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EPIGRAPH

Guide me, O Thou great Jehovah,
Pilgrim through this barren land;
I am weak, but Thou art mighty,
Hold me with thy powerful hand.
Bread of Heaven, bread of Heaven,
Feed me till I want no more.

— William Williams (Pantycelyn) 1717-91
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ABSTRACT

The dissipation range for interplanetary magnetic field fluctuations is formed
by those fluctuations with spatial scales comparable to the gyroradius of a thermal
ion. The dissipation range represents the final fate of magnetic energy that is trans-
ferred from the largest spatial scales via nonlinear processes until resonance with
the thermal ions removes the energy from the spectrum and heats the background
distribution. Typically, the dissipation range at 1 AU sets in at spacecraft frame fre-
quencies of a few tenths of a Hertz. It is characterized by a steepening of the power
spectrum and often demonstrates a bias of the polarization or magnetic helicity
spectrum. We examine WIND observations of inertial and dissipation range spectra
in an attempt to better understand the processes that form the dissipation range
and how these processes depend on the ambient solar wind parameters (e.g., IMF
intensity, ambient proton density and temperature, etc.). Despite the commonly
held belief that parallel-propagating waves such as Alfvén waves form the bulk of
inertial range fluctuations, we argue that such waves are inconsistent with spectral
break location data. Instead, we show that kinetic Alfvén waves propagating at
large angles to the background magnetic field are consistent with the observations,
and we describe some possible motivations for this solution. We also show that
MHD turbulence consisting of a slab/2-D composite geometry is consistent with the
observations and may form the dissipation range, thereby being responsible for heat-
ing the background ions. Lastly, we demonstrate that heating of the background

electrons is a likely, or possibly necessary, byproduct of magnetic dissipation.
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RESUME FRANCAIS

Bien que I'anglais soit la langue du monde scientifique, je pense qu’une these
de doctorat représente un sommaire de tout ce que I’on a appris au cours de sa vie
scolaire. Il me faut donc inclure ce résumé en francais, pour montrer que ’année que
j’al passée au sein de 'Institut d’Astrophysique Spatiale & I'Université de Paris-XI
compte toujours beaucoup pour moi. Je tiens remercier encore, donc, Renée Prangé,
ainsi que Lysette Hall et Bruno Thibault pour leurs cours de frangais suivis dans le

Delaware.

Le vent solaire constitue la couche supérieure de ’atmosphere du soleil. Le
champ magnétique interplanétaire qui s’y infiltre peut nous fournir des informations
sur le gaz tres ténu qui soufle & ~ 400 km s™!, du soleil vers la Terre. Cette
these traite des fluctuations aux échelles les plus petites du champ magnétique
interplanétaire, et de leur atténuation et dissipation.

La gamme spectrale de dissipation est constituée par des fluctuations d’échelle
comparables au rayon de gyration d’un ion thermique. Par 'intermédiaire des pro-
cessus nonlinéaires, I’énergie magnétique y est transférée des échelles plus grandes
jusqu’a ce que la résonnance avec les ions thermiques de fond amortisse 1’énergie
du spectre en les chauffant. Typiquement, a 1 UA, le début de la gamme de dissi-
pation se situe aux fréquences de quelques dixiemes de Hertz dans le repere de la
sonde. Elle est caractérisée par une augmentation du spectre de puissance, et mon-
tre souvent une polarisation du spectre d’hélicité magnétique. Nous examinerons

dans cette these les observations de la sonde WIND dans les intervalles inertiel et

XX



dissipatif pour mieux comprendre les processus qui les forment, et comment ces pro-
cessus dépendent des parametres ambiants du vent solaire (par exemple, U'intensité
du champ magnétique, la densité ou la température des ions).

Nous montrerons aussi que les ondes paralléles au champ magnétique, comme
celles d’Alfvén que beaucoup croient former 'intervalle spectrale inertiel, ne sont pas
en accord avec les données. Au contraire, nous mouverons que les ondes cinétiques
d’Alfvén, se propageant aux grands angles par rapport au champ magnétique am-
biant sont bien en accord avec les données. De plus, nous présenterons quelques
arguments possibles en faveur de cette solution. Une géometrie composite, com-
prenant d’une part des ondes paralleles, et d’autre part une turbulence magnéto-
hydrodynamique perpendiculaire au champ magnétique ambiant est peut-étre assez
compatible avec les observations aussi, et peut former la gamme de dissipation,
donc étre responsable du chauffage des ions de fond. Finalement, nous verrons que
le chauffage des électrons de fond est un résultat probable, ou bien nécessaire, de la

dissipation des fluctuations magnétiques.

xxi



Chapter 1

INTRODUCTION

1.1 The Solar Wind

Our awareness of a direct connection between the sun and the Earth dates
back to Carrington [1859], who, when at Greenwich Observatory, noticed a white-
light flare on the sun that was followed approximately one day later by an intense
magnetic storm. He offered no mechanism to explain his observation. From ob-
servations of further flares, the link between solar flares and geomagnetic storms
was firmly established by the early years of the twentieth century. As early as a
century before, researchers had postulated links between the sun and terrestrial
activity, most notably Canton [1759], who pointed out that in the northern hemi-
sphere, quiet-day geomagnetic fluctuations are stronger in summer than in winter,
when that hemisphere is closer to the sun, and de Mairan [1754], who thought that
aurorae were caused by the entry of solar particles into the upper atmosphere. His
(profound) reasoning was that zodiacal light was light scattered from the outer lay-
ers of the sun’s atmosphere and, therefore, the Earth orbits within them. A fuller
and very interesting account of the development of Space Physics before the Space
Age may be found in Parker [1999].

Biermann [1951] showed that photon radiation pressure alone was unable to
explain the “windsock” effect, whereby cometary ion tails point radially away from
the sun; from this he inferred a continuous corpuscular outflow from the corona, in

all directions, and at all times during the solar activity cycle.



The nature of the outflow from the corona was debated for much of the
1950s: Parker [1958] postulated the existence of a supersonic ion flow which he
called the “solar wind;” Chamberlain [1960, 1961] believed that Parker had chosen
the wrong solution of his own equations, and that the correct solution was a subsonic
“solar breeze.” Initial Russian in situ measurements [e.g., Gringauz et al., 1960]
were inconclusive, and it was not until the first American measurements of plasma
density and velocity by the Explorer X spacecraft [Bridge et al., 1961; Bonelti et al.,
1963] that the argument was decided in Parker’s favor. Explorer X sampled the
solar wind in brief segments as the Earth’s magnetopause ‘lapped’ over it. The
Mariner 2 mission to Venus [Snyder and Neugebauer, 1964; Mackin and Neubegauer,
1966] provided the first extended sampling and study of the solar wind.

We may view the solar wind as the outer part of the solar corona: Gravita-
tional (and magnetic) forces are unable to contain the > 10° K solar corona, which
then “boils off” and streams out in all directions. The ensuing flow, initially driven
by the pressure gradient between the corona and the inner part of the solar system,
expands supersonically to fill a region of space known as the heliosphere. Outside the
heliosphere is the Local Interstellar Medium (LISM). The nature of pressure changes
over the boundary. Inside the boundary it is dominated by the ‘ram’ pressure p}/2
of the solar wind, and outside the internal (magnetic and thermal) pressure of the
LISM, which are ~ 300 times the LISM ram pressure dominates. No spacecraft
has yet encountered the edge of the heliosphere, and current estimates of its closest
point to the sun range from 80-150 AU [Zank, 1999]. (At their current speeds, then,

we may expect Voyagers 1 and 2 to leave the heliosphere in 5-20 years.)

1.1.1 Solar Wind at Near-Earth Orbit
The solar wind at near-Earth (1 AU, low heliographic latitude) is highly
variable, ranging from a low flow speed of ~ 250 km s ' to a high of ~ 850 km s .

Embedded within the conducting plasma is a “frozen-in” [Taylor, 1938] portion of



the solar magnetic field. Parker [1958] pointed out that the combination of solar
rotation and a (nearly) radial solar wind expansion would cause the interplanetary

magnetic field (IMF) lines to be stretched out into Archimedean spirals:

Petiein(]) = (6 - ), (11)

where b represents the radius (“Alfvén critical radius”) at which both solar grav-
itation and outward acceleration by high coronal temperature may be neglected,
and as such may be viewed as a boundary between the corona and the solar wind
(current estimates [Lotova, 1988] place b in the range 5-20R,); v is the outward flow

velocity; w = 2.7 x 107% rad s™*

is the angular rate of rotation of the sun; and ¢q
is the azimuth of the field line at r = b. Figure 1.1 shows this spiral geometry for a
constant solar wind speed of 400 km s~'. The field lines become more tightly wound
at greater heliocentric distances. Parker’s theory further predicts, from V - B = 0,

that the magnetic field at the point (r, 6, @) is given by

B\ 2
B,-(?", 07 (b) = BO(ev d)O) <;> )
By = 0, (1.2)
w b\’
B¢ = B0(0,¢0)—(r — b) <—> sin 6.
v r
It then follows, if r is expressed in units of Ry or AU, that the radial fall-off the
magnitude of the magnetic field is B oc (r=* + r=2)1/2,

At the orbit of the Earth, the corotation speed rw = 405 km s~ "

, so that the
average radial and longitudinal components of the magnetic field are nearly equal.
The angle between the field and a line drawn from the sun to an observer at 1 AU
should be close to 45°, as is observed for long-time averages of the IMF [Smith and
Bieber, 1991].

A variety of transient and source effects can lead to variability of the solar

wind parameters at 1 AU. However, following the review by Barnes [1979], we show

in Table 1.1 a description of typical solar wind conditions in near-Earth orbit.
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/Orbit of Earth

Figure 1.1: Spiral interplanetary magnetic field lines frozen into a radial solar wind
expansion at 400 km s™'. Adapted from Parker [1963].



