate the probabilities Pr(x|M) and Pr(d| M) without start-
ing from some assumption, so what is that starting point? The most im-
portant point is that Pr(x|M) and Pr(d|M) must be compatible; that is,
they must be derived from exactly the same set of assumptions. We already
know that both assume the same model, but it is usually necessary to add
something. The way this is usually accomplished is to begin with an as-
sumed parameter distribution Pr(x|M). We will simply call this the prior, a
too-short name that fails to express the weight on this starting assumption.!

If something is already known about the likelihoods of parameter choices
before the data d are taken, then that information should be encoded in
Pr(x|M). If not, then usually the most honest choice is a flat prior, meaning
that all parameter values are equally likely. If x € R", the proper normal-
ization of the prior would be

/dxl/dxg---/dxn Pr(zy, 29, ..., 70| M) E/Pr(x|/\/l))d"x:1. )

The parameter integrals above are definite integrals over the appropriate
domain for each parameter. Once we have defined a properly normalized
multivariate distribution, the calculation of Pr(d|M) will follow directly, as

described in section [[L.2.2

'If it seems to you that assuming a probability distribution for x is begging the question,
then I have done my job! That is exactly the danger we must keep in mind. One of the
strengths of Bayesian inference is that it forces us to lay our cards on the table, making
all assumptions explicit.



1.2.2 Marginalization

Once we have the prior, it becomes possible to work out Pr(d|M). We do
this by marginalizing over all possible values of the model parameters:

Pr(dM) = /Pr(d|x,./\/l) Pr(x|M) d"z. (3)

Notice how the prior, Pr(x|M), was required for marginalization. This es-
tablishes the required consistency between Pr(x|M) and Pr(d|M). Notice
that if the prior not normalized, the normalization ultimately drops out in
Bayes’ theorem.

1.2.3 The flat prior

Let’s think for a moment about a single model parameter, z. It is common
practice to introduce a prior of the form

f(x) = Pr(z|M) = ¢, (4)

where c is a constant over the appropriate domain of x. This is called a “flat”
prior. The idea behind a flat prior is to eliminate bias in parameter selection.
Suppose, for example, that x is an astronomical distance whose uncertainty
covers many orders of magnitude. It might then be more natural to work in
terms of y = log x:

9(y) = Pr(yM). (5)

By conservation of probability,

f(z)dr = g(y) dy
f(x) =g(y) dy _ 9(2)

dz x
.g(logx) = cx

Notice how the change of parameters affects the functional form of the prior.
The distribution cannot be uniform in both z and log z. So, which would be
free of bias: flat Pr(z|M), flat Pr(logz| M), or something else? Sometimes,
the answer is obvious in context. But it is always important to spell out the
prior clearly.



1.2.4 Posterior Distribution

We are now in a position to write down the probability distribution for the
model parameters. Once again, this is called the posterior:
Pr(d|x) Pr(x)

Pr(x|d) = J Pr(d|x’) Pr(x) dra’ (6)

I have left the model M unstated to keep the notation compact. The primes
are used to distinguish all the independent variables that disappear when
the definite integral is calculated to marginalize over the parameter space.
This notation helps us to see that the denominator does not introduce any
dependence on the parameter vector, x. If the prior is flat, then the posterior
takes the same functional form as Pr(d|x), and Bayes’ theorem serves only to
renormalize that distribution over the domain of the model parameter space.
Nevertheless, correct normalization is important if we want to calculate a
mean, a median, or confidence intervals from the distribution.

The posterior distribution, Pr(x|d), is ostensibly the answer we have been
looking for. Or is it? We have a range of possible models, described by the
parameters xq, xs,...,,. We also have a probability distribution for those
parameters. We might prefer to have a well-defined best choice of parameters
to describe the situation, Xpest. We will see from the basketball example in
the next section that many possible choices of X could be made using

Pr(x|d).

2 The Free Throw Problem

We now pose the problem:

A basketball player shoots N free throws, and all of them are
good. What is the probability that she will sink the next shot?

This kind of statistical problem has many applications, including the analysis
of risk in engineering.? Bayesian inference, as described in §[1] gives us a way
to attack the problem.

