
2022-03-07, 7:09 PMMCMC - Jupyter Notebook

Page 1 of 22http://localhost:8888/notebooks/MCMC.ipynb

Markov Chain MonteCarlo
The purpose of this notebook is to provide a very simple explanation of Markov Chain Monte
Carlo (MCMC) in the context of parameter fitting.

Parameter selection problem
Suppose we assume a model to describe data . For a particular choice of model
parameters, the probability that data would be measured, , is called the
likelihood. Now, the whole point of having a model is that it gives us a way of simulating,
on the basis of parameters , the whole process by which data are measured. Therefore, my
premise is that given a model , it is straightforward to calculate the likelihood.

What we really wish for, though, is the posterior distribution, . The usefulness of
the posterior distribution should be apparent; we can use it, for example, to put confidence
limits on all of the model parameters. The posterior distribution is related to the likelihood as
follows according to Bayes' theorem:

We refer to as the prior, and is the evidence. The evidence is just a
single number for a given dataset , yet it's a bit of a chore to calculate. In principle, it
involves marginalizing over all possible model parameters :

While the evaluation of each term in the sum is straightforward per my first premise, the sum
over all possible model parameters makes marginalization potentially daunting. This is
especially true for models that have many degrees of freedom. Thus, calculating the
posterior is a pain. A pain in the posterior, one supposes.

! " #
" Pr("|#,!)

!
#
!

$%(#|",!)

Pr(#|",!) = . (1)Pr("|#,!) Pr(#|!)
Pr("|!)

Pr(#|!) Pr("|!)
"

#

Pr("|!) = Pr("|#,!).∑
#

2022-03-07, 7:09 PMMCMC - Jupyter Notebook

Page 2 of 22http://localhost:8888/notebooks/MCMC.ipynb

Likelihood ratio
Now, suppose we compare the posterior probability for two different choices of model
parameters, and :

The evidence has canceled out, which is good news if that marginalization sum looked
daunting. Now, notice the ratio of priors on the right hand side. This could be useful if we
have some reason to expect a particular distribution of model parameters, . That
could emerge, for example, from previous attempts to measure the parameters of the same
system. But if we have no prior reason to favor one set of model parameters over another,
then we employ a flat prior, that is . The ratio of the posteriors is
therefore just the likelihood ratio:

Now, the right hand side is straightforward to calculate, because likelihoods are
straightforward. If only we had a way to back out the posterior distribution itself from
such ratios!

&

= (2)Pr(&|",!)
Pr(#|",!)

Pr("|&,!) Pr(&|!)
Pr("|#,!) Pr(#|!)

$ (#|!)

Pr(&|!) = Pr(#|!)

(3)Assuming a flat prior, =Pr(&|",!)
Pr(#|",!)

Pr("|&,!)
Pr("|#,!)

MCMC
In my study of Markov Chains (./MarkovChain.ipynb), I found that the Metropolis-Hastings
algorithm makes it possible to draw random samples from probability distribution by
repeatedly evaluating the ratio . It was cool, but it seemed like a solution
waiting for a problem. Well, now we have found the problem. The elements of our solution
are as follows:

1. A means to evaluate the ratio, . We use the simple likelihood
ratio as in equation (3) for the flat prior, or implement nontrivial priors via equation (2).

2. A routine for generating proposed jumps, satisfying the condition that a proposal to
jump will have the same probability as .

3. A Metropolis-Hastings implementation, such as my metro() function
(./MarkovChain.ipynb).

4. Generate a reasonable initial guess , and let Metropolis-Hastings have at it.
5. The resulting Markov chain, will evolve in such a way as to conform

to the posterior distribution .
6. There exist standard plotting packages in Python for estimating and illustrating the

posterior density from the MCMC samples. See Handley (2018)
(https://www.theoj.org/joss-papers/joss.00849/10.21105.joss.00849.pdf) and references
therein.

$ (#)
Pr(&)/(Pr(#)

Pr(&|",!)/ Pr(#|",!)

→ & & →

#0
, , , , . . .#0 #1 #2 #3

Pr(#|",!)

http://localhost:8888/notebooks/MarkovChain.ipynb
http://localhost:8888/notebooks/MarkovChain.ipynb
https://www.theoj.org/joss-papers/joss.00849/10.21105.joss.00849.pdf

2022-03-07, 7:09 PMMCMC - Jupyter Notebook

Page 3 of 22http://localhost:8888/notebooks/MCMC.ipynb

Caveats
Typically, the calculation of likelihood ratios is the most intensive part of the MCMC. It is
most efficient to have code to evaluate the likelihood (or likelihood times the prior, if we are
going with equation (3)) rather than the likelihood ratio. That information can be kept within
the Metropolis-Hastings routine, so that there are no unnecessary recalculations of

.

The jump implementation may require strategic thinking. At minimum, this means that each
parameter in should be randomly perturbed with a scale that is roughly comparable to the
expected uncertainty in that parameter, but sometimes there is more to it than that, as we
found earlier with bimodal distributions. More on this later.

When I first started running the example, I ran into serious problems with floating underflows
in the likelihood. I staved off the IEEE NaNs (NaN = Not a Number) by some careful logic, but
that wasn't the end of my woes. It turns out that if all the likelihoods are zero, the Markov
chain simply wanders around at random! In some remote corner of my mind, I remembered
hearing the gravity folks going on about “log likelihood” in the context of MCMC. Suddenly
that made a lot of sense!

