
2021-09-25, 6*32 PMferromagnet-demo - Jupyter Notebook

Page 1 of 28http://localhost:8888/notebooks/ferromagnet-demo.ipynb

Ising Model of Ferromagnetism
The Ising model involves a lattice of magnetic moments, , which can take on discrete
values , analogous to electron spins. The energy of element in the lattice is

where is the externally applied magnetic field, and the coupling between moments is:

We define the magnetization, , as

By this definition, . As you can see, the model works in dimensionless units for
both energy and magnetization.

My presentation here follows some old lecture notes from Paul Coddington at Syracuse
University. I would provide a link but, alas, I can't find his materials on the web anymore.

Detailed Balance
The probability of a state change is derived from the concept of detailed balance as follows.

where are among the possible states, denotes the rate of the specified transition, and
 is the fraction of things in state . Assuming a Boltzmann distribution (with the partition

function cancelling),

where .

Metropolis Algorithm
The MonteCarlo model, as I will describe it below, involves an iterative application of random
spin flips. For this, we need a criterion to determine whether the spin will flip. The temperature,

, sets the probability that a spin will change state at any given iteration. In agreement
with the detailed balance calculation above, we choose

! "#
± 1 #

= −$ − ,%# "# ∑
&= 1

!

'#&"#"&

$

= {'#&
1
0

for nearest neighbors,
otherwise.

(

(= ⟨"⟩ ≡ .1
! ∑
&= 1

!

"&

−1 ≤ (≤ 1

) (* → $) + (*) =) ($ → *) + ($),
*,$)

+ (*) *

= = = ,) (* → $)
) ($ → *)

+ ($)
+ (*)

,−-($)/./

,−-(*)/./ ,−Δ-/./

Δ- = -($) − -(*)

./ "&

) (* → $) = { ,−Δ-/./

1
ifΔ- > 0;
ifΔ- ≤ 0.

2021-09-25, 6*32 PMferromagnet-demo - Jupyter Notebook

Page 2 of 28http://localhost:8888/notebooks/ferromagnet-demo.ipynb

This choice is arbitrary, but it produces the correct ratio of rates that we found in the previous
section. Consequently, it is guaranteed to converge to the correct (Boltzmann) distribution as
we iterate.

MonteCarlo Model
The Ising model with the Metropolis algorithm is generally implemented as a MonteCarlo model,
that is, a program that simulates a physical system by repeated application of a random number
generator. The standard approach is as follows:

1. Select a cell at random, and calculate .
2. Draw a random number , from a parent distribution that is uniformly distributed between

0 and 1.
3. If , then flip the spin.
4. Repeat.

Δ-
0

0 > ,−Δ-/./

Implementation
My implementation is a very simple Python module called ferromagnet.py . It includes two
significant improvements to the model described above, one one physical (or at least physics-
inspired), and one algorithmic.

Defects
It turns out that the Ising model of a ferromagnet, as described so far, likes to be magnetized. In
fact, it likes it way too much. The sides of the hysteresis curve turn out to be quite vertical. This
has two consequences that make the model behave unlike many of the ferromagnetic materials
we encounter in daily life:

1. At finite temperature, the lattice gradually evolves toward complete magnetization. Many
real ferromagnets tend to lose magnetization with time.

2. The process of AC demagnetization (which I demonstrate below) doesn't work. Let me
explain: If you apply a strong, sinusoidally oscillating field to a real hunk of iron and
gradually diminish the amplitude, it will demagnetize. The 2D Ising ferromagnet will instead
wander toward high magnetization almost every time.

I have solved the above problems by intentionally putting defects in the lattice. These defects
are spins at randomly chosen places within the lattice that are frozen either up or down, also at
random. This is implemented via a defect map, which is a 2D Boolean array the same size as
the spin lattice, with the defects marked True and all other locations marked False .

2021-09-25, 6*32 PMferromagnet-demo - Jupyter Notebook

Page 3 of 28http://localhost:8888/notebooks/ferromagnet-demo.ipynb

Smart Iteration Procedure
The standard approach requires something like for loop, selecting one spin at a time, randomly.
This is slow for two reasons:

1. The iteration is typically done by a for loop, which is inefficient in an interpreted
language, even a very efficient one such as Python.