2For example: A new kind of single-use solid rocket booster has had N flights, all
successful. What is the likelihood that the next flight will be a success?



2.1 The Model and the Prior

In order to formulate a prior, I need to decide on a parameterized model.
Let’s characterize our basketball player by a single parameter, ¢, which is
the probability of sinking a free throw. I have no other prior knowledge to
incorporate, so I will use a flat prior:

Pr(g) =1, 0<g¢<1.

Note the recursive use of the word probability: Pr(g) is the probability that
the player’s free throw probability has a certain value, ¢. This distribution
is normalized:

/01 Pr(q)dq = 1.

Exercise: Choosing a parameterized model restricts me from considering other
models. What are some possible considerations that I have ignored by character-
izing the player’s free throw shooting ability with a single parameter, ¢?

2.2 Finding the Posterior Distribution

The next step is to calculate Pr(d|q), the probability that the data would
result, as a function of model parameter q. The data is that we have observed
N good shots in a row; the sole model parameter is q. The chance of putting
the ball through the hoop on any particular try is ¢, so the chance of two
baskets in a row is ¢2. Similarly, the chance of N baskets in a row is

Pr(d[x) = Pr(N|q) = ¢".

Now, I marginalize over all possible values of ¢ to find Pr(d):

1
1
_ — _ N _
Pr(d) = Pr(N) = /Pr(N\q) Pr(q) dq —/0 ¢ dq= Nl
The posterior distribution is therefore

Pr(Nlq) Pr(q) N

Pr(q|N) = =(N+1 .
H(alN) = SR = (D 7)



2.3 Interpretation of the Posterior

The posterior distribution we have derived is zero for ¢ = 0 and grows mono-
tonically as ¢ increases to 1. This makes a certain amount of sense. So long
as N > 0, it has been demonstrated that she can hit the basket. If N is large,
our player appears to be a very good shot. If we could decide on a single
representative or “best” value for ¢, that would be our answer: the chance
of making the next free throw is just guess- Some possible options for inter-
preting the posterior distribution would then include the usual measures of
central tendency for a univariate (single parameter) probability distribution:

1. Mode: @pest = argmax Pr(q|NV).
2. Mean: gpest = fol Pr(q|N) qdgq.
3. Median: [ Pr(¢|N)dq = 3.

The mode is the maximum likelihood estimate. Since the distribution is
monotonically increasing, the maximum likelihood estimate is ¢ = 1. The
larger N becomes, the more plausible this estimate becomes. However, it
seems strange that our result would not depend on N. Should we think
this player is a perfect shot after only a few successful tries? The other two
estimates of ¢nesy are more nuanced and will actually depend on N. How can
we decide?

Let’s look carefully at the original question: “What is the probability
that she will sink the next shot?” 1 denote the answer as Pr(N + 1|d) =
Pr(N + 1|N), by which I mean “the probability that the N + 1% free throw
will be good, given the data that the first N free throws were good”. 1
propose to calculate this probability by marginalizing over all possible values
of q:

Pr(N +1|N) = /0 Pr(q|d) Pr(N + 1|q) dg.

In terms of ¢, the probability of sinking the next free throw is Pr(N+1|q) = q.
The answer is therefore:

Pe(v+11V) = [ "Pr(gIN) qdg = (q)

N +1

1
- [ g = 5 )



Notice that this corresponds to the mean value of the distribution, which is
also called the ezpectation value of g, written (g). The reasonableness of this
result becomes more apparent when we check extreme values:

1. In the limit N — oo, the player is a perfect shot: (¢) — 1.

2. If N =0, then we have no evidence, and (q) = 5.

Exercise: Calculate the median value of the posterior distribution, also called g5,
as in 50" percentile. How does the median behave in the limits of extreme values
of N?

Exercise: Perhaps you are not satisfied by a single “best” value for ¢. Using the
posterior, calculate ggg, the smallest value of ¢ to 90% confidence. In other words,
there is only a 10% chance that g < ggo.

