Markov Chain and Metropolis-Hastings.

Suppose some system has a state described by $x \in \Omega$. A Markov Chain is a series of states $\left\{x_{0}, x_{1}, x_{2}, \ldots\right\}$ selected by a random process in which the selection of state x_{i+1} depends only on the state immediately prior, x_{i}. That is,

$$
\operatorname{Pr}\left(x_{i+1}=z \mid x_{i}, x_{i-1}, x_{i-2}, \ldots\right)=\operatorname{Pr}\left(x_{i+1}=z \mid x_{i}=y\right)=T_{y z},
$$

where $T_{y z}$ is called the transition probability matrix.
Comment: The Roman letter x is used for convenience. The state could be an integer, a real number, a vector, etc. The theorems associated with Markov chains and Metropolis-Hastings (below) generally assume a finite domain Ω. With care, though, we can work with infinite domains.

Detailed Balance

Under certain assumptions, the sequence of states that come out of the Markov chain converge toward an equilibrium probability distribution $U(x)$, such that

$$
U(x) T_{x y}=U(y) T_{y x}
$$

The above condition is called detailed balance. If $U(x)$ is uniform, then T is symmetric:

$$
T_{x y}=T_{y x}
$$

Metropolis-Hastings

Claim: Given a random process characterized by a symmetric transition probability matrix T, we can build a Markov chain with a desired equilibrium distribution $P(x)$ by the Metropolis-Hastings algorithm:

1. Propose a random jump from x_{i} to x_{i+1} based on a symmetric transition probability matrix, T.
2. If $P\left(x_{i+1}\right) \geq P\left(x_{i}\right)$:
A. Accept the jump. Increment i.
B. Return to step 1.
3. Generate a random number $0<\alpha<1$.
4. If $P\left(x_{i+1}\right) / P\left(x_{i}\right) \geq \alpha$,
A. Accept the jump. Increment i.
B. Return to step 1.
5. Do not accept the jump (i is not incremented). Return to step 1.

A shorter way of saying it is:

1. Propose a random jump from x to y based on a symmetric $T_{x y}$.
2. If $P(y) / P(x) \geq 1$, accept the jump.
3. Otherwise, accept the jump with probability $P(y) / P(x)$.

The above version could possibly be misunderstood, so I gave the more explicit version of the algorithm first.

Proof

Let's calculate the transition probability matrix, $M_{x y}$, for the above algorithm.
Case 1: $P(y)>P(x)$

$$
M_{x y}=T_{x y} ; \quad M_{y x}=T_{y x} \frac{P(x)}{P(y)}
$$

Case 2: $P(y)<P(x)$

$$
M_{x y}=T_{x y} \frac{P(y)}{P(x)} ; \quad M_{y x}=T_{y x}
$$

Case 3: $P(y)=P(x)$

$$
M_{x y}=T_{x y} ; \quad M_{y x}=T_{y x}
$$

In all three of the above cases, since $T_{x y}=T_{y x}$, the detailed balance condition is met:

$$
P(x) M_{x y}=P(y) M_{y x} .
$$

Therefore, P is the equilibrium distribution corresponding to M.
Comment: A key feature of Metropolis-Hastings is that, to create a Markov chain that converges toward $P(x)$, all we need is a way to calculate the likelihood ratio, $P(y) / P(x)$.

If only we had an interesting problem that gives us likelihood ratios $P(y) / P(x)$, we would be in a position to solve that problem for the distribution $P(x)$ using Markov Chains and Metropolis-Hastings.

