Solar Coronal Tomography

Charles Kankelborg
Physics Department, Montana State University
2008 OpTeC Conference, Bozeman, MT

MONTANA STATE UNIVERSITY

Abstract

A simple, yet powerful, algorithm for computed tomography of the solar corona is demonstrated using synthetic EUV data. A minimum of three perspectives are required. These may be obtained from STEREO/EUVI plus an instrument near Earth, e.g. TRACE or SOHO/EIT.

1. Why is the Solar Corona important?
2. Background-STEREO mission
3. Science Goals
4. SMART Algorithm
5. Demonstration (synthetic EUV data)
6. Summary \& conclusions

寝
 Why is the Corona interesting?

 MONTANAGeoeffect
Solar Physics

- Coronal heating
- Solar flares
- Coronal mass ejections

Aerospace systems

- Radiation environment
- Human sałety
- Electronics
- Satellite drag

NASA's STEREO Mission (SECCHI remote sensing pkg)

- Twin spacecraft in solar orbit
- $A=$ Ahead, $B=$ Behind
- EUVI = Extreme UV Imager (low corona)
- Coronagraphs observe outer corona
- Heliospheric Imager
- Like human stereoscopic vision (?)

STEREO Aug $27\left(-32^{\circ},+37^{\circ}\right)$

Science Objectives

A primary science question of $S T E R E O / S E C C H$ is:

What is the 3-dimensional structure of active regions, coronal loops, helmet streamers, etc? ${ }^{1}$

Approach:

- Adapt Smooth Multiplicative Algebraic Reconstruction Technique (SMART) algorithm developed for MOSES.
- 3 views: STEREO/EUVI + TRACE (EUV telescope in LEO, launched April 1998).

Inspiration from MOSES

What does this sounding rocket have to do with STEREO?

- Multi-Order Solar EUV Spectrograph (MOSES)
- NASA LCAS launch, 2006 Feb 8
- Simultaneous imaging and spectroscopy
- Tomographic inversion \rightarrow spectrum
- Synergy with STEREO few-angle tomography

Problem Statement

MONTANA

STATE UNIVERSITY

Observe volume EM $I(x, y, z)$ at angles θ_{i} by projection:

$$
f_{i}(x, z)=\int_{D} \mathcal{R}_{z}\left(\theta_{i}\right) I d y+\text { noise }
$$

Given images f_{i} and initial guess $G(x, y, z)$, iteratively modify G to approximate I.
1.

SMART Algorithm

1. Smooth G.

SMART Algorithm

mONTANA

1. Smooth G.
2. Project: $f_{i}^{\prime}=\int_{D} \mathcal{R}_{z}\left(\theta_{i}\right) G d y \quad \forall i$

- Evaluate goodness of fit, $\chi_{R, i}^{2}$
- Adjust γ_{i} based on $\chi_{R, i}^{2}$ and $\Delta \chi_{R, i}^{2}$

SMART Algorithm

MONTANA

1. Smooth G.
2. Project: $f_{i}^{\prime}=\int_{D} \mathcal{R}_{z}\left(\theta_{i}\right) G d y \quad \forall i$

- Evaluate goodness of fit, $\chi_{R, i}^{2}$
- Adjust γ_{i} based on $\chi_{R, i}^{2}$ and $\Delta \chi_{R, i}^{2}$

3. Correct: $G \leftarrow G \prod_{i} C_{i}^{\gamma_{i}}$, where

$$
C_{i}(x, y, z)=\mathcal{R}_{z}\left(-\theta_{i}\right) \frac{f_{i}(x, z)}{f_{i}^{\prime}(x, z)}
$$

SMART Algorithm

MONTANA

1. Smooth G.
2. Project: $f_{i}^{\prime}=\int_{D} \mathcal{R}_{z}\left(\theta_{i}\right) G d y \quad \forall i$

- Evaluate goodness of fit, $\chi_{R, i}^{2}$
- Adjust γ_{i} based on $\chi_{R, i}^{2}$ and $\Delta \chi_{R, i}^{2}$

3. Correct: $G \leftarrow G \prod_{i} C_{i}^{\gamma_{i}}$, where

$$
C_{i}(x, y, z)=\mathcal{R}_{z}\left(-\theta_{i}\right) \frac{f_{i}(x, z)}{f_{i}^{\prime}(x, z)}
$$

Iterate, adjusting γ_{i} to drive $\chi_{R, i}^{2} \rightarrow 1$.

Synthetic Data

Magnetogram:

- Quadrupole potential field
- Coronal null: interesting geometry
- EM along arbitrary field lines
- Random latitude, longitude \& clocking

Corona (isometric):

- 3 viewpoints: $-40^{\circ}, 0^{\circ},+40^{\circ}$
- Imaged with 3000 counts in the brightest pixel
- Note square root scaling

Example 1 (E-W pan)

MONTANA STATE UNIVERSITY

True (left) vs. SMART (right). Square root scaled.

Example 1 (N-S pan)

MONTANA
STATE UNIVQRSTY

True (left) vs. SMART (right). Square root scaled.

Example 2 (E-W pan)

MONTANA STATE UNIVERSITY

True (left) vs. SMART (right). Square root scaled.

Example 2 (N-S pan)

MONTANA
STATE UNIVERSITY

True (left) vs. SMART (right). Square root scaled.

Summary \& Conclusions

- Full 3D reconstruction of coronal EM
- 3 viewpoints required
- No assumptions (loops, magnetic field, etc.)
- Simple and computationally efficient
- Examples converged in 15 iterations
- 3 minutes on my laptop (169^{3} voxels)
- Loops parallel to ecliptic-not so good
- Apply to EUVI data hopefully this fall!

Acknowledgment: This work has been funded through the Solar and Heliospheric LCAS Program.