Pr("|&,!)

#

Jump strategy
I like a Lorentzian jump proposal distribution (./MarkovChain.ipynb) so that sometimes long
jumps will be proposed, probing for additional modes of the posterior distribution.

It might sound reasonable to apply an independent Lorentzian jump on each parameter, but
the result of such an approach in multidimensions is that the long jumps tend to be in one
dimension only. Below, I have plotted a joint Lorentzian distribution of two parameters, and

, to illustrate that issue.
#

&

http://localhost:8888/notebooks/MarkovChain.ipynb

2022-03-07, 7:09 PMMCMC - Jupyter Notebook

Page 4 of 22http://localhost:8888/notebooks/MCMC.ipynb

In [1]: import numpy as np
import matplotlib.pyplot as plt
import scipy.special as spc
%matplotlib notebook

Illustration of the shortcoming described above.
Joint probability distribution of two Lorentzian-distributed, independent parameters.

domain = 10 # domain size in x and y
xy = np.arange(-domain,domain,0.2)
[x,y] = np.meshgrid(xy,xy)
Pxy = 1/((1+x**2)*(1+y**2)) # Not normalized.
plt.contour(x,y,Pxy, 0.5**np.arange(12,0,-1))
plt.title('bi-Lorentzian PDF, contours $1/2^n$, from half max')
plt.xlabel('x')
plt.ylabel('y')
plt.show()

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

2022-03-07, 7:09 PMMCMC - Jupyter Notebook

Page 5 of 22http://localhost:8888/notebooks/MCMC.ipynb

The illustration above shows what would have been a very selective exploration of our model
parameter space, taking jumps along the coordinate axes only. It looks bad in 2D; in higher
dimensions it would look even worse. A second mode off at some arbitrary angle would be
effectively unreachable. In order to adequately explore the posterior, we must avoid
imposing preferred directions.

Isotropized parameter space. The strategy I outline below will work best on a parameter
space with modest dimensionality () and a single, identifiable scale for each parameter.
My first step will be to isotropize the parameter space. The idea is to represent my model
parameters in a vector space with no preferred direction, using dimensionless coordinates
that may, in principle, take on any real value.

I need to be careful with and , as both are positive definite parameters. I will represent
both parameters by their logarithms. I am then free to think of these parameters as
coordinates on an unbounded domain, much like the components of . This entails that I
must accept a flat prior in and .

Assuming positions are in two dimensions (), the isotropized vector of model
parameters is

With this choice of coordinates for the model, I want the origin (
) to represent a reasonable initial guess. I also choose scales

 to represent an uncertainty in that guess. None of the scales or offsets
has to be very accurate; we are after rough orders of magnitude only. If there is concern
about being able to explore the posterior adequately, then the scales can be increased, at
the expense of lowering the jump acceptance ratio.

≲ 10

' (

!
log' log(

! = [#, &]

" = [, , ,] .#

)0

&

)1

log('/)'0
)2

log((/)(0
)3

= & = 0,' = ,(='0 (0
= [, , ,])0)1)2)3

2022-03-07, 7:09 PMMCMC - Jupyter Notebook

Page 6 of 22http://localhost:8888/notebooks/MCMC.ipynb

Isotropic jumps are chosen as follows:

1. Choose a direction vector for the jump.
A. Choose a vector of uniform deviates on , with the same dimensionality as

.
B. If , go to the previous step.
C. .

2. Choose one more uniform deviate, . The proposal is:

The parameter is a dimensionless jump radius, which can be tuned to get the desired
acceptance ratio for the Markov chain. The tangent can result in any real number,
positive or negative, distributed as a Lorentzian with FWHM of unity, while the
components of are all positive. Transition probability depends only on the Euclidian
distance . Thus, the transition probability matrix is symmetric, which is a
requirement for jump proposals in Metropolis-Hatings.

Rejecting the “corner” of the hypercube that lies outside the hypersphere is essential to get
an isotropic distribution of jump directions. Unfortunately, rejections become increasingly
probable as the dimensionality grows. In 5D, the rejection ratio is . In 11D, it is

. This is because the unit hypersphere occupies a smaller and smaller fraction of the
unit hypercube as the dimensionality increases, as we learned when doing Monte Carlo
integration of hyperspheres. Fortunately, the iterations are not computationally expensive;
they require only random number generation and simple arithmetic, plus the interpreter
overhead of the while loop.

$ [0, 1)
"

|$ > 1|2 †

="̂ $
|$|

* ∈ [0, 1)

= " + tan(+ [* −]) ."∗
,

2
1
2 "̂

,

"̂
| −"|"∗

†

∼ 0.9
∼ 0.999

2022-03-07, 7:09 PMMCMC - Jupyter Notebook

Page 7 of 22http://localhost:8888/notebooks/MCMC.ipynb

Simulated Annealing.
The final concept we need for a successful demonstration of MCMC is burn in. Unless we
have some special insight, the initial guess is often not very good. Even in the relatively

modest dimensionality of my example problem , the Markov chain can get stuck in a

local minimum and never find the main peak of the likelihood distribution. Burn in is a
strategy based on simulated annealing to locate that main peak.