Demonstration

The following code demonstrates the Metropolis-Hastings algorithm using

$$
T_{x y}=\left\{\begin{array}{ll}
\frac{1}{2 a}, & |x-y| \leq a ; \\
0, & \text { else. }
\end{array} \quad \text { and } \quad P(x)=\frac{1}{\sqrt{2 \pi} c} e^{-(x-b)^{2} / 2 c^{2}} .\right.
$$

In [1]:

```
# Parameters
x0 = 5.0 # Initial state
a = 1.0 # Jump width
b = -3.0 # Gaussian centroid
fwhm = 1.0 # Gaussian full width at half maximum
# Environment
import numpy as np
    import scipy.special as sp
    import matplotlib.pyplot as plt
    %matplotlib notebook
```

```
c = fwhm/( 2*np.sqrt(2*np. log(2)) ) \# Gaussian standard deviati
\# Implement T_xy
def proposal(x):
    return \(x+2 * a *(n p . r a n d o m . r a n d()-0.5)\)
\# Implement \(P(x)\)
def gaussian(x):
    return \(n p . \exp (-(x-b) * * 2 /(2 * c * * 2)\) )/( np.sqrt(2*np.pi)*c )
def glike( \(x, y\) ):
    return gaussian(y)/gaussian(x)
\# Metropolis-Hastings
def metro(x0=0, jump_func=proposal, likelihood_ratio=glike, N=100l
    \(x=n p \cdot \operatorname{empty}((N))\)
    \(x[0]=x 0\)
    i=0
    misses=0
    for i in range(N-1):
        x[i+1] = jump_func(x[i])
        ratio = likelihood_ratio(x[i],x[i+1])
        if ratio < 1:
            if np. random. rand() > ratio:
                \(x[i+1]=x[i]\)
                misses+=1
    return \(x\),(N-misses)/N
\# Incorrect implementation of Metropolis-Hastings
def metro_wrong(x0=0, jump_func=proposal, likelihood_ratio=glike,
    x = np.empty((N))
    \(x[0]=x 0\)
    i=0
    misses=0
    while i < N-1:
        \(x[i+1]=\) jump_func(x[i])
        ratio = likelihood_ratio(x[i],x[i+1])
        if ratio >= 1:
            i+=1
        else:
            if np.random. rand() <= ratio:
                i+=1
            else:
                misses+=1
    return \(\mathrm{x}, \mathrm{N} /(\mathrm{N}+\mathrm{misses})\)
```

In [2]: 1 (x, acceptance_rate $)=\operatorname{metro}(x 0=x 0, N=200)$
2 print('Acceptance rate = ',acceptance_rate)
3 plt.figure()
4 plt.plot(x)
plt.title(r'Markov Chain')
plt.xlabel(r'Step')
7 plt.ylabel(r'\$x\$')
8 plt.show();

Acceptance rate $=0.56$

Markov Chain

Points for discussion

1. In many applications the likelihood ratio is expensive to calculate. The performance of the Markov Chain is therefore optimal when we can characterize $P(x)$ with as few evaluations of the likelihood ratio as possible.
2. Let's define the acceptance rate as the fraction of proposals that are accepted.
A. How would efficiency be affected by a low acceptance rate, perhaps 0.01 ?
B. How would efficiency be affected by a high acceptance rate, perhaps 0.99 ?
C. Roughly what acceptance rate would you aim for to maximize efficiency?
3. How do the jump width and the width of $P(x)$ influence the acceptance rate?

Is $P(x)$ as predicted?

Once any initial transient $\left(x_{0}-b\right)$ dies out, the Markov chain approaches its equilibrium distribution, $P(x)$. In my example, we expect the x values to be distributed as a Gaussian with mean b and standard deviation c. I will check this assertion using the KolmogorovSmirnov test, which is described in my notes on non-parametric statistics (http://solar.physics.montana.edu/kankel/ph567/LectureNotes/07.1.Statsnonparametric.pdf). It is also described in Section 14.3 of Numerical Recipes in C (https://s3.amazonaws.com/nrbook.com/book_C210.html).

How to get it wrong.

My first attempt at writing the function metro() is preserved above as metro_wrong(). Try substituting that in, and you'll see the CDF does not match expectations! Why? The two functions are written somewhat differently, but it comes down to what happens when the jump is not accepted. Do I keep drawing proposals until one is accepted, or do I just say $x_{i+1} \leftarrow x_{i}$ and move on?