Table 1.1: Observed properties of the interplanetary medium in the ecliptic plane

Measured Parameter

Typical value in

Typical value

Variation with

the ecliptic at in high-speed heliocentric

1 AU streams radius r
Flow velocity Vsw, 400 750 constant
km s~
Proton number den- 6 4 ox r2
sity m, cm ™3

. : radial oc 72
Magnetic Field 5-8 -8 . _1
Strength B, nT azimuthal oc r
Proton temperature ~4-10 x 10* ~ 2 x 10° ;c/;a < ’a <43
Ty, K
5 5 oxr?,

Electron  tempera- ~1-2x 10 ~2x10 2/7 < b< 4/3

ture 7T,, K

The values of the parameters listed in Table 1.1 are only averages; these

quantities fluctuate over every measured spatial and temporal scale.

Based on the fundamental quantities shown in Table 1.1, we may derive a

number of additional quantities that will prove useful in characterizing the ambient

solar wind plasma and/or its effects on the waves and turbulence that we consider in

this work. These derived quantities are shown in Table 1.2, where e is the magnitude

of the charge of the electron and proton, kg is Bolzmann’s constant and pg is the

permeability of free space.!

The plasma [ (either electron, proton or their sum, the total 3) is an ex-

tremely useful quantity, and can be viewed as a portmanteau variable covering the

1" As need arises, we shall use cgs-Gaussian units instead of SI in this disserta-
tion, whereby g is replaced by 47 and the formula for gyrofrequency becomes
eB/myc. We do this for numerical comparison with previous works in this field
and because SI gives a less symmetric, and arguable less clear, notation for
some of the plasma equations of motion and Maxwell’s equations. See, e.g.,
Appendix A of Jackson [1975] for a discussion of the differences between the

two systems.



Table 1.2: Useful derived quantities, and their characteristic values in the ecliptic
plane at 1 AU.
Derived Quantity = Formula Typical value at 1 AU
Proton plasma 3 8, = 2uonyksT,/B*> ~1
Electron plasma 8 (3, = 2ugnckgT,/B? ~ 1-1.5

Ion gyrofrequency €2, = eB/m, ~ 0.1 Hz
Thermal speed vy, = (ksTp/mp)t?  ~ 50 km s
Alfvén speed Va = B/\/lup ~ 50 km s~*
Larmor radius Rp = vy /S, 50-100 km
Ion inertial length p; = V4/Q, 50-100 km

variability of the three quantities used in its definition: density, temperature and
field strength. The reader may recognize it as the ratio of plasma pressure to mag-

netic pressure, or equivalently as the ratio 2v3, /V3.

1.1.2 Solar Wind at High Latitudes

Although not addressed in detail here, it is worth noting that the high wind
speed observations from near-Earth orbit are a manifestation of high-latitude solar
sources. Ulysses measurements [Phillips et al., 1995] show a much hotter, faster
solar wind at high latitudes, along with strong correlation between fluctuations in
the magnetic and velocity fields.

Foukal [1990] offers the following simple explanation for the > 800 km s *
flow: In coronal holes the magnetic field lines diverge much more rapidly than radial
expansion over the first few solar radii. Eliminating density from the equation for

solar wind expansion gives

( 1)2) dv v2dA  dv?

dr ~ Adr dr r2 ’

(1.3)

where A is the cross-sectional area of wind flow and v, = (P/p)'/? is the isothermal
sound speed. From equation (1.3), we see that plasma acceleration dv/dr is deter-

mined in part by the outward increase in A of wind flow as well as by the gradient of



sound speed (and thus temperature) and by the retarding gravitational force. Accel-
eration is increased as A grows more rapidly with r, so the diverging magnetic field
line geometry of coronal holes should tend to accelerate the wind more rapidly than
a spherically symmetric expansion. There are some problems with the explanation
outlined above, most notably that increased thermal conduction “bleeds away” heat
that would otherwise be available for conversion to the kinetic energy of the flow.
Much research is currently being done to fully explain the acceleration of polar solar
wind.

Modern models of the solar wind source region describe both the high lati-
tude wind source emanating from the polar holes and multiple low-latitude sources
(the “streamer belt”). Observations at near-Earth orbit include wind sources from
both regions in a highly variable and dynamic interaction of high-speed wind over-
taking low-speed wind, creating shocks [Kennel et al., 1985; Richter et al., 1985,
see section 1.1.4] and wind shear, large vortices, rarefaction regions, and a host of
complex interaction regions, which evolve dynamically with distance and latitude.
These interactions are sources of fluctuation energy at the same time as they process

the plasma, according to a variety of linear and non-linear dynamics.

1.1.3 Sector Structure

The solar photosphere was first shown to be the source of the interplanetary
magnetic field by Ness and Wilcoz [Wilcox and Ness, 1965; Ness and Wilcox, 1965],
using the IMP 1 spacecraft. They demonstrated that the IMF has the same 27-
day rotation rate as the sun in a Sun-Earth system, and they also delineated the
sector structure of the field. On average, the sector structure of the IMF is a quasi-
stationary pattern of alternating regions of dominant field polarity, either towards
or away from the sun along the spiral direction.

The IMF sector polarity can be deduced from polar geomagnetic observa-

tions; the geomagnetospheric field line configuration is dependent on the (sign of
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Figure 1.2: Sector structure of the IMF. Reproduced from Wilcoz and Ness [1965].

the) azimuthal component of the IMF field. Using this technique, Svalgaard [1972]
inferred the sector polarity all the way back to 1926 and suggested that the sector
pattern was broadly the same through each solar sunspot cycle. A two-sector pat-
tern is characteristic of solar maximum, whereas a four-sector pattern is highly likely
during solar minimum and is more common during most of the solar cycle. Figure 1.2
shows typical sector boundaries from near solar minimum in December 1963.
Although not the principal thrust of this dissertation, the IMF sector struc-
ture has been discussed for two reasons. Firstly, the analysis described later must
avoid the IMF reversals associated with the passage of a sector boundary because
it leads to non-representative IMF spectra. Second, the IMF sector structure deter-

mines why some intervals of interest possess a mean IMF direction directed away



from the sun, while others have the field directed towards the sun. This bipolar
feature of the mean field will aid in determining the plasma modes associated with
the dissipation process.

When sector reversals are combined with high solar wind speeds, a spacecraft
in near-Earth orbit gains the ability of sampling, comparing and contrasting the two

opposing high-latitude source regions.

1.1.4 Shocks

The existence of interplanetary shock waves originating at from the sun was
suggested on the basis of the abrupt onset of geomagnetic disturbances [Gold, 1955],
even before their direct observation. This was despite the objection that the material
in interplanetary space must be so tenuous that ordinary Coulomb collision lengths
were ‘astronomically’ large. Shock waves can form in a magnetized plasma with a
thickness much smaller than the collisional mean free path of the plasma; hence the
terminology “collisionless shocks.” By the solar wind, the typical collisional mean
free path, as calculated from kinetic theory, is about 1 AU. In contrast, the Earth’s
bow shock and interplanetary shocks have thicknesses of the order of 1000 km.

Shocks occur when: (i) the supersonic and super-Alfvénic solar wind interacts
with the magnetic field of a planet; (iz) it encounters so many pickup ions that
mass loading requires the flow to become sub-Alfvénic (this happens upstream of
comets); (#i) when a fast stream overtakes a slow stream within the solar wind; and
(7v) when eruptions on the sun such as flares and coronal mass ejections forcibly
expel material into space. The first two possibilities will not be mentioned further
in this dissertation. A shock front moving outward through the solar wind overtakes
the slower-moving plasma ahead of it, heating (by compressing) what it sweeps up.
The shock transfers momentum and energy to an expanding region of solar wind
plasma. Unless momentum and energy are continually replenished, ¢.e., if the shock

is driven, it must decelerate as it expands into the ambient solar wind.



B, [nT]
oxS

B, InT]
S d1o o

B, [nT]
-
o u1o
Lol
b Ll L U M L

0 6 12 18 24
Time [hours]

Figure 1.3: Interplanetary shock observed by WIND at 1652 UT on April 7, 1998.
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An interplanetary observer (or spacecraft) detects the passage of a shock
wave by an abrupt decrease in the plasma speed, and abrupt enhancements in the
density, temperature and magnetic field (in both magnitude and direction). An
example of such an interplanetary shock can be seen in Figure 1.3.

The enhanced dissipation and heating associated with a shock was an early
motivation for the work described here. Before addressing the very interesting ques-
tions of shock wave dissipation, it was recognized that related questions for the
undisturbed quiescent solar wind plasma were incompletely resolved. Nevertheless,
in so far as shocks represent regions of strong, localized dissipation in association
with compression, they remain an interesting subject of study with added degrees

of complexity beyond those discussed here.

1.1.5 Coronal Mass Ejections and Magnetic Clouds

Coronal mass ejections (CMEs) are an almost daily occurrence on the sun. A
large mass (10'2-10'3 kg, or about 1% of the daily mass-loss rate of the quiet solar
wind) of coronal, and sometimes prominence material that was previously contained
by magnetic field lines is suddenly and violently expelled into interplanetary space.

The ejecta detected by an orbiting spacecraft is referred to as an Interplane-
tary Manifestation of a CME, or ICME for short. The ICME is almost always pre-
ceded by a shock, is often followed by a reverse shock located behind a high speed
stream, and often has a very distinct magnetic structure. The primary diagnostic
of an ICME is an extended period of bi-directional electron heat flux, indicative of
magnetic connection to the solar corona on both sides of the spacecraft.