Simulated annealing is a Markov chain application in which we are looking to minimize a
function . The approach has proved particularly successful at solving difficult
combinatoric problems such as the traveling salesman problem
(https://en.wikipedia.org/wiki/Travelling_salesman_problem). A variation of the Metropolis-
Hastings algorithm is used:

1. Beginning in state , evaluate the energy .
2. Propose a random jump from to based on a symmetric transition probability, .
3. Evaluate .
4. If , accept the jump.
5. Otherwise, accept the jump with probability .

Notice that the equilibrium posterior distribution for this Markov chain is the familiar
Boltzmann distribution from statistical mechanics,

The minimum energy is found by starting at a high temperature, , and running the
Metropolis algorithm while gradually reducing the temperature until . This
emulates the tendency of a physical system to find its minimum energy when it is cooled
slowly. There are many physics applications of simulated annealing, such as the Ising model
of magnetic materials (./ising/).

The idea behind simulated annealing is that a sufficiently high temperature allows the
Markov chain to traverse the topography with relative ease, so that it samples all the local
minima. As the temperature is slowly lowered, the shallower basins become inaccessible
one by one, until only the global minimum is left. Of course, there are never any guarantees
of finding an absolute minimum in a high-dimensional space. A lot depends on the annealing
schedule, by which we mean the sequence of temperatures and Metropolis iterations. The
moral of the simulated annealing story is that patience is a virtue.

()ℜ4

-(!)

! - = -(!)
! !′ .!!′

= -()-′ !′

/- ≤ 1-′

exp(−)−-- ′

/.

$ (!|.) ∝ exp(−).-(!)
/.

.
/. ≪ -(!)min!

https://en.wikipedia.org/wiki/Travelling_salesman_problem
http://localhost:8888/notebooks/ising/

2022-03-07, 7:09 PMMCMC - Jupyter Notebook

Page 8 of 22http://localhost:8888/notebooks/MCMC.ipynb

MCMC Burn In
Comparing MCMC to simulated annealing, we can make the following analogy:

where the left hand side is the log-likelihood ratio divided by “temperature”. Notice that is
to be minimized; is to be maximized. In MCMC, if we divide the log-likelihood ratio by the
new, dimensionless parameter , we can run our Metropolis-Hastings algorithm like a
simulated annealing scheme. We begin with , and slowly reduce the temperature to
unity over the course of many MCMC iterations. At that point, the annealed state reached
by the Markov chain is deemed a good initial guess. We throw away all previous iterations,
and with , we run the MCMC through enough iterations to explore the posterior
distribution. The simulated annealing run to obtain is called burn in.

During burn in, I make occasional automatic updates to the jump radius as follows:

where is the acceptance ratio observed after many iterations with jump radius , and
 is the desired acceptance ratio. According to conventional wisdom,

is optimal for multi-dimensional MCMC. After burn in, I do not adjust .

My approach to setting up burn in is hands-on: I generate random scenarios with synthetic
data, try MCMC on them, and tune my annealing schedule until the MCMC returns
reasonably reliable answers.

log()⟷− ,1
.

$ ′

$

Δ-
/.

-
$

.
. ≫ 1

!A

. = 1
!A

= , ,, ′
0,
0desired

0, ,
0desired ≈ 0.30desired

,

Example: Locating radioactive contamination
A radiation source of activity , in events per second, is located at an unknown point .
identical detectors with effective area are placed at locations . The expected number of
counts at detector over time is:

where is the background rate. Let us assume that , , and are known. The model
parameters to be determined are then , , and . What I want to find is the posterior,
which is the probability distribusion of these model parameters given the data.

' ! 1
0 !′%

2 Δ3

⟨ ⟩ = [+ (] Δ3, 2 = 0, 1, 2, . . ,1 − 1;"2
0'

4+(! − !′%)2

(0 !′% Δ3
! ' (

2022-03-07, 7:09 PMMCMC - Jupyter Notebook

Page 9 of 22http://localhost:8888/notebooks/MCMC.ipynb

Likelihoods
The measurement is some number of counts, subject to Poisson noise
(https://en.wikipedia.org/wiki/Poisson_distribution). The likelihood of measuring counts at
detector is

where denotes the array of model parameters. Note that is an integer, but is not.
Taking into account all the detectors, the likelihood of the observed data

 is

Taking a flat prior, all we need is the likelihood ratio , where
 denotes the model parameters after a proposed jump.

"2
"2

2

Pr(|") = ,"2
⟨ ⟩"2 "2 4−⟨ ⟩"2

!"2
" "2 ⟨ ⟩"2

& = [, , . . . ,]"0 "1 "1−1
Pr(&|") = Pr(|").∏

2

"2

Pr(&| , ,)/ Pr(&|!,',()!∗ '∗ (∗
∗

In [2]: Nmod = 4 # dimensionality of model (x,y,Q,B)
Detector parameters (known)
Ndet = 6 # number of detectors
Adet = 0.01 # detector effective area
xdet = np.random.normal(size=Ndet)
ydet = np.random.normal(size=Ndet)
Implicitly let Delta t = 1. It will be omitted from the model.