In [3]: 1 \# Generate a new Markov chain.
a = 3.0 \# Jump width
b = 0.0 \# Gaussian mean
c = 1.0 \# Standard deviation
$\mathrm{x} 0=0.0$ \# Initial state -- Start on the mean, so there's no tr
Nx = 100000 \# Let's have a larger dataset this time!
(x,acceptance_rate) = metro(x0=x0, N=Nx)
print('Acceptance rate = ',acceptance_rate)
sdev = np.std(x)
print('Standard deviation = ',sdev)

Acceptance rate $=0.49513$
Standard deviation = 1.0003949240458114

In [4]:

```
# Calculate the cumulative distribution
x_CDF = np.sort(x)
CDF = 0.5 + np.arange(Nx)
    # CDF just left of x_min is 0, and just to the right it is 1;
    CDF_g = Nx*(1 + sp.erf(x_CDF/np.sqrt(2)))/2
    plt.figure()
    plt.plot(x_CDF,CDF, 'k-', label=r'Markov chain CDF')
    plt.plot(x_CDF, CDF_g, 'y--', label=r'Gaussian CDF')
    plt.ylabel(r'Counts below $x$')
    plt.xlabel(r'$x$')
    plt.legend()
    plt.show()
```


Markov chain autocorrelation

The above plot shows a good correspondence between the Markov chain and the cumulative distribution of the Gaussian. But before I can quantify how good it is, I need to understand how many independent Gaussian deviates are in my Markov chain.

Successive states of the Markov chain are not statistically independent. The sequence may be approximately described as red noise (https://kls2177.github.io/Climate-and-Geophysical-Data-Analysis/chapters/Week5/n_eff.html),

$$
x_{n}=\rho x_{n-1}+\epsilon_{n} \quad(n=1,2,3, \ldots), \quad \text { with } \quad x_{0}=\epsilon_{0}
$$

where ϵ_{n} are a sequence of independent random numbers, such that $\langle\epsilon\rangle=0$. This results in an exponentially decaying autocorrelation:

$$
a(n)=\rho^{n}
$$

Therefore a Markov chain with N_{x} elements does not have N_{x} independent degrees of freedom. Assuming the autocorrelation is normalized in the usual way $(a(0)=1)$, then the number of degrees of freedom is approximated as follows:

$$
N_{\mathrm{eff}}=N_{x} \frac{1-a(1)}{1+a(1)}
$$

where $a(1) \approx \rho$ is called the lag-1 autocorrelation.

In [5]:

```
# Autocorrelation to estimate Neff.
# The lesson is that there are fewer independent random samples
# in the Markov chain than one might naively suppose.
# Estimate effective DOF using Lag-1 autocorrelation
# see https://stackoverflow.com/questions/643699/how-can-i-use-num
def autocorr(x):
    result = np.correlate(x, x, mode='full')
    return result[result.size//2:]
autocorrelation = autocorr(x)
autocorrelation /= np.max(autocorrelation) # The usual normalizati
lag1 = autocorrelation[1]
Neff = Nx*(1-lag1)/(1+lag1)
print("Nx = ", Nx, "; Effective sample size Neff = ",Neff)
print('Nx/Neff = ",Nx/Neff)
plt.figure()
lag = np.arange(int(3*Nx/Neff))
amodel = lag1**lag
plt.scatter(lag,amodel,s=80, facecolors='none', edgecolors='r',lab
plt.plot(autocorrelation,'.-',label='autocorrelation')
```

```
26 plt.plot(0*x,':')
27 plt.xlim((-1,50))
28 plt.xlabel('Lag, $n$')
2 9 ~ p l t . y l a b e l ( ' A u t o c o r r e l a t i o n ' )
3 0 ~ p l t . t i t l e ( ' A u t o c o r r e l a t i o n ~ o f ~ M a r k o v ~ C h a i n ' )
31
32
3 3 ~ p l t . l e g e n d ( )
3 4 ~ p l t . s h o w ( ) ;
35
36
\(N x=100000\); Effective sample size Neff \(=26805.060404559492\) Nx/Neff = 3.730638860376908
```