Burlaga et al. [1981] described this magnetic structure as a “Magnetic Cloud.”
According to Burlaga’s definition, there are three required properties for a magnetic
structure to be identified as a magnetic cloud: (i) a very low proton temperature;

(74) a large smooth rotation of the field direction; and (4ii) enhanced magnetic field
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Figure 1.4: Time series for magnetic field components (Bx, By, Bz) in nanotesla
(nT) and GSE coordinates at 92 s resolution plus magnitude of field
and RMS value of fluctuations. Approximate times of non-CME ob-
servations, sheath (Sh), cloud, and prominence material (P.M.) as

determined by Burlaga et al. [1998] are noted in the figure.

strength. Clouds are also large: they may take % to 1% days to pass by a spacecraft

at 1 AU. They frequently exhibit greatly reduced fluctuation levels as well.

Figure 1.4 is an example of a magnetic cloud embedded within an ICME,

taken from WIND data in January 1997. At this time, WIND was some 100-115Rg

upstream of Earth, and slightly below the ecliptic plane. The remarkably constant

enhanced field strength (14 nT) and smooth rotation are clearly visible. We study

this particular magnetic cloud in sections 2.1.1 and 3.6.
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1.1.6 Solar Cycle Variability

The character of the solar wind changes on an 11-year solar cycle. We have
already discussed the sector structure, which can vary from 4 sectors at solar min-
imum to 2 sectors at solar maximum. As the solar cycle descends to its minimum,
an increasing amount of high speed solar wind emanating from the coronal holes is
observed at 1 AU. This is the result of the polar coronal holes expanding to lower
and lower solar latitudes as the solar cycle approaches minimum.

The photospheric magnetic field becomes increasingly looped, twisted and
generally more complicated as the cycle approaches maximum. As a result, the
number of flares, prominences and ejecta increase. The solar magnetic field, and
therefore, its extrusion into interplanetary space, also increases in magnitude with
the approaching solar maximum. This is, perhaps, not surprising given the increas-

ing number of sunspots and the intense magnetic fields associated with them.

1.2 Fluctuations

Two paradigms are currently in vogue for describing the basic nature of low-
frequency (from < 107* to ~ 1 Hz in the spacecraft frame) IMF fluctuations. In the
first paradigm, IMF fluctuations are thought to consist mostly of waves described
by the magnetohydrodynamic (MHD) equations (see Coleman [1966] and review
by Barnes [1979]). The standard argument holds that these waves originate at the
Sun near the Alfvén critical point, propagate outward, and are largely unaffected
along their propagation path except for WKB transport effects [see Hollweg, 1990].
The near-Sun source is supported in part by observations near 1 AU of correlations
between the magnetic and fluid velocity fluctuations that suggest a predominantly
outward propagation of the wave [Belcher and Davis, 1971].

Propagation of the waves at small angles to the ambient mean magnetic field

is commonly assumed on the basis of the observation of minimum variance directions
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which tend to be aligned with the mean field near 1 AU [Belcher and Davis, 1971;
Daily, 1973].

Apart from the high IMF-fluid velocity correlations (high cross helicity?)
several other observations and theoretical considerations support and refine the wave
paradigm. The damping of slow mode waves generally and of the fast mode wave
due to nonlinear steepening and Landau damping [ Barnes, 1979] at nonzero angles of
propagation relative to the mean magnetic field suggest that the parallel-propagating
Alfvén mode should be dominant in the solar wind, since it is the only wave mode
without a significant first-order damping mechanism for wavenumbers far below
the ion cyclotron scale. Such waves, with limited nonlinear interactions, may be a
relict of solar atmospheric fluctuations if the wave paradigm is correct. The test
of this paradigm is whether the fluctuations evolve radially in a manner consistent
with non-interacting waves (some studies suggest they do not—as we shall see in
section 1.2.2).

In the second paradigm, the turbulence paradigm, it is argued that the IMF
fluctuations are fundamentally nonlinear and interactive so that self-organization of
fluctuations over a broad range of frequencies is achieved [Coleman, 1968; Matthaeus
and Goldstein, 1982a]. In this model, fluctuation energy that originates at or near
the sun may propagate or convect outward, but added energy due to large-scale,
in situ processes and dissipation may be important [Goldstein et al., 1995; Tu and
Marsch, 1995]. The magnetic energy is transferred through the spectrum to spatial
scales that might otherwise be depleted so that a self-deterministic spectrum is
achieved. As we shall see below, in this paradigm the IMF fluctuations in the range
from < 107 to ~ 1 Hz form the “inertial range” of the spectrum, and at higher

frequencies heating is implied [Coleman, 1968].

2 Defined and discussed more fully in section 2.3, but for now it may be considered
a measure of what fraction of the fluctuations are moving inwards or outwards.
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1.2.1 WKB Theory

WKB theory, named for its inventors Wentzel [1926], Kremers [1926] and
Brillouin [1926], is a tool of Quantum Mechanics, developed to calculate approxi-
mate solutions of the Schrodinger equation. Jeffreys [1923] developed the method
independently for the more general study of wave equations, and some researchers
refer to the theory as ‘WKBJ.’

In Quantum Mechanics it is a 2-timescale approximation where the solution
at any time is the unperturbed normal mode that is then allowed to evolve on a
longer timescale. In its usual version in the discussion of MHD waves, the theory
assumes that the waves are monochromatic with angular frequency w, are of small
amplitude, and propagate in a stationary background. The quantum analogy comes
from the fact that w(k,x) is a constant of the motion; the waves may be viewed as
quanta of energy w and momentum k.

A fluctuating quantity (e.g., the fluctuating part 6B of the magnetic field) is

taken to be of the form:
0B(x,t) = [0B1(x) + 6Ba(x) + .. ] exp[iS(x) — iwt]. (1.4)

The dynamical equations are then linearized in the fluctuating variables. The phase
S(x) is assumed to vary on a length scale A that is short compared to the scale L
of large-scale fluctuations in the unperturbed background: k(x) = VS is assumed
to vary only on the long scale L, and [6B;|/|6B1| ~ A/L < 1. The independent
variables and the dynamical equations are expanded in powers of A\/L. The resulting
equations (in first order) are only self-consistent if k(x) and w are related by the

usual dispersion relation, i.e., if the dispersion relation
det D(k,w) =0 (1.5)

derived from the theory of waves in a spatially homogeneous background is locally

satisfied. Equation (1.5) is a first-order partial differential equation for S and may
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either be solved by the method of characteristics or by Hamilton-Jacobi theory,

whence the quantum mechanical approach and nomenclature.

1.2.2 Evolution of Fluctuations

The test of any theory is whether its predictions are consistent with observa-
tions. The basic assumptions of WKB theory (no reflected waves and no dissipation)
are invariably violated [Hollweg, 1974]. (Indeed, this dissertation is about the dissi-
pation of IMF fluctuations.) However, assuming that the density decreases as r~2 in
the heliosphere,®> WKB theory predicts that the magnetic fluctuation power should

decrease as r—3

, a result that has been confirmed by many studies [e.g., Belcher and
Burchsted, 1974; Roberts et al., 1990] covering radial distances from 0.7 to 8 AU.
More recently, [Zank et al., 1996, see their Figure 4] extended the radial
scale for fluctuation power to 40 AU, using Voyager 1, Voyager 2, and Pioneer 11
data, finding that “there is a remarkably consistent power law trend out to 40 AU.”
While the WKB prediction follows the data well at heliocentric distances less than
6-10 AU, there is an excess of fluctuation power (the power law decays more slowly
than predicted by WKB theory) further out in the heliosphere. Zank et al. [1996]
then derive an evolution equation for the fluctuation power, and find turbulent
dissipative solutions driven by stream interactions and pickup ions that provides a
better fit to the data than the evolution of WKB waves. Matthaeus et al. [1999b]

expand on this model to include the radial temperature profile—see Figure 1.6 and

section 1.4 below.

3 The continuity (mass conservation) equation is dp/dt + V - (pVgw) = 0. For
time-steady flow, the divergence term, in spherical polar coordinates, becomes

1d

ﬁ% (T2pV5w) =0

from which the =2 dependence follows immediately.
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WKB theory also predicts that the solar-originating fluctuations refract in a
spherically expanding solar wind,* so that their wave vectors k are almost radial at
1 AU, whereas observations [Belcher and Davis, 1971] give the minimum variance
direction aligned with the mean magnetic field.

Roberts et al. [1987a, b] studied the evolution of cross helicity using data
from Helios and the Voyagers. Their results were mixed for the wave paradigm.
Close to the sun, the cross helicity is high, indicating a predominance of outward-
propagating waves, but there is a definite evolution towards a less purely Alfvénic
state and by ~ 10 AU, the mean cross helicity is zero, indicating as many inward-
propagating waves as outward-propagating ones. Since inward-propagating waves
generated below the Alfvén critical point cannot propagate past it, not all observed
fluctuations can be generated in the solar atmosphere. Furthermore, the Alfvén
ratio, the ratio of kinetic to magnetic energy of the fluctuations, is also found to
decrease in the outer heliosphere, in disagreement with WKB theory [Roberts et al.,

1990], which predicts equipartition at all distances.

1.3 IMF Spectra

A superior technique for separating spatial or temporal scales in IMF time
series is the spectral decomposition and cross-correlation of those time series.

Three methods of computing the power spectrum were used in the analysis
of data presented here: the fast Fourier transform (FFT), the Blackman and Tukey
[1958] algorithm based on transforming the correlation function of the data, and
a similar method based on transforming the structure function of the data [Smith
et al., 1990b]. Appendix A discusses these methods and their manner of computation

in more detail.

* This is essentially a geometric effect due to the expansion of the solar wind.
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Figure 1.5: Spectrum of fluctuations in the Normal (to the ecliptic) component
of the magnetic field showing the three power law ranges. The upper
trace is taken from almost five and a half days of quiet solar wind,
starting from April 24, 1998, 0000 UT, using 92 second WIND data.
The lower trace computes the power spectrum of the last hour of the
above interval, April 29, 0800 UT, from 11 vectors per second high-
resolution WIND data.

All the results shown are calculated via the Blackman-Tukey algorithm; the
FF'T method is less accurate and reliable, and the structure function method, in its
current state of development, is incapable of calculating magnetic helicity.

