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Abstract

This report contains a set of full-page figures designed to be used as classroom transparencies for teaching from the
article “An Introduction to the Conjugate Gradient Method Without the Agonizing Pain”.
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Graph of quadratic form
��� ��� � 1

2
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. The
minimum point of this surface is the solution to � � � � .
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Contours of the quadratic form. Each ellipsoidal curve has
constant

��� �	� .
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Gradient
� � � ��� of the quadratic form. For every � , the

gradient points in the direction of steepest increase of
��� ��� ,

and is orthogonal to the contour lines.
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(a) Quadratic form for a positive-definite matrix.

(b) For a negative-definite matrix.

(c) For a singular (and positive-indefinite) matrix. A line
that runs through the bottom of the valley is the set of
solutions.

(d) For an indefinite matrix.
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The method of Steepest Descent.
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Solid arrows: Gradients.

Dotted arrows: Slope along search line.
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The method of Steepest Descent.
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� is an eigenvector of
�

with a corresponding eigenvalue
of � 0  5. As � increases,

� � � converges to zero.
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Here, � has a corresponding eigenvalue of 2. As � increases,� � � diverges to infinity.
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2. One eigenvector diverges, so � also diverges.
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The eigenvectors of � are directed along the axes of the
paraboloid defined by the quadratic form

��� �	� . Each eigen-
vector is labeled with its associated eigenvalue.
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Convergence of the Jacobi Method.

In (a), the eigenvectors of
�

are shown with their corre-
sponding eigenvalues. These eigenvectors are NOT the
axes of the paraboloid.
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Steepest Descent converges to the exact solution on the first
iteration if the error term is an eigenvector.
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Steepest Descent converges to the exact solution on the first
iteration if the eigenvalues are all equal.
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The energy norm of these two vectors is equal.
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Convergence � of Steepest Descent.
� is the slope of

� ����� with respect to the eigenvector axes.
� is the condition number of � .

Convergence is worst when � � � � .
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(a) Large � , small � .

(b) An example of poor convergence. � and � are both
large.

(c) Small � and � .

(d) Small � , large � .
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Solid lines: Worst starting points for Steepest Descent.

Dashed lines: Steps toward convergence.

Grey arrows: Eigenvector axes.

Here, � � 3  5.
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Convergence of Steepest Descent (per iteration) worsens as
the condition number of the matrix increases.
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The Method of Orthogonal Directions.
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   because these pairs of vectors are orthogonal.
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The method of Conjugate Directions converges in � steps.
� �

1
� must be � -orthogonal to

� �
0
� .
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Gram-Schmidt conjugation of two vectors.
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The method of Conjugate Directions using the axial unit
vectors, also known as Gaußian elimination.
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The ellipsoid is a contour on which the energy norm is
constant.

After two steps, CG finds
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2
� , the point on
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that
minimizes � � ��� .
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(d)

(a) 2D problem.

(b) Stretched 2D problem.

(c) 3D problem.

(d) Stretched 3D problem.
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The method of Conjugate Gradients.
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The convergence of CG after � iterations depends on how
close a polynomial

� � of degree � can be to zero on each
eigenvalue, given the constraint that

� � � 0 � � 1.
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Chebyshev polynomials of degree 2, 5, 10, and 49.



1 2 3 4 5 6 7 8

-1

-0.75

-0.5

-0.25

0.25

0.5

0.75

1

�

�
2
� � �

The optimal polynomial
�

2
� � � for

�
�
��� � 2 and

�
����� � 7

in the general case.

� � � � is reduced by a factor of at least 0.183 after two
iterations of CG.
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Convergence of Conjugate Gradients (per iteration) as a
function of condition number.
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Number of iterations of Steepest Descent required to match
one iteration of CG.
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Contour lines of the quadratic form of the diagonally pre-
conditioned sample problem. The condition number has
improved from 3  5 to roughly 2  8.
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The nonlinear Conjugate Gradient Method.

(b) Fletcher-Reeves CG.

(c) Cross-section of the surface corresponding to the first
step of Fletcher-Reeves.

(d) Polak-Ribière CG.
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Nonlinear CG can be more effective with periodic restarts.
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The Newton-Raphson method.

Solid curve: The function to minimize.

Dashed curve: Parabolic approximation to the function,
based on first and second derivatives at � .

� is chosen at the base of the parabola.
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The Secant method.

Solid curve: The function to minimize.

Dashed curve: Parabolic approximation to the function,
based on first derivatives at � � 0 and � � 2.

� is chosen at the base of the parabola.
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The preconditioned nonlinear Conjugate Gradient Method.

Polak-Ribière formula and a diagonal preconditioner.

The space has been “stretched” to show the improvement
in circularity of the contour lines around the minimum.