Autocorrelation of Markov Chain

In [6]: 1 \# Kolmogorov-Smirnov statistic (NR in C equations 14.3.5, 7, 9)
2 discrepancy = CDF - CDF_g
3 D = (np.amax(np.abs(discrepancy)) + 0.5) / Nx
4 \# (see note in cell above about 0.5)
5 lam = $D *(n p . s q r t(N e f f)+0.12+0.11 / n p . s q r t(N e f f))$
6 j = np. arange (1,10)
$7 \mathrm{p}=2 * \mathrm{np} \cdot \operatorname{sum}(\quad(-1) * *(j-1) * \mathrm{np} \cdot \exp (-2 * j * j * \operatorname{lam} * \operatorname{lam}))$
8 print('D = ', D)

```
print('lambda = ',lam)
10 print('p-value = ', p)
1 1 \text { print("\nThe null hypothesis (that the x array is drawn from the s}
12
13
14
plt.figure()
plt.plot(x_CDF, discrepancy, label='discrepancy')
plt.plot(x_CDF, np.sqrt(Nx)*np.ones((Nx)), 'r--', label='$\pm\sqrt
plt.plot(x_CDF, -np.sqrt(Nx)*np.ones((Nx)), 'r--')
plt.plot(x_CDF, np.sqrt(Neff)*np.ones((Nx)), 'r:', label='$\pm\sqr
plt.plot(x_CDF, -np.sqrt(Neff)*np.ones((Nx)), 'r:'')
plt.title('Departure from Gaussian CDF')
plt.ylabel(r'CDF discrepancy (counts)')
plt.xlabel(r'$x$')
plt.legend(loc='upper right', framealpha=1.0)
plt.show();
```

$D=0.00534723270293518$
lambda $=0.8761076222629274$
$p-$ value $=0.42655011865895776$
The null hypothesis (that the x array is drawn from the specified Gau ssian distribution) is rejected (or not) with confidence 57.3449881341042 3%

Bimodal Distributions

The Markov chain can have difficulty exploring bimodal (or multi-modal) distributions. The chain can get stuck in one peak of the distribution, and you might think the distribution has been explored sufficiently when it really has not.

Example

In [7]:

```
# Parameters
Nx = 10000 # Number of Markov chain iterations
sep = 4.0 # Separation of 2 Gaussians
x0 = 0.0 # Initial state
a = 1.0 # Jump width
b1 = sep/2 # Gaussian 1 centroid
b2 = -sep/2 # Gaussian 2 centroid
fwhm = 1.0 # Gaussian full width at half maximum
c = fwhm/( 2*np.sqrt(2*np.log(2)) ) # Gaussian standard deviati
# print('Gaussian standard deviation = ',c)
# Implement bimodal P(x)
def doublegaussian(x):
        return np.exp( -(x-b1)**2/(2*c**2) )/( np.sqrt(2*np.pi)*c ) +
        np.exp( -(x-b2)**2/(2*c**2) )/( np.sqrt(2*np.pi)*c )
    def dglike(x,y):
        return doublegaussian(y)/doublegaussian(x)
(x,acceptance_rate) = metro(x0=x0, likelihood_ratio=dglike, N=Nx)
print('Acceptance rate = ',acceptance_rate)
print('mean value = ', np.mean(x))
plt.figure()
plt.plot(x,'k.',label='Markov chain')
plt.plot(np.array((0,Nx)),np.array((b1,b1)),'c--',label='mode 1')
plt.plot(np.array((0,Nx)),np.array((b2,b2)),'y--',label='mode 2')
plt.title(r'Markov Chain')
plt.xlabel(r'Step')
plt.ylabel(r'$x$')
plt.legend()
plt.show();
```

Acceptance rate $=0.5802$
mean value $=1.253589127430413$

In [8]

```
# Compare histogram to target distribution P(x)
Nbins = 30 # Number of histogram bins
dxhist = 2*sep/Nbins # Bin spacing for histogram
dx = 0.01 # Sample spacing for P(x)
plt.figure()
plt.title('Histogram of Markov Chain')
plt.xlabel('$x$')
plt.ylabel('frequency')
plt.hist(x,bins=Nbins, range=(-sep,sep),label='Markov chain')
xs = np.arange(-sep,sep,dx)
actual = doublegaussian(xs)
actual *= Nx*dxhist/(np.sum(actual)*dx)
plt.plot(xs,actual, label='Target distribution')
plt.legend()
plt.show();
```