Figure 1.5 shows a composite example spectrum of fluctuations in the Normal
component of the magnetic field in the solar wind at 1 AU. The Normal component
alone is shown to avoid contamination by sector crossings, which the other two

components are affected by. (The spectrum of a step function is o< f~2.) Shocks
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also distort spectra, for the same reason. There are three clear power law “ranges”
visible:

At the largest scales, on the scales of 10-12 hours (few x107° Hz) up to a
month (or at least, the 27-day sidereal rotation period of the sun), the spectrum
exhibits a 1/f form. Matthaeus and Goldstein [1986] showed precisely why the
spectrum should display this form, in an argument based on the scale-invariance of
the correlation length of the turbulence. In travelling up through the corona from
the solar surface, a structure undergoes many magnetic reconnections, each of which
amplifies the size of the structure and the energy it contains. When this process
stops at the Alfvén critical point, the large-scale fluctuations have significant energy.
As such, this range is called the “energy-containing range.”

At intermediate scales, the “inertial range” is essentially a conduit from the
larger scales that contain energy to the smaller scales where that energy is dissi-
pated. Kolmogoroff [1941a] first explained theoretically the —5/3 power law in the
inertial range of hydrodynamic turbulence. His argument was based on dimensional
analysis: the power spectral density E(k) at a given wavenumber & can depend only
the wavenumber and the transfer or cascade rate, which in turn depends on the
triple correlation time, 73. Kolmogoroff took the triple correlation time to be the
eddy turnover time, or nonlinear timescale of the turbulence, 7y, = (v;k)™!, where
vy = [kE(K)]*/?. The —5/3 result follows immediately. (See also section 5.1.3.3,
and in particular equation (5.6).) Kraichnan [1965] suggested that, under some
circumstances, the triple correlation time also involved the Alfvén speed, or more
precisely, 73 = T /Ta, where 74 = (kV4)~'. A power spectrum with spectral index
—3/2 follows. Kolmogoroff-type spectra are observed predominantly in the solar

wind.

5 Matthaeus and Zhou [1989] have shown that the Kolmogoroff and Kraichnan
predictions are the extreme opposite limits (weak and strong magnetic field,
respectively) of one more general phenomenology.
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The onset of the third range, the “dissipation range,” occurs when the com-
peting rates of energy transfer (the spectral cascade) and dissipation due to damping
processes balance. In the spacecraft frame, this typically is at scales of a few seconds.

The study of the physics of the dissipation range and its cause are the main
aims of this dissertation.

In Figure 1.5, the power law index is —2.5. At 1 AU, this index is seen to
vary from about —2 to about —4.5, with an average of about —3. The average index
appears to be greater closer to the sun and less at larger heliocentric distances [Smith
et al., 1990b]. The reason for the observed spectral index is not well understood
for MHD turbulence in the solar wind. Hydrodynamics [Batchelor, 1970] predicts
a (slow roll-over into a) —7 dissipation range. Some intervals examined for this

study (not included in the final 33 events listed in chapter 2) showed some roll-over,

indicative of a gradual onset of dissipation.

1.4 Solar Wind Heating

There is now ample evidence that both the inner heliosphere [Freeman, 1988;
Marsch, 1991] and the outer heliosphere [Richardson et al., 1995] are subject to a
measurable degree of in situ heating, because the radial temperature profile falls
off more slowly with distance than the R~*/® decay of adiabatic expansion. This is
demonstrated in Figure 1.6. While shock compression may provide a measure of that
heating locally [Zank et al., 1996], the dissipation of distributed IMF fluctuations
has been argued to provide a means for the majority of the heating of the solar wind
in the inner heliosphere [Coleman, 1968|.

If dissipation of magnetic energy is needed to account for the apparent heat-
ing of the solar wind plasma, then the two paradigms discussed above in section 1.2
imply potentially very different heating rates. If the IMF fluctuations are nonin-
teracting waves with distant origins, then the wave energy at a given frequency

(assumed to be significantly lower than the cyclotron frequency) is unavailable for
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Figure 1.6: Upper panel: Voyager 2’s trajectory with both heliocentric distance

(solid trace, left-hand scale) and latitude (dashed trace, right-hand
scale). Lower panel: proton temperature profile. Superimposed is the
R*/3 prediction of adiabatic expansion. The dashed horizontal line
is the assumed 1 AU temperature used by Richardson et al. [1995].
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heating the background ions until the kinetic processes responsible for coupling the
fluctuations to the background ions are shifted to that given frequency through
changes in the background parameters [cf. Schwartz et al., 1981, Figure 1]. For
instance, the proton cyclotron frequency, where resonant dissipation becomes signif-
icant for Alfvén waves, scales with the mean magnetic field, €2, ~ B, so the cyclotron
frequency varies with heliocentric distance as €, ~ R in the outer heliosphere.
Within the inner heliosphere, €, ~ R™2. This suggests a relatively slow process
whereby the IMF fluctuation spectrum (of solar origin) is damped (‘consumed’)
from the high-frequency end only as the kinetic processes of wave damping shift
to lower frequency. This greatly limits the amount of energy available for in situ
heating of the background ions and has been shown by Schwartz et al. [1981] to be
inadequate to explain the apparent heating of thermal ions in high-speed streams.
Consideration of minor ion species permits cyclotron damping at lower frequencies,
but only at reduced rates, because of the reduced number density.

Other damping mechanisms, such as Landau damping [Barnes, 1966, 1979;
Stiz, 1992], operate over a wide range of wave frequencies. It is unclear whether
or how they would lead to a sharp spectral feature of the type we discuss here.
We adopt the implication, taken from traditional fluid dynamics, that a spectral
break at the high-frequency end of the inertial range leading to a steepened power
spectrum is indicative of the onset of dissipation. Other interpretations are not
ruled out by this analysis.

If the IMF fluctuations are fundamentally turbulent with a self-organizing
spectrum and active spectral cascade of energy from large spatial scales to small
scales, then the so-called “energy-containing fluctuations” at the largest spatial
scales [Batchelor, 1970] provide a source of energy which is transferred through
the inertial range to replenish the depleted high-frequency spectrum and thereby

enhance the heating of the background ions. Indeed, such an energy-containing
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spectral transfer is the very definition of an inertial range [Kolmogoroff, 1941al.
The high-frequency region of the spectrum where magnetic energy is coupled to
the thermal motions of the ions is known in traditional fluid turbulence theory as
the dissipation range [Batchelor, 1970], and is characterized by a steepening of the
power spectrum relative to the inertial range, such as is seen in the solar wind at
frequencies comparable to the proton gyroradius [Behannon, 1975; Denskat et al.,
1983; Smith et al., 1990b; Goldstein et al., 1994]. In this way, IMF turbulence may
provide an enhanced heating rate relative to the wave paradigm so long as: (1) an
active spectral transfer of magnetic energy is maintained to replenish the damped
oscillations; and (2) a mechanism is available for coupling the magnetic fluctuations
of the dissipation range to the background ions.

The dissipation of magnetic energy can be matched by the spectral transfer
rate (indeed, the transfer rate may govern the rate at which energy is dissipated)
and yields a stationary spectrum that changes only as the bulk parameters such as

(2, change.

1.5 Cosmic Ray Propagation

This dissertation does not address the propagation and scattering of high-
energy cosmic rays directly, but the presence of a dissipation range has implications
for cosmic rays. IMF fluctuations act as scattering centers (in particle pitch angle)
for the particles. High energy particles, as well as all particles with pitch angles of
~ 90° are resonant with dissipation range fluctuations.

The seminal work in this field is Jokipii [1966], who considered scattering for
magnetostatic, dissipationless turbulence with slab geometry through quasi-linear
theory. However, there are two major discrepancies between the prediction of this
model and observations, as can be seen in Figure 1.7: The predicted mean free paths
are “too small,” with a typical discrepancy of a factor of 10 for 10 MeV protons;

furthermore, the observations have the “wrong” energy dependence, being broadly
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consistent with a rigidity-independent mean free path from 0.5 to 5000 MV, whereas
theory predicts that the mean free path should increase with increasing rigidity.
Bieber et al. [1988] and Smith et al. [1990] showed that changes in the dissi-
pation range spectrum can effect the mean free path of energetic particles. Bieber
et al. [1994] then suggested a resolution for the mean free path length and rigidity
problems by: (7) including a dissipation range; and, more important, () assuming
that 80% of the energy was carried by wave vectors aligned perpendicular to the
mean magnetic field. The 80% fraction was merely the value that best fit the mean
free path data. Bieber et al. [1996] developed a test and found that, on average, 85%
of magnetic fluctuations were aligned perpendicular to the mean magnetic field. In
section 3.5 we return to discuss Bieber’s test in more detail and apply it to our own

data.

1.6 Heating Elsewhere in the Solar System

This dissertation concerns the effects and implications of dissipation of mag-
netic fluctuations at 1 AU. However, it is almost certain that different mechanisms
provide the heating of plasma in different regions of the solar system.

Beyond about 20 AU, the damping of waves generated by scattering of pick-up
ions is the main source of energy. Current models work reasonably well assuming
that all waves are parallel-propagating Alfvén waves that then cyclotron damp.
(This far out in the heliosphere the Archimedean spiral magnetic field is almost
perpendicular to the radial wind velocity.) The recent work of Matthaeus et al.
[1999b] suggests that the heating of the solar wind observed beyond 20 AU cannot
be explained by shear driven turbulence alone. Driving by injection of wave energy
associated with pickup ions works well at a theoretical level [Williams et al., 1995],
but such waves are yet to be observed. (There is, however, the possibility that
the temperature increase beyond 20 AU is a latitude-dependent effect, and not a

radial one [cf. Williams et al., 1995]; since its encounter with Neptune, Voyager 2
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Figure 1.7: Cosmic-ray parallel mean free path vs. particle rigidity. Filled and
open symbols denote results derived from electron and proton obser-
vations, respectively. Circles and upward-pointing triangles denote ac-
tual values and lower-limit values, respectively. The shaded band is the
observational consensus enunciated by Palmer [1982]. The dotted line
represents the prediction of standard quasi-linear theory for magne-
tostatic, dissipationless turbulence with slab geometry [Jokipii, 1966].
Reproduced (with Bieber’s permission) from Bieber et al. [1994].
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trajectory has been increasing in (southern) latitude at the rate of ~ 2° per year,
as can be seen in the upper panel of Figure 1.6.)