2. Statistically, many spins will not be interrogated even after twice as many iterations as there
are cells in the lattice. They just randomly get stuck for a little while.

The Smart iteration (named for grad student Roy Smart, who suggested it to me) is not just one
iteration, but one for every spin in the lattice. We want to ensure that every spin is interrogated
and allowed to flip exactly once, so that convergence can be obtained quickly. To do this, we go
through the lattice in a special order. Imagining the lattice as a checkerboard, we do all the
black squares first, treating them as a group (using Python array slicing and vectorization to
speed things up), and then all the white squares. Notice that none of the black squares are
nearest neighbors to each other; the same is true of the white squares.

The code, ferromagnet.py , is reasonably efficient because I have vectorized the process of
performing this iteration. However, there is still considerable wasted effort in the execution. It
could be speeded up by a factor of about 2 or more, but I don't care. As is my usual habit, I've
struck a balance between simplicity (which goes along with readability) and efficiency. If
efficiency were the only important thing, I would have coded it in C.

A Note on Running the Notebook

At a minimum, I recommend running once with 10 defects, and once with 1000 defects.

Even with a lattice (my default size), the results of any one of the numerical
experiments below may or may not be representative. The Ising model is a stochastic system,
so the results will be different every time. If you want to estimate the behavior of a large,
macroscopic system then it is necessary either to run with an extremely large lattice or run the
experiment many, many times and average them.

101 × 101

In [1]:

In [2]:

import sys
import numpy as np
import matplotlib.pyplot as plt
%matplotlib notebook

import ferromagnet as fe

1
2
3
4

1

2021-09-25, 6*32 PMferromagnet-demo - Jupyter Notebook

Page 4 of 28http://localhost:8888/notebooks/ferromagnet-demo.ipynb

In [3]:

Ising model with 10201 cells.

Magnetization = -0.00421527301244976

Randomly initialized Ising lattice
spins = fe.ising()
print('Magnetization = ', fe.magnetization(spins))

1
2
3

2021-09-25, 6*32 PMferromagnet-demo - Jupyter Notebook

Page 5 of 28http://localhost:8888/notebooks/ferromagnet-demo.ipynb

In [4]: # Introduce defects in the lattice
Ndefects = 1000 # Try 10 and 1000 for a nice contrast of possibilities!
(Nx,Ny) = spins.shape
defect_map = (np.zeros(spins.shape, dtype='uint8') == 1) # Array of all False
x = np.random.randint(0,Nx,size=(Ndefects))
y = np.random.randint(0,Ny,size=(Ndefects))
defect_map[x,y]=True
#spins[x,y]=0

1
2
3
4
5
6
7
8

2021-09-25, 6*32 PMferromagnet-demo - Jupyter Notebook

Page 6 of 28http://localhost:8888/notebooks/ferromagnet-demo.ipynb

In [5]: plt.figure(figsize=(15,10))
plt.imshow(defect_map,cmap='gray')
plt.title('Defect Map')
plt.show()

1
2
3
4

2021-09-25, 6*32 PMferromagnet-demo - Jupyter Notebook

Page 7 of 28http://localhost:8888/notebooks/ferromagnet-demo.ipynb

In [6]:

In [7]:

plt.figure(figsize=(15,10))
plt.imshow(defect_map * spins,cmap='gray')
plt.title('Defect Map * Spins')
plt.show()

Allow the model to evolve
kTamb = 0.5 # Ambient temperature
Bapplied = 0.0
Nwait = 2000

M = fe.many_smart_iterations(spins, Bapplied, kTamb, Nwait, defects=defect_map

1
2
3
4

1
2
3
4
5
6

2021-09-25, 6*32 PMferromagnet-demo - Jupyter Notebook

Page 8 of 28http://localhost:8888/notebooks/ferromagnet-demo.ipynb

In [8]: # Did the magnetization change?
plt.figure(figsize=(15,10))
plt.plot(M)
plt.xlabel('iteration')
plt.ylabel('magnetization')
plt.title('Change of magnetization as the model runs.')
plt.show()

1
2
3
4
5
6
7

2021-09-25, 6*32 PMferromagnet-demo - Jupyter Notebook

Page 9 of 28http://localhost:8888/notebooks/ferromagnet-demo.ipynb

In [9]:

Final magnetization = 0.07107146358200177

plt.figure(figsize=(15,10))
plt.imshow(spins,cmap='gray')
plt.title('Final state of the lattice ($B=0$)')
plt.show()
print('Final magnetization = ', fe.magnetization(spins))

1
2
3
4
5

2021-09-25, 6*32 PMferromagnet-demo - Jupyter Notebook

Page 10 of 28http://localhost:8888/notebooks/ferromagnet-demo.ipynb

In [10]:

In [11]:

Magnetize
Bmax = 2.0
Nwait = 20

M = fe.many_smart_iterations(spins, Bmax, kTamb, Nwait, defects=defect_map

plt.figure(figsize=(15,10))
plt.plot(M)
plt.xlabel('Iteration')
plt.ylabel('Magnetization, M')
plt.title('Magnetizing the Sample')
plt.show()

1
2
3
4
5

1
2
3
4
5
6

2021-09-25, 6*32 PMferromagnet-demo - Jupyter Notebook

Page 11 of 28http://localhost:8888/notebooks/ferromagnet-demo.ipynb

In [12]:

In [13]:

Final magnetization = 0.9094206450348005

plt.figure(figsize=(15,10))
plt.imshow(spins,cmap='gray')
plt.title('Fully magnetized, in equilibrium with applied field.')
plt.show()
print('Final magnetization = ', M[-1])

Does it remain magnetized?
Bapplied = 0.0
Nwait = 2000

M = fe.many_smart_iterations(spins, Bapplied, kTamb, Nwait, defects=defect_map

1
2
3
4
5

1
2
3
4
5

2021-09-25, 6*32 PMferromagnet-demo - Jupyter Notebook

Page 12 of 28http://localhost:8888/notebooks/ferromagnet-demo.ipynb

In [14]: plt.figure(figsize=(15,10))
plt.plot(M)
plt.xlabel('Iteration')
plt.ylabel('Magnetization, M')
plt.title('Permanence of Magnetization with B=0')
plt.show()

1
2
3
4
5
6

2021-09-25, 6*32 PMferromagnet-demo - Jupyter Notebook

Page 13 of 28http://localhost:8888/notebooks/ferromagnet-demo.ipynb

In [15]:

Final magnetization = 0.8355063229095187

plt.figure(figsize=(15,10))
plt.imshow(spins,cmap='gray')
plt.title('Spin Lattice of the Permanent Magnet ($B=0$)')
plt.show()
print('Final magnetization = ', M[-1])

1
2
3
4
5

2021-09-25, 6*32 PMferromagnet-demo - Jupyter Notebook

Page 14 of 28http://localhost:8888/notebooks/ferromagnet-demo.ipynb

In [16]:

In [17]:

Note that Onsager's analytic calculation did not include defects.

Many runs from the magnetized state, at different temperatures
Nsteps = 100
kTmax = 5.0
kTramp = np.arange(1,Nsteps+1)*kTmax/Nsteps
Bapplied = 0.0
Mheating = np.empty((Nsteps))
for i in range(Nsteps):
 spins_copy = spins.copy() # For each kT step, start from the same initial condition.
 fe.many_smart_iterations(spins_copy, Bapplied, kTramp[i], 20, defects
 Mheating[i] = fe.magnetization(spins_copy)

plt.plot(kTramp, Mheating)
plt.plot(np.array((2.269,2.269)), np.array((0,1)), label="Onsager's Curie Temp"
plt.xlabel('kT')
plt.ylabel('Magnetization')
plt.suptitle('Ferromagnetic/Paramagnetic Phase Transition')
plt.title('Iterated from magnetized state at $B=0$.')
plt.legend()
plt.show()
print("Note that Onsager's analytic calculation did not include defects."