Histogram of Markov Chain

Aside: Generating random numbers from a known PDF

Numerical libraries commonly offer the capability to generate random numbers (deviates) with uniform, Gaussian, and Poissonian distributions. For many purposes, it is useful to know how to generate random numbers with some other probability distribution function (PDF). Given random number x distributed according to PDF $F(x)$, we can generate a differently distributed parameter y by defining $y=f(x)$ for some function f. What, then, would be the form of the distribution $G(y)$?

$$
F(x) d x=G(y) d y
$$

To obtain an expression for $G(y)$, we must assume that $f(x)$ is invertible. Let $g(y) \equiv f^{-1}(y)=x$.

$$
G(y)=F(g(y)) \frac{d g}{d y} .
$$

Lorentzian-distributed numbers

Suppose, for example,

$$
F(x)= \begin{cases}1, & -\frac{1}{2} \leq x \leq \frac{1}{2} \\ 0, & \text { else }\end{cases}
$$

This can be realized readily by taking the usual uniform deviates $\epsilon \in[0,1)$ and setting $x=\epsilon-\frac{1}{2}$. Now, let

$$
\begin{equation*}
y=s \tan \pi x . \tag{1}
\end{equation*}
$$

It follows that

$$
G(y)=\frac{1}{\pi} \frac{d}{d y}\left(\tan ^{-1} \frac{y}{s}\right)=\frac{1}{\pi\left(s^{2}+y^{2}\right)}
$$

Consequently, the recipe (1) gives Lorentzian distributed numbers with s equal to the half width at half maximum.

Improved jump proposal function

The difficulty with multi-modal distributions can be ameliorated to some extent by modifying the jump proposal strategy. The proposal2() function below draws its proposals from a Lorentzian rather than a uniform distribution. Since the tails of the Lorentzian are very broad, very large jumps will occasionally be proposed, so that $P(x)$ is more thoroughly explored. To make a fair comparison, I have tuned the width of this Lorentzian to get a similar acceptance rate as with my original proposal() function.

My simple approach improves the behavior of the Markov chain for the example, but the result is still imperfect. Moreover, if you imagine a multidimensional state space, it could be difficult to discover another mode with just the occasional large jump. The state of the art in dealing with such problems is parallel tempering (https://en.wikipedia.org/wiki/Parallel_tempering).

In [9]:

```
# Implement T_xy. Note that $a$ is now the FWHM of the Lorentzian
    def proposal2(x):
        return x + 0.5*a*np.tan(np.pi*(np.random.rand() - 0.5))
```

In [10]:

```
(x,acceptance_rate) = metro(x0=x0, jump_func=proposal2, likelihooc
print('Acceptance rate = ',acceptance_rate)
print('mean value = ', np.mean(x))
plt.figure()
plt.plot(x,'k.',label='Markov chain')
plt.plot(np.array((0,Nx)),np.array((b1,b1)),'c--',label='mode 1')
plt.plot(np.array((0,Nx)),np.array((b2,b2)),'y--',label='mode 2')
plt.title(r'Markov Chain')
plt.xlabel(r'Step')
plt.ylabel(r'$x$')
plt.legend()
plt.show();
```

Acceptance rate $=0.5177$
mean value $=-0.14214280277084368$

Markov Chain

In [11]:

```
# Compare histogram to target distribution P(x)
Nbins = 30 # Number of histogram bins
dxhist = 2*sep/Nbins # Bin spacing for histogram
dx = 0.01 # Sample spacing for P(x)
plt.figure()
plt.title('Histogram of Markov Chain')
plt.xlabel('$x$')
plt.ylabel('frequency')
plt.hist(x,bins=Nbins, range=(-sep,sep),label='Markov chain')
xs = np.arange(-sep,sep,dx)
actual = doublegaussian(xs)
actual *= Nx*dxhist/(np.sum(actual)*dx)
plt.plot(xs,actual,label='Target distribution')
plt.legend()
plt.show();
```

Histogram of Markov Chain