The heating of the solar corona and acceleration of the solar wind within a few
solar radii of the photosphere is another problem that is little understood. Various
mechanisms have been proposed; one would think that if damping of electromagnetic
plasma waves provides the heating at 1 AU, related damping mechanisms might be
valid at distances < 1 AU. Comparison of similar mechanisms operating at 1 AU
and in the corona is complicated by the fact that in the solar corona, below the
Alfvén critical point, the Alfvén speed is much greater than either the thermal

speed (i.e., B < 1) or the outflow velocity.

1.7 Outline

The study of the physics of the dissipation range and its cause are the main
aims of this dissertation. Compared to the larger spatial scales of the inertial range,
the dissipation range is largely neglected in previous work. A large fraction of
the prior literature is formed by Behannon [1975], Denskat et al. [1983], Smith et al.
[1990b] and Goldstein et al. [1994]. Whatever the dynamic nature of the fluctuations
may be and however the magnetic spectrum may evolve in the solar wind, we can
test some aspects of the models for the dissipation dynamics as well as the geometry,
i.e., the relative distribution of energy over the full three-dimensional (3-D) space of
wave vectors, of the magnetic spectrum using in situ measurements. To this end, we
examine IMF fluctuations within the dissipation range using WIND data collected
at 1 AU.

In chapter 2, the method for characterizing the dissipation range fluctuations
is described and we present the basic parameterization of the intervals used in this
study.

In chapter 3 these observations are applied, repeating and extending some
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classic analyses of inertial range fluctuations at dissipation range frequencies. In test-
ing dissipation dynamics, we consider whether simple models of cyclotron damping
of parallel-propagating Alfvén waves can provide sufficient organization of the ob-
servations to warrant refined treatments. However, we conclude that such waves are
unable to account for the observed characteristics of the dataset. On analyzing the
geometry of the fluctuations in the dissipation range, we find that a large fraction
of the total power resides in wave vectors that are quasi-perpendicular to the mean
magnetic field.

Since parallel-propagating waves fail to explain the observed IMF power spec-
tra, in particular the location of the spectral break frequency, we instead consider
predictions from the damping of obliquely-propagating kinetic Alfvén waves. Chap-
ter 4 investigates numerically the dispersion, dissipation and polarization properties
of kinetic Alfvén waves, the effects of cyclotron-resonant and Landau damping, and
how the effects of the two damping mechanisms change with changing ambient
plasma parameters.

Using the results of chapter 4 in chapter 5, a three-dimensional (3-D) spec-
trum E(k) is constructed that is consistent with the observations, although not
unique. From this 3-D spectrum we calculate the heating rate due to the damping
of kinetic Alfvén waves, and compare it to the additional heating required to ex-
plain the nonadiabatic temperature profile of the solar wind. We also compare the
dissipation heating rate to the observed inertial-range turbulent cascade rate.

Finally, in chapter 6, we provide a summary of the work and discuss its contri-

butions in context. Some suggestions of future follow-up studies are also presented.

1.8 Disclaimer

Much of this dissertation has already been published in refereed scientific
journals. Chapters 2 and 3 come primarily from 3 papers published in 1998, but reor-

ganized for coherence [Leamon et al., 1998a, in the Journal of Geophysical Research).
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The discussions of magnetic helicity, Figure 3.2, and the cascade-and-dissipation
model of section 3.4 are from Leamon et al. [1998b] in Astrophysics Journal Let-
ters; and the sections on the January 1997 CME are from Leamon et al. [1998c]
in Geophysical Research Letters. Apart from the didactic presentations of damping
mechanisms, the analytic derivation of the dispersion relation and the application
of the Vlasov-Maxwell equations (sections 4.2-4.4), chapters 4 and 5 are essentially
Leamon et al. [1999a], also published in the Journal of Geophysical Research. The
work in chapters 2, 3, 4, and 5 was reviewed in two papers presented at the Solar
Wind Nine conference [Leamon et al., 1999b, c]. This dissertation follows the logi-
cal organization of those two conference papers. Finally, parts of the discussion of

chapter 6 are from the discussion sections of Leamon et al. [1998a)].
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Chapter 2

THE WIND DATASET, ANALYSIS METHODS AND
TECHNIQUES

2.1 Contents

The original study [Leamon et al., 1998a] contained in this dissertation used
as its basis a collection of 33 one-hour intervals of data from the WIND Magnetic
Field Investigation (MFI) instrument [Lepping et al., 1995] and thermal particle
measurements from the SWE instrument [Ogilvie et al., 1995]. WIND was in near-
Earth orbit and was typically between 100 Ry and 200Rg upstream of Earth during
the intervals in question, recorded between January 1995 and February 1997. Ta-
ble 2.1 lists the dates and times of those 33 intervals. For all intervals in this study,
we use the highest available resolution magnetic field data; depending on the dis-
tance from WIND to Earth, the sampling rate was either 46, 92, or 184 ms. The
resolution of the plasma data was 92 s.

[43

No attempt was made to limit this study to “...the purest examples of ...
outwardly propagating Alfvén waves occur[ring] in high-velocity solar wind streams
and on their trailing edges...” as did Belcher and Davis [1971] or to exclude dis-
turbance regions such as ICME’s or shocked plasma. However, we do attempt to
eliminate periods of non-stationary behavior that might lead to spectra that are

not representative, and intervals with power spectra that demonstrate significant

upstream wave activity (due to apparent magnetic connection to the Earth’s bow
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Table 2.1: List of the 33 intervals that form the quiet solar wind dataset
Date  Time (UT) Date  Time (UT)

19950104 0300 19960803 1100
19950129 1830 19960814 1100
19950130 0400 19960816 0800
19950130 1300 19960823 0100
19950327 0100 19960829 0000
19950327 2300 19960904 1100
19950602 1300 19960904 1700
19951019 1430 19961022 0900
19951019 1830 19961023 0100
19951107 0330 19961023 1100
19951225 2000 19961222 0100
19960326 0900 19961225 0100
19960515 0400 19970103 2200
19960522 2200 19970110 0300
19960527 2300 19970128 0700
19960729 0600 19970208 1130

19970217 1100

shock) are also rejected. Some spectra computed were rejected because no break in
the spectrum was visible below the Nyquist frequency.

Only periods that result in power law inertial range spectra are kept; power
law dissipation range spectra were almost always seen when a distinct spectral break
was observed, and it was generally a poorly determined (i.e., non-powerlaw) inertial
range spectrum that led to the rejection of some candidate intervals in this study.

Rapid changes in the computed and employed zero levels of the individual
sensor axes have been a problem for the WIND/MFTI instrument. Inclusion of these
rapid changes generally leads to power spectra without powerlaw forms. We omit
such intervals and use only constant-zero sets for each time interval studied.

Candidate intervals were selected by looking at daily time series displays of
the data. Almost 100 such intervals were processed, and only those meeting the

above-outlined criteria were allowed into the final dataset.
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The 33 intervals used here span a wide range of basic plasma parameters:

333 < Vo < 692 km s+
3.1 <(B)<285nT
9.1° < Ogy < 87.1°

0.034 < 3, < 2.75

185 < V4 <1102 kms™*

2.3<n,<49.5cm™?

2.24 x 10* < T, < 4.09 x 10° K,

which are solar wind speed, magnetic field strength, field-to-flow angle, proton
plasma (3, Alfvén speed, proton density, and proton temperature, respectively. Can-
didate intervals were deliberately selected with wide variability in these parameters,
since one of the original goals of the study was to see what dependence, if any, there
was on these basic plasma parameters.

Figure 2.1 shows the total power spectral density for hour 1300 of January 30,
1995, which is typical in most regards of the events used here. The high-frequency
end of the inertial range spectrum is shown at spacecraft frame frequencies v, <
0.44 Hz. The inertial range terminates in a spectral break to a steeper spectral index.

This spectral break marks the onset of the dissipation range at v,. > 0.44 Hz.

2.1.1 The January 1997 Coronal Mass Ejection

Figure 2.2 is a sample interval of the second part of the WIND dataset. Hour
2200 of January 11, 1997 is in a high-speed stream following a large ICME and
magnetic cloud. Sixty contiguous hours from January 9, 1200 UT to January 12,
0000 UT were processed by the same method used to produce the 33 solar wind
intervals. Ten of these intervals did not produce good spectra, so the second part

of the WIND dataset consists of 50 one-hour intervals.
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Figure 2.1: Typical interplanetary power spectrum providing an example of iner-
tial and dissipation ranges at 1 AU. (a) Trace of the spectral matrix
with a break at ~ 0.4 Hz where the dissipation sets in. (b) The cor-
responding magnetic helicity spectrum. For this period, B = 6.4 n'T,
B, =0.71, Vow = 692 km s~' and Oy = 23°.
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Figure 2.2: Trace of power spectral density matrix for hour 2200, January 11,
1997. For this period, B = 6.27 nT, 3, = 0.48, Ve = 517 km s,
and Ogy = 38.1°. The spectral break frequency is computed to be
0.235 Hz. Two spacecraft-generated noise signals affect the spectrum:
above ~ 1 Hz the spectrum flattens due to onboard clock problems,
and sharp peaks are seen at harmonics of 0.33 Hz, the spacecraft

rotation rate.
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Figure 1.4 on page 12 showed the time series magnetic field data indicating
the ICME. The 60-hour interval can be divided into 5 distinct regions [Burlaga et al.,
1998; Leamon et al., 1998c|: (i) the solar wind prior to the ICME (prior to the shock
at day 10.0); (7) the sheath region between the shock and the beginning of the cloud
at day 10.2; (44i) the magnetic cloud, which is taken to end with January 10, when B
starts to increase above 14 nT; (iv) the solar prominence material at the beginning
of January 11; and (v) the solar wind behind the ICME (after day 11.2). For more
detailed analyses of the ICME structure, the cloud and the identification of the
solar prominence material, see Burlaga et al. [1998]. Not shown in Figure 1.4 are
the plasma data, which show that the solar wind speed Vs is very low prior to the
ICME and high following the ICME; and that Vg, the proton temperature and

proton density are all extremely constant within the magnetic cloud.

