Solar Coronal Tomography

Charles Kankelborg

Physics Department, Montana State University

2008 OpTeC Conference, Bozeman, MT

Abstract

A simple, yet powerful, algorithm for computed tomography of the solar corona is demonstrated using synthetic EUV data. A minimum of three perspectives are required. These may be obtained from STEREO/EUVI plus an instrument near Earth, e.g. TRACE or SOHO/EIT.

Coronal Tomography (EUV)

- 1. Why is the Solar Corona important?
- 2. Background—STEREO mission
- 3. Science Goals
- 4. SMART Algorithm
- 5. Demonstration (synthetic EUV data)
- 6. Summary & conclusions

Why is the Corona interesting?

NASA's STEREO Mission

(SECCHI remote sensing pkg)

 $STEREO \text{ Aug 27 } (-32^{\circ}, +37^{\circ})$

- Twin spacecraft in solar orbit
- \bullet A = Ahead, B = Behind
- EUVI = Extreme UV Imager (low corona)
- Coronagraphs observe outer corona
- Heliospheric Imager
- Like human stereoscopic vision (?)

Example EUVI Data (171 Å)

Science Objectives

A primary science question of STEREO/SECCHI is:

What is the 3-dimensional structure of active regions, coronal loops, helmet streamers, etc?¹

Approach:

- \bullet Adapt Smooth Multiplicative Algebraic Reconstruction Technique (SMART) algorithm developed for MOSES.
- 3 views: STEREO/EUVI + TRACE (EUV telescope in LEO, launched April 1998).

¹Howard et al. 2007, Space Science Reviews

Inspiration from MOSES

What does this sounding rocket have to do with STEREO?

- Multi-Order Solar EUV Spectrograph (MOSES)
- NASA LCAS launch, 2006 Feb 8
- Simultaneous imaging and spectroscopy
- Tomographic inversion → spectrum
- ullet Synergy with STEREO few-angle tomography

Problem Statement

Observe volume EM I(x,y,z) at angles θ_i by projection:

$$f_i(x, z) = \int_D \mathcal{R}_z(\theta_i) I \, dy + \text{noise}$$

Given images f_i and initial guess G(x, y, z), iteratively modify G to approximate I.

1. Smooth G.

- 1. Smooth G.
- 2. Project: $f'_i = \int_D \mathcal{R}_z(\theta_i) G dy \quad \forall i$
 - ullet Evaluate goodness of fit, $\chi^2_{R,i}$
 - ullet Adjust γ_i based on $\chi^2_{R,i}$ and $\Delta\chi^2_{R,i}$

- 1. Smooth G.
- 2. Project: $f'_i = \int_D \mathcal{R}_z(\theta_i) G dy \quad \forall i$
 - ullet Evaluate goodness of fit, $\chi^2_{R,i}$
 - ullet Adjust γ_i based on $\chi^2_{R,i}$ and $\Delta\chi^2_{R,i}$
- 3. Correct: $G \leftarrow G \prod_i C_i^{\gamma_i}$, where

$$C_i(x,y,z) = \mathcal{R}_z(- heta_i) rac{f_i(x,z)}{f_i'(x,z)}.$$

- 1. Smooth G.
- 2. Project: $f'_i = \int_D \mathcal{R}_z(\theta_i) G dy \quad \forall i$
 - ullet Evaluate goodness of fit, $\chi^2_{R,i}$
 - ullet Adjust γ_i based on $\chi^2_{R,i}$ and $\Delta\chi^2_{R,i}$
- 3. Correct: $G \leftarrow G \prod_i C_i^{\gamma_i}$, where

$$C_i(x,y,z) = \mathcal{R}_z(-\theta_i) \frac{f_i(x,z)}{f'_i(x,z)}.$$

Iterate, adjusting γ_i to drive $\chi^2_{R,i} \to 1$.

Synthetic Data

- Quadrupole potential field
- Coronal null: interesting geometry
- EM along arbitrary field lines
- Random latitude, longitude & clocking
- 3 viewpoints: $-40^{\circ}, 0^{\circ}, +40^{\circ}$
- Imaged with 3000 counts in the brightest pixel
- Note square root scaling

Magnetogram:

Corona (isometric):

Example 1 (E-W pan)

Example 1 (N-S pan)

Example 2 (E-W pan)

Example 2 (N-S pan)

Summary & Conclusions

- Full 3D reconstruction of coronal EM
- 3 viewpoints required
- No assumptions (loops, magnetic field, etc.)
- Simple and computationally efficient
 - Examples converged in 15 iterations
 - 3 minutes on my laptop (169^3 voxels)
- Loops parallel to ecliptic—not so good
- Apply to EUVI data hopefully this fall!

Acknowledgment: This work has been funded through the Solar and Heliospheric LCAS Program.