Scale factors relating dimensionless model m[] to x,y,Q,B
s = np.array((1,1,1,1)) # scale factor array
Q0 = 1e6 # expected source activity Q
B0 = 100 # expected background B

Define variables to hold the data and the unknowns.
I am doing this here so the variables will be within
the scope of the routines in this cell.
data = np.empty((Ndet))
x = 0.0
y = 0.0
Q = Q0
B = B0

def model(xm,ym,Qm,Bm):
 """
 Calculate array of expectation values for the data,
 given the chosen model parameters:
 xm = source x-coordinate
 ym = source y-coordinate
 Qm = source activity
 Bm = background count rate
 """

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

https://en.wikipedia.org/wiki/Poisson_distribution

2022-03-07, 7:09 PMMCMC - Jupyter Notebook

Page 10 of 22http://localhost:8888/notebooks/MCMC.ipynb

 """
 expected = np.empty((Ndet))
 for n in range(Ndet):
 expected[n] = Bm + Qm * Adet / ((xm-xdet[n])**2 + (ym-ydet
 return expected

def m2xyQB(m):
 """
 Convert dimensionless model parameters to x, y, Q, B
 m = 4-element numpy array of dimensionless model parameters.
 """
 xm = s[0] * m[0]
 ym = s[1] * m[1]
 Qm = Q0 * np.exp(s[2] * m[2])
 Bm = B0 * np.exp(s[3] * m[3])
 return (xm,ym,Qm,Bm)

def xyQB2m(xm,ym,Qm,Bm):
 """
 Convert physical parameters x, y, Q, B to dimensionless model m
 """
 m = np.empty((Nmod))
 m[0] = xm / s[0]
 m[1] = ym / s[1]
 m[2] = np.log(Qm/Q0) / s[2]
 m[3] = np.log(Bm/B0) / s[3]
 return m

def log_factorial(a):
 """
 Returns ln(a!) for integer a.
 """
 return spc.gammaln(a+1)

def log_likelihood(m):
 """
 Evaluate the log-likelihood. Since the likelihood involves products of very
 small numbers, we need to use logarithnms to avoid floating underflow
 problems -- even in double precision.

 Parameters:
 m = array of Nmod dimensionless model parameters

 Returns: ln(Pr(m|data))
 """
 (x,y,Q,B) = m2xyQB(m)
 expected = model(x,y,Q,B)
 log_like = np.sum(log_poisson(expected, data))
 return log_like

def log_likelihood_with_prior(m):

31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81

2022-03-07, 7:09 PMMCMC - Jupyter Notebook

Page 11 of 22http://localhost:8888/notebooks/MCMC.ipynb

def log_likelihood_with_prior(m):
 """
 Evaluate the log-likelihood. Since the likelihood involves products of very
 small numbers, we need to use logarithnms to avoid floating underflow
 problems -- even in double precision.

 This version incorporates prior information about location based on my scenario generation in the next cell.

 Parameters:
 m = array of Nmod dimensionless model parameters

 Returns: ln(Pr(m|data))
 """
 (x,y,Q,B) = m2xyQB(m)
 expected = model(x,y,Q,B)
 log_like = np.sum(log_poisson(expected, data))
 log_like -= np.sum((m*s)**2 / 2) # prior based on scenario generation (see next cell)
 return log_like

def log_poisson(expected, data):
 """
 For an arbitrary array of expectation values, and
 a data array of the same size, find the log-probability
 using the analytic form of the Poisson distribution.
 The reason for the logarithm

 Parameters:
 data = data array (integers)
 expected = array of expectation values (floats, same shape as data)

 Returns: Pr(data|expected)
 """
 return (data*np.log(expected) - expected - log_factorial(data

def proposal_gaussian(mi, dilate=1):
 """
 Propose a jump in a random direction in N-dimensional space,
 with the displacement drawn from a Gaussian distributon.
 By default, the Lorentzian has unit standard deviation.

 Parameters:
 mi = initial state, an N-dimensional numpy array.
 dilate = factor by which to increase standard deviation of jump distribution

 Returns: final state, mf
 """
 return mi + dilate * np.random.normal(size=Nmod)

def proposal_lorentzian(mi, dilate=1):
 """
 Propose a jump in a random direction in N-dimensional space,

81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132

2022-03-07, 7:09 PMMCMC - Jupyter Notebook

Page 12 of 22http://localhost:8888/notebooks/MCMC.ipynb

 Propose a jump in a random direction in N-dimensional space,
 with the displacement drawn from a Lorentzian distributon.
 By default, the Lorentzian has unit FWHM.

 Parameters:
 mi = initial state, an N-dimensional numpy array.
 dilate = factor by which to increase FWHM of jump distribution

 Returns: final state, mf
 """
 r2=2.
 while(r2>1):
 R = np.random.random(size=Nmod)
 r2 = np.sum(R**2)
 mhat = R/np.sqrt(r2)
 return mi + (dilate * 0.5 * np.tan(np.pi*(np.random.random()

def metro(m0, jump_func=proposal_lorentzian, loglike_func=log_likelihood
 N=10000, T=1, dilate=1):
 mc = np.empty((N,Nmod))
 loglike = np.empty((N)) # can't hurt to track the likelihoods as we go on....
 mc[0,:] = m0
 loglike[0] = loglike_func(m0)
 i=0
 misses=0
 for i in range(N-1):
 mc[i+1,:] = jump_func(mc[i,:], dilate=dilate) # propose a jump
 loglike[i+1] = loglike_func(mc[i+1,:])
 logratio = loglike[i+1] - loglike[i]
 if not(np.isfinite(loglike[i+1])):
 logratio = -1e100 # ensure rejection
 if logratio < 0:
 if (np.log(np.random.rand()) > logratio/T): # reject the jump
 mc[i+1,:] = mc[i,:]
 loglike[i+1] = loglike[i]
 misses+=1
 return mc, (N-misses)/N, loglike