2.2 Method

We used the following algorithm to analyze each data interval:

1. Eliminate “flyers” and bad points. Any measurement that is more than 3.5x
the variance o from the mean in any component is removed. Typically, 1% of
the dataset (~ 400 points out of 40000) are removed in this way. Spectra are
extremely sensitive to isolated outlying points in a time series, and such points
can affect broad ranges of frequency spectra.! Details on the inner workings

of the badpoint editor are discussed in section A.4.1 of Appendix A.

2. Rotate the data, as necessary, into either RTN (Radial, Tangential, Normal,
see Appendix B) or mean-field coordinates. In order to compute magnetic he-
licity, the data need to be in RTN coordinates (see Appendix A); the anisotropy

and geometry analyses of sections 3.1 and 2.3 require mean field coordinates.

! Recall that the Fourier transform of a one-point spike is approximately a Gaus-
sian, with a width proportional to the height of the errant spike in the time
series.
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3. Prewhiten the data with a first-order difference filter to reduce the influence of

leakage when computing the spectra of the (steeply-falling) dissipation range.

4. Compute the power spectra using the correlation matrix method of Blackman
and Tukey [1958]. A maximum lag of 10% of the length of the dataset results
in 20 degrees of freedom for the spectral estimates. The resulting spectra
are then ‘postdarkened’ to correct for the earlier prewhitening [Chen, 1989;
Bieber et al., 1993a]. More details on the prewhitening method can be found
in section A.4.2 of Appendix A.

5. Fit power laws to inertial and dissipation range spectra using a least squares
fit. We omit frequencies close (within ~ 0.05-0.1 Hz) to the apparent spectral
breakpoint when fitting the two spectral ranges. From the intersection of the
two power law fits we can calculate the breakpoint frequency for the onset of

dissipation.

On average, the uncertainty in the spectral breakpoint frequency produced by

this method is 20% of the computed spectral breakpoint frequency.

2.2.1 Sensor Noise Problems

As mentioned on page 30, the changes in the computed and employed sensor
zero levels are a problem for the WIND/MFT instrument.

Figure 2.1 is typical in most respects for the spectra considered here, except
that it does not show sharp peaks at harmonics of the spacecraft spin tone. However,
these are an almost omnipresent feature in spectra with slightly lower power levels,
as illustrated by Figure 2.2. Consequently, these frequencies (harmonics of 0.33 Hz)
are omitted from the least-squares fitting of the two ranges using a +10% window
around each harmonic. A flattening of the high-frequency spectrum is evident in
Figures 2.1 and 2.2 at frequencies > 1 Hz and is more evident in other intervals

with lower power levels and higher Nyquist frequencies. The flattening asymptotes
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to ~ 10~* nT? Hz~! in Figures 2.1 and 2.2, which seems to be the most common
value; in some instances, though, the flat spectrum is as high as ~ 1073 nT? Hz ™.
The flattened spectrum is not associated with the IMF, and the source of this noise
is believed to be a jitter problem with the onboard spacecraft clock.

We omit the highest-frequency flattened spectra from the spectral fitting.

2.3 Turbulence Concepts

In section 1.2, we discussed the paradigm of IMF fluctuations being incom-
pressible turbulent fluctuations. For the most part, the study of a turbulent fluid
infused with a magnetic field, or magnetofluid, (such as the solar wind) is similar
to the study of Navier-Stokes fluid turbulence, which has a long history. We review
briefly the somewhat specialized language of turbulence and its relevance to the
current work.

It is useful to adopt a leading order description based upon incompressible
turbulence, in view of the low level of interplanetary density fluctuations [Roberts
et al., 1987b], the observed density spectrum [Montgomery et al., 1987] and the low
average turbulent Mach number [Matthaeus et al., 1990] This perspective is also
consistent with the persistence of the k%3 signature of the Kolmogoroff [1941a]
inertial range cascade spectrum. Neglecting small internal energy fluctuations, the
turbulent energy per unit mass, F, consists of contributions from the turbulent (ion)
velocity v and the fluctuating component of the magnetic field b. It is common in
this field to scale magnetic fluctuations to Alfvén speed units, by dividing by /pop
(or \/4mp in cgs-Gaussian units). For an appropriately defined ensemble average
(...), the contribution to the energy from velocity fluctuations F, and from magnetic

fluctuations Fj, is
[vI*) , {bP)

E=EU+E1,:<2 5

(2.1)
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In its idealized definition, the turbulent energy includes contributions from all
wavenumbers and frequencies. However, in some circumstances one might consider
only contributions from certain scales, so that, for example, the spectral decompo-
sition of magnetic energy, E, = [dkE,(k) might include only a certain range of
wavenumbers. One might choose to look at the energy in a finite band of wavenum-
bers or frequencies, for example, when the physics of the inertial- or dissipation
range is discussed.

Apart from energy, other quantities of importance for MHD turbulence are
the magnetic helicity H,, = (b-a), where b = V X a, the cross helicity H. = (v-b),
and the respective spectral decompositions [Matthaeus and Goldstein, 1982a]. The
amounts of cross helicity and magnetic helicity relative to the energy are conve-
niently measured by the following dimensionless parameters. The normalized cross

helicity
B, —E_
S Sy 2.2
= T E (2.2)
is defined in terms of the Elsésser energies E. = (|v & b|?) [Marsch and Mangeney,
1987], and lies between —1 and +1. Normalized magnetic helicity
_Ep—Epg

Om = (1
Ep + Eg

(2.3)

is written here in terms of Ey, the magnetic energy in left-handed (positive helicity)
spatial structures, and Fg, the magnetic energy in right-handed (negative helicity)
spatial structures, and is similarly constrained to be between —1 and +1. Note that
Ey, = Er, + Eg. Right-handed, in this context, means a sense of rotation from the x
direction towards the y direction as one samples in the positive z direction for a right-
handed (x,y,z) coordinate system. Note that this defined a spatial polarization,
which is distinct from the time-domain definitions of polarization offered by plasma,

physics [Stiz, 1992] or optics [Born and Wolf, 1970]. In terms of the integrated
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magnetic helicity spectrum,

B o= 5 (Bt [ admw),
B, = %(Eb—/dk|k\Hm(k)). (2.4)

The magnetic helicity is important in the present context because spatial
handedness is related to resonance conditions with charged particles. Cross helicity
relates to the direction of propagation of large amplitude Alfvén waves with respect
to a uniform or slowly varying background magnetic field B, [Belcher and Dauvis,
1971; Matthaeus and Goldstein, 1982a]. Both together determine the polarization
of the waves in the plasma frame [Smith et al., 1984].

Section A.5 of Appendix A discusses the meaning of magnetic helicity and

its computation in more detail.

2.4 Preliminary Results and Characteristics

As mentioned above, Figure 2.1 shows the computed spectral fits for one
of the 33 intervals from Leamon et al. [1998a]. The computed spectral breakpoint
frequency is v,y = 0.44 Hz and the fitted inertial and dissipation range spectra are

L700.01) o1 4, —(4.2340.01)

v , respectively. The fitted inertial range spectra for the

33 events range from p~(14620.00) ¢4 5,=(1.9320.02) " The average fit of inertial range

~1.66 -5/3

spectra is v , in excellent agreement with the v prediction of Kolmogoroff

[1941a]. The dissipation range spectra range from p~(200£0.02) {q ;=(443£001) " ith
the average being v 394, No clear correlation between the fitted indices of the two
ranges is observed.

Figure 2.1b shows the normalized magnetic helicity spectrum for that same
interval. There is a negative signature at dissipation range frequencies, averaging
—0.275 over those frequencies used to calculate the dissipation range spectral slope.

The majority of intervals have helicity signatures: 13 out of 33 have |o,,| > 0.2; 21
out of 33 have |o,,,| > 0.15; and 27 out of 33 have |o,,| > 0.1. Goldstein et al. [1994]
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noted similar behavior wherein many, but not all, intervals studied by them showed
significant magnetic helicity signatures in the dissipation range. In contrast, inertial
range magnetic helicity spectra oscillate randomly as a function of frequency, in
agreement with Matthaeus and Goldstein [1982a]. We shall return to this result in
section 3.2.

The Belcher and Davis [1971, p. 3534] examination of inertial range frequen-
cies argues that “the spectra with slower falloffs tend to be associated with higher
temperature regions,” and we observe this same dependence at a statistical level
(see Figure 2.3a). However, it is perhaps more correct to state that the range of
inertial range indices narrows with increasing proton temperature and concentrates
on the lowest values in the observed range. The dissipation range indices computed
in this analysis behave in the opposite sense: high-temperature proton distributions
tend to show the steepest spectra (see Figure 2.3b). This suggests that steeper dis-
sipation range spectra are associated with greater heating rates. To a degree this
is not consistent with Navier-Stokes theory, but we must remember that plasma
dissipation processes are not the same as the vk? forms used by Batchelor [1970].