1
2
3
4
5
6
7
8
9

10
11

1
2
3
4
5
6
7
8
9

2021-09-25, 6*32 PMferromagnet-demo - Jupyter Notebook

Page 15 of 28http://localhost:8888/notebooks/ferromagnet-demo.ipynb

In [18]:

In [19]:

Hysteresis Curve at High Temperature
spins = spins_copy.copy() # Start out demagnetized.
Nsteps = 400
Bhot = np.empty((Nsteps))
Mhot = np.empty((Nsteps))
for i in range(Nsteps):
 Bhot[i] = Bmax * np.sin(3*np.pi*i/Nsteps)
 fe.many_smart_iterations(spins, Bhot[i], kTmax, 50, defects=defect_map
 Mhot[i] = fe.magnetization(spins)

Hysteresis Curve at Ambient Temperature
spins = spins_copy.copy() # Start out demagnetized.
Nsteps = 400
B = np.empty((Nsteps))
M = np.empty((Nsteps))
for i in range(Nsteps):
 B[i] = Bmax * np.sin(3*np.pi*i/Nsteps)
 fe.many_smart_iterations(spins, B[i], kTamb, 50, defects=defect_map
 M[i] = fe.magnetization(spins)

1
2
3
4
5
6
7
8
9

1
2
3
4
5
6
7
8
9

2021-09-25, 6*32 PMferromagnet-demo - Jupyter Notebook

Page 16 of 28http://localhost:8888/notebooks/ferromagnet-demo.ipynb

In [20]:

In [21]:

plt.figure(figsize=(15,10))
plt.plot(Bhot, Mhot, label='$T>T_c$')
plt.plot(B, M, label='$T<T_c$')
plt.xlabel('Magnetic Field, B')
plt.ylabel('Magnetization, M')
plt.title('Hysteresis')
plt.legend()
plt.show()

Demagnetize
Nsteps = 1000
period = 20
decaytime = 10*period
B = np.empty((Nsteps))
M = np.empty((Nsteps))
for i in range(Nsteps):
 B[i] = Bmax * np.exp(-i/decaytime) * np.sin(2*np.pi*i/period)
 fe.many_smart_iterations(spins, B[i], kTamb, 20, defects=defect_map
 M[i] = fe.magnetization(spins)

1
2
3
4
5
6
7
8

1
2
3
4
5
6
7
8
9

10

2021-09-25, 6*32 PMferromagnet-demo - Jupyter Notebook

Page 17 of 28http://localhost:8888/notebooks/ferromagnet-demo.ipynb

In [22]:

Out[22]: Text(0.5, 0, 'Time (arbitrary units)')

plt.figure(figsize=(15,5))
plt.plot(B)
plt.ylabel('Magnetic Field, B')
plt.xlabel('Time (arbitrary units)')

1
2
3
4

2021-09-25, 6*32 PMferromagnet-demo - Jupyter Notebook

Page 18 of 28http://localhost:8888/notebooks/ferromagnet-demo.ipynb

In [23]: plt.figure(figsize=(15,10))
plt.plot(B,M)
plt.xlabel('Magnetic Field, B')
plt.ylabel('Magnetization, M')
plt.title('Demagnetization by oscillating, decaying field')
plt.show()

1
2
3
4
5
6

2021-09-25, 6*32 PMferromagnet-demo - Jupyter Notebook

Page 19 of 28http://localhost:8888/notebooks/ferromagnet-demo.ipynb

In [24]:

Out[24]: Text(0.5, 0, 'Time (arbitrary units)')

plt.figure(figsize=(15,5))
plt.plot(M)
plt.ylabel('Magnetization, M')
plt.xlabel('Time (arbitrary units)')

1
2
3
4

2021-09-25, 6*32 PMferromagnet-demo - Jupyter Notebook

Page 20 of 28http://localhost:8888/notebooks/ferromagnet-demo.ipynb

In [25]:

Final magnetization = 0.19988236447407118

plt.figure(figsize=(15,10))
plt.imshow(spins,cmap='gray')
plt.title('Lattice after attempting to demagnetize ($B=0$)')
plt.show()
print('Final magnetization = ', fe.magnetization(spins))

1
2
3
4
5

2021-09-25, 6*32 PMferromagnet-demo - Jupyter Notebook

Page 21 of 28http://localhost:8888/notebooks/ferromagnet-demo.ipynb

In [26]:

In [27]:

In [28]:

Re-Magnetize
Bmax = 2.0
Nwait = 20

M = fe.many_smart_iterations(spins, Bmax, kTamb, Nwait, defects=defect_map

plt.figure(figsize=(15,10))
plt.plot(M)
plt.xlabel('Iteration')
plt.ylabel('Magnetization, M')
plt.title('Re-Magnetizing the Sample')
plt.show()

Demagnetize by heating
kT_hot = 2.5
Bapplied=0
M = fe.many_smart_iterations(spins, Bapplied, kT_hot, 200)
spins_randomized = spins.copy() # save for future reference

1
2
3
4
5

1
2
3
4
5
6

1
2
3
4
5

2021-09-25, 6*32 PMferromagnet-demo - Jupyter Notebook

Page 22 of 28http://localhost:8888/notebooks/ferromagnet-demo.ipynb

In [29]: plt.figure(figsize=(15,10))
plt.plot(M)
plt.xlabel('Iteration')
plt.ylabel('Magnetization, M')
plt.title('Spins Randomized by Heating ($B=0$)')
plt.show()

1
2
3
4
5
6

2021-09-25, 6*32 PMferromagnet-demo - Jupyter Notebook

Page 23 of 28http://localhost:8888/notebooks/ferromagnet-demo.ipynb

In [30]:

Magnetization = 0.013430055876874816

plt.figure(figsize=(15,10))
plt.imshow(spins,cmap='gray')
plt.title('Hot lattice ($B=0$)')
plt.show()
print('Magnetization = ', fe.magnetization(spins))

1
2
3
4
5

2021-09-25, 6*32 PMferromagnet-demo - Jupyter Notebook

Page 24 of 28http://localhost:8888/notebooks/ferromagnet-demo.ipynb

In [31]:

In [32]:

Cool gradually, see what happens to magnetization.
spins = spins_randomized.copy() # Start out with spins randomized by heating.
deltaT = 0.99*kT_hot
Ncool = 5000
kT_range = kT_hot - deltaT * np.arange(Ncool)/Ncool
Bapplied=0.0
M = np.empty((Ncool))
for i in range(Ncool):
 fe.smart_iterate(spins, Bapplied, kT_range[i], defects=defect_map
 M[i] = fe.magnetization(spins)

plt.figure(figsize=(15,10))
plt.plot(M)
plt.xlabel('Iteration')
plt.ylabel('Magnetization, M')
plt.title('Gradual Cooling (Annealing)')
plt.show()

1
2
3
4
5
6
7
8
9

10

1
2
3
4
5
6

2021-09-25, 6*32 PMferromagnet-demo - Jupyter Notebook

Page 25 of 28http://localhost:8888/notebooks/ferromagnet-demo.ipynb

In [33]:

Final magnetization = 0.04617194392706597

plt.figure(figsize=(15,10))
plt.imshow(spins,cmap='gray')
plt.title('Lattice state ($B=0, kT = 0$), after annealing')
plt.show()
print('Final magnetization = ', fe.magnetization(spins))

1
2
3
4
5

2021-09-25, 6*32 PMferromagnet-demo - Jupyter Notebook

Page 26 of 28http://localhost:8888/notebooks/ferromagnet-demo.ipynb

In [34]:

In [35]:

Quench
kT_cool = 0.01
spins = spins_randomized.copy() # Start out with spins randomized by heating.

M = fe.many_smart_iterations(spins, Bapplied, kT_range[i], 5000, defects

plt.figure(figsize=(15,10))
plt.plot(M)
plt.xlabel('Iteration')
plt.ylabel('Magnetization, M')
plt.title('Rapid Cooling (Quenching)')
plt.show()

1
2
3
4
5
6

1
2
3
4
5
6

2021-09-25, 6*32 PMferromagnet-demo - Jupyter Notebook

Page 27 of 28http://localhost:8888/notebooks/ferromagnet-demo.ipynb

In [36]:

Final magnetization = 0.032447799235369085

plt.figure(figsize=(15,10))
plt.imshow(spins,cmap='gray')
plt.title('Lattice state ($B=0, kT=0$), after quenching')
plt.show()
print('Final magnetization = ', fe.magnetization(spins))

1
2
3
4
5

2021-09-25, 6*32 PMferromagnet-demo - Jupyter Notebook

Page 28 of 28http://localhost:8888/notebooks/ferromagnet-demo.ipynb