132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168

2022-03-07, 7:09 PMMCMC - Jupyter Notebook

Page 13 of 22http://localhost:8888/notebooks/MCMC.ipynb

In [3]:

In [4]:

In [5]:

In [6]:

source: 870078.2822752994
background: 17.622464154388375
data set (counts): [258 156 337 201 443 975]
data minus background: [240.37753585 138.37753585 319.37753585 183.37
753585 425.37753585
 957.37753585]

/Users/kankel/anaconda3/lib/python3.7/site-packages/ipykernel_launche

def confplot(x, y, LL, conf_lo=50, conf_hi=95):
 N = np.size(LL)
 n_outer = int(round((1-conf_hi/100)*N))
 n_inner = int(round((1-conf_lo/100)*N))
 ssrank = np.argsort(LL, axis=None)
 band1 = ssrank[0:n_outer]
 band2 = ssrank[n_outer:n_inner]
 band3 = ssrank[n_inner:-1]
 plt.plot(x[band1], y[band1], 'b.', label = '>'+str(conf_hi)+'%'
 plt.plot(x[band2], y[band2], 'g.', label = str(conf_hi)+'-'+str
 plt.plot(x[band3], y[band3], 'c.', label = '<'+str(conf_lo)+'%'

Generate a random scenario (unknowns and data)
mtrue = np.random.normal(size=Nmod) / s
(x,y,Q,B) = m2xyQB(mtrue)
data = np.random.poisson(model(x,y,Q,B))

Have a look at the scenario and the data.
print('source:', Q)
print('background:', B)
print('data set (counts):',data)
print('data minus background:',data-B)

Burn in by simulated annealing
m0=np.zeros((Nmod))
target_acceptance = 0.3
jump_radius = 3.0

for T in (10**np.arange(2,0,-0.02)):
 Niter = 2000
 (mc, accept_ratio, loglike) = metro(m0, N=Niter, T=T, dilate
 loglike_func = log_likelihood_with_prior)
 print(Niter,' iterations at T = ', T, '; jump factor = ',
 '; acceptance ratio = ', accept_ratio)
 jump_radius *= (accept_ratio / target_acceptance)
 m0 = mc[-1]

1
2
3
4
5
6
7
8
9

10
11
12

1
2
3
4

1
2
3
4
5

1
2
3
4
5
6
7
8
9

10
11
12
13

2022-03-07, 7:09 PMMCMC - Jupyter Notebook

Page 14 of 22http://localhost:8888/notebooks/MCMC.ipynb

r.py:44: RuntimeWarning: overflow encountered in exp
/Users/kankel/anaconda3/lib/python3.7/site-packages/ipykernel_launche
r.py:114: RuntimeWarning: invalid value encountered in subtract

2000 iterations at T = 100.0 ; jump factor = 3.0 ; acceptance rati
o = 0.383

/Users/kankel/anaconda3/lib/python3.7/site-packages/ipykernel_launche
r.py:114: RuntimeWarning: divide by zero encountered in log
/Users/kankel/anaconda3/lib/python3.7/site-packages/ipykernel_launche
r.py:45: RuntimeWarning: overflow encountered in exp

2000 iterations at T = 95.49925860214358 ; jump factor = 3.8300000
000000005 ; acceptance ratio = 0.2905
2000 iterations at T = 91.20108393559097 ; jump factor = 3.7087166
66666667 ; acceptance ratio = 0.2965
2000 iterations at T = 87.09635899560806 ; jump factor = 3.6654483
05555556 ; acceptance ratio = 0.2955
2000 iterations at T = 83.17637711026708 ; jump factor = 3.6104665
809722225 ; acceptance ratio = 0.321
2000 iterations at T = 79.43282347242814 ; jump factor = 3.8631992
416402783 ; acceptance ratio = 0.283
2000 iterations at T = 75.85775750291836 ; jump factor = 3.6442846
179473287 ; acceptance ratio = 0.275
2000 iterations at T = 72.44359600749898 ; jump factor = 3.3405942
33118385 ; acceptance ratio = 0.288
2000 iterations at T = 69.18309709189363 ; jump factor = 3.2069704
637936494 ; acceptance ratio = 0.34
2000 iterations at T = 66.06934480075958 ; jump factor = 3.6345665
25632803 ; acceptance ratio = 0.306
2000 iterations at T = 63.0957344480193 ; jump factor = 3.70725785
6145459 ; acceptance ratio = 0.291
2000 iterations at T = 60.255958607435744 ; jump factor = 3.596040
1204610952 ; acceptance ratio = 0.273
2000 iterations at T = 57.543993733715666 ; jump factor = 3.272396
5096195973 ; acceptance ratio = 0.3275
2000 iterations at T = 54.95408738576243 ; jump factor = 3.5723661
896680605 ; acceptance ratio = 0.221
2000 iterations at T = 52.48074602497723 ; jump factor = 2.6316430
930554713 ; acceptance ratio = 0.123
2000 iterations at T = 50.118723362727195 ; jump factor = 1.078973
6681527433 ; acceptance ratio = 0.246
2000 iterations at T = 47.863009232263806 ; jump factor = 0.884758
4078852496 ; acceptance ratio = 0.2765
2000 iterations at T = 45.708818961487474 ; jump factor = 0.815452
3326009051 ; acceptance ratio = 0.2965
2000 iterations at T = 43.65158322401656 ; jump factor = 0.8059387
220538945 ; acceptance ratio = 0.277
2000 iterations at T = 41.68693834703351 ; jump factor = 0.7441500
866964293 ; acceptance ratio = 0.292
2000 iterations at T = 39.81071705534969 ; jump factor = 0.7243060