The cyclotron frequency computed from the average magnitude of the field
for the interval shown in Figure 2.1 is v, = €, /27 = 0.099 Hz. It is always the case
for the 33 periods examined that v, < v, as shown in Figure 2.4, but it is also the
case that vpc > 0.1vp.

This relationship indicates that ion cyclotron damping may provide an ex-
planation for the onset of the dissipation range. We pursue this possibility in the

next chapter.
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Figure 2.3: (a) Dependence of inertial range spectral index and (b) dissipation
range spectral index on solar wind proton temperature.
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Figure 2.4: Behavior of the observed break frequency vy versus proton cyclotron
frequency .. As cyclotron frequency scales with B, the behavior of
break frequency with IMF strength is also shown. The dashed curve
corresponds to equality v = V.
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Chapter 3

THE CASE FOR AND AGAINST
PARALLEL-PROPAGATING, OR ‘SLAB,” ALFVEN
WAVES

3.1 Transverse Fluctuations

Belcher and Davis [1971] demonstrate that the inertial range fluctuations
1.6 x 107* < vy, < 0.04 Hz are largely transverse to the mean magnetic field. They
define a coordinate system relative to the mean magnetic field direction B and radial
direction R according to (B x R,B x (B x R),B) and conclude that the average
variances for these three components have the ratio 5 : 4 : 1. (Klein et al. [1991] and
Chen et al. [1991] have subsequently shown variations in this result.) We note that
this implies a ratio for the total variance transverse to and aligned with the mean
field of 9 : 1. We extend this analysis for inertial range frequencies 0.01 < v, $ 0.3
Hz and dissipation range frequencies 0.5 S v5. $ 1.5 Hz (with large variation due to
the location of the computed spectral breakpoint).

For each of our intervals, we rotate the data into the same mean-field co-
ordinate system as Belcher and Davis and recompute the power spectra following
the method outlined in section 2.2. More details, including the method of matrix
rotation are available in Appendix B.

We define P to be the power in fluctuations parallel to B and P, to be the
total power in both components perpendicular to the mean field. Therefore P, + P

is the total power (trace of the spectral matrix) which is plotted in Figure 2.1. Our
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Figure 3.1: Ratio P, /P, for the inertial (superscript “(i)”) and dissipation (su-
perscript “(d)”) ranges. The dashed curve again represents equality.

method is different from that of Belcher and Davis in that we use spectral power
instead of average variance.

For the high-frequency end of the inertial range, we find a mean P, :P ratio
of 14 : 1, with a range 3.0 < PL/P” < 53.2. Taking into account that the above
arithmetic mean may be unduly biased by several samples with unusually large
values, we note that the geometric mean of P, /P, is only 10.4, which is in closer
agreement with the result of Belcher and Davis. For the dissipation range we find
a mean ratio of 5.4 : 1 with a range of 2.36 < PL/P” < 12.8 and a geometric mean
ratio of 4.9 : 1. A comparison of the ratios of transverse to parallel power for the
two spectral ranges is shown in Figure 3.1. The dissipation range ratios P, /P,
are consistently less than inertial range ratios, implying a decreased importance
of transverse fluctuations in the dissipation range and a relative increase in the
compression of the plasma at these scales.

Belcher and Dawis took their observed 9 : 1 geometric mean anisotropy

0B L B as evidence of a ‘slab,” or one-dimensional, geometry with field-aligned
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wave vectors, k || B. However, the likelihood that the geometry of the magnetic
fluctuations is greater than one-dimensional was shown by Sari and Valley [1976],
who argued that the nonzero spectral power for the parallel component required
addition of oblique waves, such as magnetosonic waves, to the slab Alfvén waves.
Evidence for IMF fluctuations in association with k | B was first supplied by
Matthaeus et al. [1990], based on a “Maltese Cross”-shaped contour plot of the 2-D
correlation function. The possibility that these nearly two-dimensional fluctuations
with both k | B and éB | B were, in fact, energetically dominant was established
by nearly-incompressible MHD simulations [ Zank and Matthaeus, 1992a, b] and then
shown observationally by Bieber et al. [1994, 1996].

All of these potential geometries are consistent with the observations of a
large IMF fluctuation anisotropy. We return to this issue in section 3.5, where we

determine the geometry of the fluctuations.

3.2 Helicity Analyses

In section 2.4 we noted that most, but not all, dissipation range spectra
have moderate bias in the magnetic helicity. Again using our exemplary period
of Figure 2.1, we note that (Bg) = —4.9 nT and (Bg){(o,,) > 0, which implies
either a predominance of outward propagating, right-hand polarized waves or inward
propagating, left-hand polarized waves [Smith et al., 1983]. If we repeat this same
analysis for all 33 quiet solar wind periods in the Leamon et al. [1998a] study, we
find that only six intervals have (Bg){o.,) < 0.

We are unable to infer the propagation direction for dissipation range fluctu-
ations because of the time resolution of the plasma data. However, if we compare
the magnetic helicity in the dissipation range with the cross helicity o, in the iner-
tial range and assume that the dissipation range cross helicity is the same as for the
inertial range, then we find that only three of the 33 intervals studied have magnetic

helicity signatures that are inconsistent with ion cyclotron damping of Alfvén waves
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Figure 3.2: Scatter plot, for 33 Wind data intervals, of the normalized cross helicity
in the inertial range, 0., vs. the normalized magnetic helicity in the
dissipation range, o,,. Triangles are intervals with outward-directed
mean magnetic field, and bullets have inward mean fields. The dashed
line corresponds to the best-fit line through the origin, 0. = —1.900,,.
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[Stiz, 1992]. Let us now consider in greater detail the data underlying the latter
conclusion.

In Figure 3.2 we show the normalized cross helicity 0. computed from inertial
range data, plotted versus the normalized magnetic helicity o, in the dissipation
range, for the 33 data intervals previously analyzed. Cross helicity H, can be com-
puted only in the inertial range due to limited sampling rates for plasma data; we
use the inertial range H. as a proxy for the same quantity that is unmeasurable
in the dissipation range. In effect, we are assuming that the propagation direction
of fluctuations in the dissipation range is the same as the propagation direction of
fluctuations in the inertial range. The most notable limitation of this substitution
derives from the possibility that preferential dissipation may lead to different cross
helicity values in the dissipation range, although there is no observational evidence
for this. Indeed, the connection between cross helicity and propagation direction
may be complicated in the dissipation range if various kinetic wave modes such as
whistlers are present. On the other hand, lower frequency observations of o, [see
Matthaeus and Goldstein, 1982a] often indicate that a single direction of propagation
is dominant over several orders of magnitude of scale, which would tend to support
the extrapolation into the higher, dissipation range frequencies.

It is apparent from the data in Figure 3.2 that most intervals for which the
mean magnetic field is outwardly directed have o, > 0 and 0. < 0. On the other
hand, inwardly directed By is associated with o, < 0 and o, > 0. This implies
a predominance of outward propagating waves. One can readily see that this is
consistent with cyclotron-resonant absorption of outward-propagating fluctuations
by thermal protons, as follows. A proton moving outward along the magnetic field
executes a left-handed helical trajectory. Waves propagating outward at the Alfvén
speed will overtake most thermal particles (as f ~ 1) and therefore, on average,

the thermal protons will be in resonance with such waves that have a right-handed
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spatial handedness (negative H,,). If the energy of these waves is assumed to be
damped by the resonant protons, the energy that remains will preferentially reside in
the undamped fluctuations, which have a left-handed structure and positive H,, [see,
e.g., Moffatt, 1978]. Consequently, outward By should be associated with o, < 0
(outward propagation) and o,, > 0. Reversing the direction of By but maintaining
the assumption of outward propagating waves (now o. > 0) produces the conclusion
that o, < 0 in the dissipation range by the same argument.

The three periods in the top-right and bottom-left quadrants of Figure 3.2
could be consistent with ion cyclotron damping if 8, > 1, which would alter the
range of polarizations that provide resonance with thermal ions, but in the three
cases here, 3, = 0.034, 0.191, and 0.885. We find no unique features to otherwise
segregate these three intervals as atypical for the set. For the remaining 30 inter-
vals, the magnetic- and cross-helicity analyses suggest that the dissipation range is
generally consistent with the depletion of Alfvén waves. (Bullets in the lower-right
quadrant of Figure 3.2 and triangles in the upper-left quadrant are consistent with
inwardly propagating waves.) This correlation appears encouraging with regard to
the inertial range cross helicity proxy used in generating Figure 3.2.

Several damping mechanisms can readily be considered for the formation
of the dissipation range (see Barnes [1979] for a discussion of several, including
Landau damping). The apparent depletion of outward propagating Alfvén waves at
frequencies comparable to the proton cyclotron frequency (Figure 2.1b) naturally
suggests resonant cyclotron damping of Alfvén waves as a leading candidate, as first
suggested by Coleman [1968]. We pursue this suggestion with a series of tests which
use the cyclotron damping mechanism in an attempt to predict the onset of the

dissipation range.
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3.3 Cyclotron-Resonant Alfvén Wave Damping
For frequencies w, < (1,, where w, is the plasma-frame wave frequency and
(2, is the proton cyclotron frequency, the dispersion relation for left-hand polar-
ized Alfvén-ion cyclotron waves, hereafter Alfvén waves, propagating parallel to the
magnetic field is [Stiz, 1992]:
wr = ky Va, (3.1)

where k| = k- B is the wavenumber component parallel to the ambient magnetic
field and the V), is the Alfvén speed. For higher frequencies, dissipation becomes
important and the solution becomes dispersive. Figure 3.3 shows two solutions to
the linearized Vlasov-Maxwell equations for two values of 3 = v3,/V2 that extend
into the range where dissipation becomes significant. (The quantity V4/€2,, which
is identically equivalent to c¢/wy; a nomenclature sometimes preferred by other au-
thors, is the ion inertial scale and provides a natural scaling factor for dimensionless
wavenumbers.) We assume single-temperature Maxwellian distributions for both
protons and electrons with 7}, = T,. The solutions for w, approach 2, asymptoti-
cally as dissipation increases. Dissipation sets in at lower wavenumbers for hotter
distributions (larger () so that the onset of dissipation depends on the proton tem-
perature.