3 Further Exploration of the Problem

3.1 Non-flat prior

It might bother us to begin with a flat prior. Perhaps we have some minimal
intuition about the likely results. For example, it seems unreasonable to
expect that ¢ = 0 because the player is presumed to have at least some skill.
It is also unlikely that ¢ = 1, because no athlete is perfect. A simple prior
that goes to zero at the ends of the interval is:

Pr(q) = 6q(1 - q).

Note that this is properly normalized. How does the new prior affect the
result? We still have Pr(N|q) = ¢"V. Marginalizing over ¢,

1
6
Pr(N)= [ 6¢""(1—¢q)dq=
r(N) /0 ¢ " (1—q)dgq N1 (V13
The posterior is then:
Pr(g|N) = (N +2)(N +3)(1 — q)¢"*".

Exercise: Calculate (¢) for the above posterior. Compare to the result for the

flat prior.



3.2 Subsequent Trips to the Court

In §3.1] we modified the prior somewhat arbitrarily. A better use of a non-flat
prior is to take account of results from previous experiments. For example:

On Monday, a basketball player hits N free throws out of N
attempts. She returns to the court on Tuesday, and hits K out
of K. What is the probability that she will sink the next free
throw?

Provided that the conditions have not changed, we can take both practice
sessions into account in calculating the likelihood of hitting on the next at-
tempt. The simplest approach would be to calculate it all at once. According
to equation |8 N + K baskets in a row implies that

N+K+1
=N R+ )

It is more interesting (though more tedious) to use this example to demon-
strate how Bayes’ theorem takes account of the prior, Pr(x). We argue based
on equation [7] that the posterior calculated from the first session should be
the prior at the time we make the second trip to the court:

Pr(x) — Pr(g|N) = (N +1)¢".

We must also marginalize over this distribution to get Pr(d) for the second
session:

Pr(d) — Pr(K|N) = /0 Pr(K|q) Pr(q|N) dq

N +1

1
N+ [ ENgg = L
( +)/Oq 1= NTK+1

Bayes’ theorem for the posterior distribution, taking both datasets into ac-
count, is:

Pr(K|q) Pr(g|N)

Pr(q|K,N) = 10
The posterior works out to be:
g" (N +1)¢"

Pr(q|K,N) = = (N+K+1)¢""",

(N+1)/(N+K+1)

9



which is exactly what we would have obtained by simply substituting N —
N+ K in equation (7} The expectation value (mean) of this posterior distribu-
tion is obviously what we predicted a moment ago, based on simpler reasoning
(equation [J)). This result should increase our confidence that Bayes’ theorem
properly takes into account prior information.

Often, prior information about a parameter or set of parameters comes in
a very different form, and from a very different experiment, than the present
experiment. If we are prepared to assume that the same model, with the
same parameters, should hold on both occasions, we can use the method
illustrated by equation to build a posterior distribution that combines
what has been learned from both experiments.

3.3 Example with Misses

So far, our star player has never missed. Let us generalize the problem as
follows:

A basketball player attempts N free throws, and sinks M of them.
What is the probability that she will sink the next free throw?

Of course, M < N. We now have a more complicated data set, d. Assum-
ing underlying probability ¢, we can calculate Pr(d|g) using the binomial
distribution.

Exercise: Work out the rest of the example. Assuming a flat prior, what is
Pr(q|M,N)? What is (¢)? Explain the deviation from (q) = M/N.

10



Summary

. Bayes’ theorem (equation (1)) provides a rigorous way of calculating a
posterior distribution, Pr(x|d), that can be used for statistical inference
about model parameters x based on data d.

. When we calculate the posterior distribution, it is essential to de-
rive Pr(d) and Pr(x) using compatible assumptions. That means we
marginalize over the model parameter space according to equation [3]

. Bayes’ theorem allows us to take prior information about the parame-
ters, Pr(x), into account.

. The interpretation of the posterior depends on the question being asked.
In the case of parameter selection, for example, we might prefer the
maximum likelihood, the expectation value, or some other descriptor
of the posterior. If we are being more careful, we might integrate the
posterior to obtain a 1- or 2-sided confidence interval.

11
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