2022-03-07, 7:09 PMMCMC - Jupyter Notebook

Page 15 of 22http://localhost:8888/notebooks/MCMC.ipynb

843845245 ; acceptance ratio = 0.3605
2000 iterations at T = 38.01893963205609 ; jump factor = 0.8703744
780687369 ; acceptance ratio = 0.2855
2000 iterations at T = 36.3078054770101 ; jump factor = 0.82830637
82954146 ; acceptance ratio = 0.268
2000 iterations at T = 34.67368504525313 ; jump factor = 0.7399536
979439039 ; acceptance ratio = 0.2825
2000 iterations at T = 33.11311214825908 ; jump factor = 0.6967897
322305094 ; acceptance ratio = 0.308
2000 iterations at T = 31.62277660168376 ; jump factor = 0.7153707
917566563 ; acceptance ratio = 0.293
2000 iterations at T = 30.19951720402013 ; jump factor = 0.6986788
066156676 ; acceptance ratio = 0.305
2000 iterations at T = 28.840315031266027 ; jump factor = 0.710323
4533925954 ; acceptance ratio = 0.28
2000 iterations at T = 27.542287033381633 ; jump factor = 0.662968
5564997558 ; acceptance ratio = 0.2655
2000 iterations at T = 26.30267991895379 ; jump factor = 0.5867271
72502284 ; acceptance ratio = 0.303
2000 iterations at T = 25.11886431509577 ; jump factor = 0.5925944
442273069 ; acceptance ratio = 0.3
2000 iterations at T = 23.988329190194875 ; jump factor = 0.592594
4442273069 ; acceptance ratio = 0.3025
2000 iterations at T = 22.908676527677702 ; jump factor = 0.597532
7312625345 ; acceptance ratio = 0.293
2000 iterations at T = 21.877616239495495 ; jump factor = 0.583590
3008664087 ; acceptance ratio = 0.294
2000 iterations at T = 20.892961308540364 ; jump factor = 0.571918
4948490805 ; acceptance ratio = 0.291
2000 iterations at T = 19.95262314968877 ; jump factor = 0.5547609
400036081 ; acceptance ratio = 0.284
2000 iterations at T = 19.054607179632445 ; jump factor = 0.525173
6898700823 ; acceptance ratio = 0.2905
2000 iterations at T = 18.197008586099805 ; jump factor = 0.508543
189690863 ; acceptance ratio = 0.2935
2000 iterations at T = 17.378008287493728 ; jump factor = 0.497524
75391422757 ; acceptance ratio = 0.306
2000 iterations at T = 16.595869074375578 ; jump factor = 0.507475
2489925122 ; acceptance ratio = 0.328
2000 iterations at T = 15.84893192461111 ; jump factor = 0.5548396
055651468 ; acceptance ratio = 0.271
2000 iterations at T = 15.135612484362056 ; jump factor = 0.501205
110360516 ; acceptance ratio = 0.298
2000 iterations at T = 14.45439770745925 ; jump factor = 0.4978637
429581125 ; acceptance ratio = 0.2855
2000 iterations at T = 13.803842646028825 ; jump factor = 0.473800
32871513705 ; acceptance ratio = 0.2835
2000 iterations at T = 13.182567385564047 ; jump factor = 0.447741
31063580447 ; acceptance ratio = 0.299
2000 iterations at T = 12.58925411794165 ; jump factor = 0.4462488

2022-03-07, 7:09 PMMCMC - Jupyter Notebook

Page 16 of 22http://localhost:8888/notebooks/MCMC.ipynb

396003518 ; acceptance ratio = 0.277
2000 iterations at T = 12.022644346174106 ; jump factor = 0.412036
4285643249 ; acceptance ratio = 0.3095
2000 iterations at T = 11.481536214968806 ; jump factor = 0.425084
2488021952 ; acceptance ratio = 0.288
2000 iterations at T = 10.964781961431829 ; jump factor = 0.408080
87885010735 ; acceptance ratio = 0.286
2000 iterations at T = 10.471285480508975 ; jump factor = 0.389037
104503769 ; acceptance ratio = 0.3075
2000 iterations at T = 9.999999999999979 ; jump factor = 0.3987630
3211636327 ; acceptance ratio = 0.2895
2000 iterations at T = 9.549925860214339 ; jump factor = 0.3848063
2599229053 ; acceptance ratio = 0.3315
2000 iterations at T = 9.120108393559079 ; jump factor = 0.4252109
902214811 ; acceptance ratio = 0.303
2000 iterations at T = 8.709635899560787 ; jump factor = 0.4294631
0012369593 ; acceptance ratio = 0.266
2000 iterations at T = 8.317637711026691 ; jump factor = 0.3807906
154430104 ; acceptance ratio = 0.2845
2000 iterations at T = 7.943282347242797 ; jump factor = 0.3611164
336451215 ; acceptance ratio = 0.304
2000 iterations at T = 7.585775750291821 ; jump factor = 0.3659313
1942705653 ; acceptance ratio = 0.291
2000 iterations at T = 7.244359600749884 ; jump factor = 0.3549533
7984424485 ; acceptance ratio = 0.3
2000 iterations at T = 6.918309709189349 ; jump factor = 0.3549533
7984424485 ; acceptance ratio = 0.288
2000 iterations at T = 6.606934480075944 ; jump factor = 0.3407552
44650475 ; acceptance ratio = 0.294
2000 iterations at T = 6.309573444801917 ; jump factor = 0.3339401
397574655 ; acceptance ratio = 0.281
2000 iterations at T = 6.025595860743563 ; jump factor = 0.3127905
9757282607 ; acceptance ratio = 0.2715
2000 iterations at T = 5.754399373371554 ; jump factor = 0.2830754
9080340766 ; acceptance ratio = 0.313
2000 iterations at T = 5.495408738576232 ; jump factor = 0.2953420
954048887 ; acceptance ratio = 0.273
2000 iterations at T = 5.248074602497712 ; jump factor = 0.2687613
068184488 ; acceptance ratio = 0.3
2000 iterations at T = 5.01187233627271 ; jump factor = 0.26876130
68184488 ; acceptance ratio = 0.3045
2000 iterations at T = 4.786300923226371 ; jump factor = 0.2727927
2642072555 ; acceptance ratio = 0.291
2000 iterations at T = 4.570881896148737 ; jump factor = 0.2646089
446281038 ; acceptance ratio = 0.2995
2000 iterations at T = 4.365158322401648 ; jump factor = 0.2641679
2972039027 ; acceptance ratio = 0.2865
2000 iterations at T = 4.168693834703342 ; jump factor = 0.2522803
728829727 ; acceptance ratio = 0.283
2000 iterations at T = 3.981071705534961 ; jump factor = 0.2379844

2022-03-07, 7:09 PMMCMC - Jupyter Notebook

Page 17 of 22http://localhost:8888/notebooks/MCMC.ipynb

850862709 ; acceptance ratio = 0.298
2000 iterations at T = 3.801893963205601 ; jump factor = 0.2363979
218523624 ; acceptance ratio = 0.3085
2000 iterations at T = 3.630780547701003 ; jump factor = 0.2430958
6297151267 ; acceptance ratio = 0.2895
2000 iterations at T = 3.467368504525306 ; jump factor = 0.2345875
0776750972 ; acceptance ratio = 0.2805
2000 iterations at T = 3.311311214825901 ; jump factor = 0.2193393
1976262164 ; acceptance ratio = 0.2965
2000 iterations at T = 3.1622776601683698 ; jump factor = 0.216780
3610320577 ; acceptance ratio = 0.2985
2000 iterations at T = 3.0199517204020068 ; jump factor = 0.215696
4592268974 ; acceptance ratio = 0.2755
2000 iterations at T = 2.884031503126597 ; jump factor = 0.1980812
4839003413 ; acceptance ratio = 0.3385

2000 iterations at T = 2.754228703338158 ; jump factor = 0.2235016
7526675518 ; acceptance ratio = 0.268
2000 iterations at T = 2.6302679918953733 ; jump factor = 0.199661
49657163465 ; acceptance ratio = 0.3105
2000 iterations at T = 2.5118864315095717 ; jump factor = 0.206649
6489516419 ; acceptance ratio = 0.2795
2000 iterations at T = 2.3988329190194824 ; jump factor = 0.192528
58960661304 ; acceptance ratio = 0.302
2000 iterations at T = 2.290867652767765 ; jump factor = 0.1938121
1353732378 ; acceptance ratio = 0.297
2000 iterations at T = 2.187761623949545 ; jump factor = 0.1918739
9240195055 ; acceptance ratio = 0.289
2000 iterations at T = 2.089296130854032 ; jump factor = 0.1848386
126805457 ; acceptance ratio = 0.296
2000 iterations at T = 1.9952623149688726 ; jump factor = 0.182374
09784480507 ; acceptance ratio = 0.2825

2000 iterations at T = 1.9054607179632406 ; jump factor = 0.171735
6088038581 ; acceptance ratio = 0.31
2000 iterations at T = 1.819700858609977 ; jump factor = 0.1774601
2909732006 ; acceptance ratio = 0.271
2000 iterations at T = 1.7378008287493691 ; jump factor = 0.160305
6499512458 ; acceptance ratio = 0.303
2000 iterations at T = 1.6595869074375547 ; jump factor = 0.161908
70645075825 ; acceptance ratio = 0.3095
2000 iterations at T = 1.5848931924611076 ; jump factor = 0.167035
8154883656 ; acceptance ratio = 0.286
2000 iterations at T = 1.5135612484362024 ; jump factor = 0.159240
8107655752 ; acceptance ratio = 0.2625
2000 iterations at T = 1.4454397707459221 ; jump factor = 0.139335
70941987833 ; acceptance ratio = 0.326
2000 iterations at T = 1.3803842646028797 ; jump factor = 0.151411
47090293444 ; acceptance ratio = 0.2895
2000 iterations at T = 1.3182567385564021 ; jump factor = 0.146112
06942133173 ; acceptance ratio = 0.291

2022-03-07, 7:09 PMMCMC - Jupyter Notebook

Page 18 of 22http://localhost:8888/notebooks/MCMC.ipynb

In [7]:

06942133173 ; acceptance ratio = 0.291
2000 iterations at T = 1.2589254117941624 ; jump factor = 0.141728
70733869178 ; acceptance ratio = 0.2885
2000 iterations at T = 1.2022644346174083 ; jump factor = 0.136295
77355737527 ; acceptance ratio = 0.318
2000 iterations at T = 1.1481536214968782 ; jump factor = 0.144473
51997081778 ; acceptance ratio = 0.2785
2000 iterations at T = 1.0964781961431807 ; jump factor = 0.134119
5843729092 ; acceptance ratio = 0.286
2000 iterations at T = 1.0471285480508954 ; jump factor = 0.127860
67043550675 ; acceptance ratio = 0.3

/Users/kankel/anaconda3/lib/python3.7/site-packages/ipykernel_launche
r.py:44: RuntimeWarning: overflow encountered in exp
/Users/kankel/anaconda3/lib/python3.7/site-packages/ipykernel_launche
r.py:45: RuntimeWarning: overflow encountered in exp
/Users/kankel/anaconda3/lib/python3.7/site-packages/ipykernel_launche
r.py:114: RuntimeWarning: invalid value encountered in subtract
/Users/kankel/anaconda3/lib/python3.7/site-packages/ipykernel_launche
r.py:114: RuntimeWarning: divide by zero encountered in log

Run MCMC from where we left off after burn-in.
m0 = mc[-1]
m0 = xyQB2m(.73,1.24,7.1e6,23.4)
(mc, accept_ratio, loglike) = metro(m0, N=810000, dilate=jump_radius
 loglike_func = log_likelihood_with_prior)

Convert mc back to physical variables
Nmc = mc.shape[0]
xmc = np.empty((Nmc))
ymc = np.empty((Nmc))
Qmc = np.empty((Nmc))
Bmc = np.empty((Nmc))
for i in range(Nmc):
 (xmc[i],ymc[i],Qmc[i],Bmc[i]) = m2xyQB(mc[i])

1
2
3
4
5
6
7
8
9

10
11
12
13
14

2022-03-07, 7:09 PMMCMC - Jupyter Notebook

Page 19 of 22http://localhost:8888/notebooks/MCMC.ipynb

In [8]: plt.figure()
confplot(xmc,ymc,loglike)
plt.plot(0,0,'m^', label='(Starting guess, x_0, y_0)')
plt.plot(xdet,ydet,'yo', label='detectors')
plt.plot(x,y, 'r+', label='true location')
plt.title('Source Location')
plt.xlabel('x')
plt.ylabel('y')
plt.legend()
plt.show();

1
2
3
4
5
6
7
8
9

10
11
12

2022-03-07, 7:09 PMMCMC - Jupyter Notebook

Page 20 of 22http://localhost:8888/notebooks/MCMC.ipynb

In [9]: plt.figure()
confplot(Qmc,Bmc, loglike)
plt.plot(Q0,B0,'m^', label='Starting guess, Q_0, B_0')
plt.plot(Q,B, 'r+', label='true location')
plt.title('Other Model Parameters: Q,B')
plt.xlabel('Source Strength, Q')
plt.ylabel('Background, B')
plt.legend()
plt.show();

1
2
3
4
5
6
7
8
9

10
11

2022-03-07, 7:09 PMMCMC - Jupyter Notebook

Page 21 of 22http://localhost:8888/notebooks/MCMC.ipynb

In [10]:

acceptance ratio = 0.2931493827160494

print('acceptance ratio = ',accept_ratio)
plt.figure()
plt.plot(loglike,'.-',label='MCMC')
plt.plot(np.array((0,loglike.size)),log_likelihood(mtrue)*np.array
plt.title('Log Likelihood')
plt.xlabel('iteration')
plt.ylabel('log likelihood')
plt.legend()
plt.show()

1
2
3
4
5
6
7
8
9

10

2022-03-07, 7:09 PMMCMC - Jupyter Notebook

Page 22 of 22http://localhost:8888/notebooks/MCMC.ipynb

Comment
I have put considerable effort into trying to ensure the MCMC fully explores the posterior
distribution. To this end, I have developed:

Lorentzian jumps
“isotropized”, dimensionless coordinates
burn in by simulated annealing

Essentially, I've tried to give MCMC a leg up on exploring the posterior while letting it be
Markovian. Recall that a Markov chain has the defining property:

In words, the Markov chain should have no memory of its past. This property was closely
related to the concept of detailed balance, which allows Metropolis-Hastings to sample from
the posterior distribution, which in turn is the goal of MCMC. Notice that simulated annealing
and my jump radius updates during burn in do not satisfy this condition; that is why I discard
everything from burn in except the initial state before restarting MCMC.

The state of the art is a strategem called parallel tempering
(https://en.wikipedia.org/wiki/Parallel_tempering), in which a collection of MCMC simulations
run in parallel at different temperatures. Here, temperature is defined in the same way as it
was for simulated annealing. These parallel chains trade information and work together to
explore the posterior intelligently. The sequence of collective states for this system is
Markovian because those information exchanges are triggered and implemented solely on
the basis of present conditions. Parallel tempering is an efficient, automatic approach to
exploring the posterior without restarts.

I use scare quotes because, as it turns out, strong correlations between parameters often
emerge. These constitute important localized anisotropies (prominent diagonal ridges) in the
posterior distribution, which are not anticipated by my dimensionless coordinates. MCMC
does not explore these narrow ridges optimally.

†

, , , . . .!1 !2 !3
Pr(| , , , . . .) = Pr(|).!2 !2−1 !2−2 !2−3 !2 !2−1

$A

†

https://en.wikipedia.org/wiki/Parallel_tempering