The resonance condition for cyclotron damping in the plasma frame is
wr —k-v==2Q,, (3.2)

where v is the particle velocity. For outward propagating waves and inward moving
ions we can reduce the resonance condition to a prediction for the minimum resonant
wavenumber:

wy + kv, =+, (3.3)

where v, is the proton speed.
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Figure 3.3: Dispersion relations based on numerical solutions of the linearized
Vlasov-Maxwell equations. The real part of the frequency, w,, is given
by the solid curve and left-hand scale. The imaginary part, or decay
rate, 7, is given by the dashed curve and right-hand scale. The top
two curves for w, and v give the solution for 3 = 0.1 and the bottom
two curves give the solution for g = 1.0.
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The (Maxwellian) spread of particle speeds, vy, results in a spread of wavenum-
bers that can resonate with the protons. We have two methods to calculate the

frequency at which dissipation begins.

3.3.1 Simple Slab Calculation
We assume that v, = vy, and that damping sets in at w, = kVy < Q.
Substituting this into the resonance condition (equation (3.3)) gives

2,

kj= —"F—
d Vi + vy,

(3.4)

as an estimate for the minimum, outward propagating wavenumber at which dissi-
pation by resonance with the background ion distribution becomes important. In
principle, if the dissipation range is made up of outward propagating Alfvén waves,
then this estimate for k; should determine the onset of the dissipation range. We can
use Figure 3.3 as a rough check of the validity of the estimate of equation (3.4). When
Bp =1, Va = vy, and kVy /), = %, we can see from Figure 3.3 that this corresponds
to v/, ~ —0.05, indicating that dissipation has begun. However, by combining
kVa/Qy = 3 with equation (3.1), we obtain w, /€, = 3, which is an overestimate.
Following the second set of traces for §, = 0.1 predicts w,/Q, = kV4/Q, = 0.9,
which again gives reasonable dissipation rates of v/, ~ —0.05 but overestimates
Wy-

Once we have established the wavenumber at which dissipation starts, we
may use the Doppler shift to compute the frequency of an (outward propagating)
Alfvén wave resonant with a particle with the mean thermal speed,

k-V Wy
— - 5w

; 3.5
2 2T ( )

VSC

It is possible to find a lower-frequency wave at which the same dissipation rate is
present, but this would be an inward propagating solution. If present, the dissipa-

tion of this wave may be obscured by the outward-propagating wave at the same
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spacecraft-frame frequency with less dissipation (in one dimension, there are only
two waves with the same spacecraft frequency), so presumably they would retain

greater energy. In either case, the conclusions are nearly equivalent.

3.3.2 Numerical Solution Calculation

Alternately, we can apply the numerical solutions of the type shown in Fig-
ure 3.3 and assume that the dissipation range begins when |y| is some fraction of
wy; say, one third or one tenth. That is, we are considering departures from the dis-
persion relation of equation (3.1). We then take the the critical wavenumber k, and
wave frequency w, (kg) from the numerical solutions. We can again use equation (3.5)
to translate to a spacecraft-frame frequency.

Since we are assuming parallel-propagating waves, i.e., © gy = Oy, the vector
dot product in equation (3.5) implies a dependence on © gy for the dissipation onset

frequency for both the numerical solution and slab calculation.

3.3.3 Results

Figure 3.4 shows two events that are almost identical in ambient param-
eters but with very different field-to-flow angles ©pgy: 23° and 87°. Using the
observed average plasma parameters ((B) = 6.4 nT, n, = 3.8 cm™, 3, = 0.71,
Vow = 692 km s !, and O©py = 23°), the prediction for the spectral breakpoint
of the first event (the top trace in Figure 3.4) using the simple slab calculation is
0.59 Hz. This is in relatively good agreement with the measured breakpoint value
of 0.44 Hz. The average plasma parameters for the second event (the bottom trace
in Figure 3.4) are (B) = 4.6 nT, n, = 3.8 cm™, 8, = 0.67, Voyr = 524 km s,
and ©py = 87°. The k - Vg term in equation (3.5) is smaller by a factor of
cos 87°/ cos 23° = 0.06, implying that the propagation term dominates in the second
case, and the observed spectral breakpoint should be ~ 1 decade lower in frequency

in the spacecraft reference frame. The predicted spacecraft-frame frequency for the
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Figure 3.4: Two examples. The top curve is the same spectrum shown in Fig-
ure 2.1, and the bottom curve is from November 7, 1995. The two
intervals have similar (B), 3, and Vs but very different values of
Opy; the second example has the magnetic field almost perpendicular
to the solar wind flow. Strong spacecraft spin tone harmonics and an
unusually high level of the flat spacecraft noise spectrum, as discussed
in section 2.2.1, are evident in the bottom trace. Since WIND was
also in its high-rate data mode during this interval, the sampling rate,
and thus the Nyquist frequency, are twice that of the earlier example.
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spectral breakpoint in this instance using the simple slab model is 0.08 Hz, which
is very different from the observed value of 0.29 Hz. The nearly identical frequen-
cies marking the onset of the dissipation range for these two events contradict the
expectations and the predictions of parallel-propagating, cyclotron-damped Alfvén
wave theory.

These two events are not exceptions to the rule. Figure 3.5 compares the ob-
served spectral breakpoint frequencies with the predicted spectral break frequencies
derived from three cases of the two cyclotron resonance models above (simple slab
model plus numerical solutions at |y| = w,/10 and |y| = w,/3). Although all three
cases give order-of-magnitude agreement with the observations, none exhibits any
close correlation with the observations. The models are unsatisfactory. This might
only reflect the simplicity of these three models were it not for an underlying order
in the results which is not evident in Figure 3.5.

The systematic error of the theories is revealed in Figure 3.6, where we plot

the fractional error of the theory relative to the observation, (Vb — Vtheory) /Vbr, for
1. the simple calculation (triangles);
2. the numerical solutions for |y/w,| = 0.1 (squares); and
3. the numerical solutions for |y/w,| = 1/3 (circles).

All three theories exhibit a broad scatter of error and the theories tend to overes-
timate the observations for values of ©gy < 50°. The fractional error increases
systematically for ©py > 50°. To demonstrate that the observations are best
fit by a theory of non-field-aligned wave vectors, the solid curve is the predicted
fractional error that would result from Doppler shifting an isotropic (radial) wave
vector that is erroneously assumed to be field-aligned. If k. = 27wus/Vsw is the
(true) breakpoint wavenumber measured along the (radial) solar wind direction,

then k| = &,/ cos ©py is the predicted wavenumber that is aligned with the magnetic
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Figure 3.6: Fractional error, defined as (vbf — Viheory) /Vbf, for all three models
discussed in the text as a function of field-to-flow angle. The symbols
are the same as in Figure 3.5. The error is greatest at large angles,
true for all wave formulations.

field. We take w, = 0.1k,.Vsy to complete the Doppler shift, i.e., V4/Vew =~ 0.1.
The predicted error (solid curve) is then 0.9 — cos © gy, which a good fit to the data
points for ©gy > 50° in Figure 3.6. This demonstrates that the imposition of a
Opy dependence upon the observations leads to a systematic error in the results.
It is evident from the data and this analysis that any explanation of magnetic
dissipation in the solar wind based on a slab-like, 1-D geometry is likely to contradict
observations. We recognize that our treatment here, while using a fully numerical
solution of the dispersion relation, can be improved by considering numerous aspects
of the plasma, including, for instance, multitemperature Maxwellian distributions.
Even so, we contend that any wave mode thought to be associated with the damping
process and that propagates at less than the solar wind speed will suffer from a
systematic introduction of error if the wave vector is required to be field aligned.

This can only be avoided if
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1. a systematic correlation between ©pgy and some critical plasma parameter

exists that fundamentally alters the resonant process for large Opgy, or
2. the geometry of the magnetic fluctuations is greater than one-dimensional.

In the remainder of this dissertation we pursue this latter possibility.

3.4 Cascade and Dissipation

We shall return to discuss the exact nature of the oblique fluctuations in
subsequent chapters. However, oblique wave fluctuations are generally susceptible
to Landau damping [Barnes, 1979].

Landau damping affects both right-hand and left-hand polarized fluctuations
without regard to polarization, and thus affects the scatter of points in Figure 3.2,
as we shall now show.! The handedness argument used in section 3.2 explains the
clustering of the observational points in the upper-left and lower-right quadrants.
However, there are questions that arise. First, if kinetic processes are assumed to
be very rapid, why is the signature in the magnetic helicity not pure (+1) as one
would expect for complete cyclotron absorption? Second, how is the above argument
modified if instead of pure cyclotron-resonant absorption processes, there is also a
contribution due to Landau resonance or nonresonant absorption? Finally, since the
observed cross helicities are not “pure,” what is the effect of relaxing the assumption
of purely outward traveling Alfvén waves?

It turns out that these questions can be addressed, in at least a prelimi-
nary fashion, by postulating a cascade and associated dissipation processes that are

described by a set of energy balance equations, as follows:

! Wave modes of different polarizations may Landau damp at different rates be-
cause of the different £ they generate, but this is a property of the wave mode,
rather than the polarization of the wave itself. The assumption we make in this
section is that non-cyclotron contributions to the damping are equal for left-
and right-hand polarities.
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dE S
= 2 YErL — v EL

dt 2
dERr S
el YEr (3.6)

The energies in left- and right-handed spatial structures are respectively des-
ignated as F;, and Ejy following our discussion of the various turbulence concepts
in section 2.3 (in this case the integration over the spectrum now includes, by as-
sumption, only the dissipation range). The rate of supply of energy (per unit mass)
transferred into the dissipation range from the inertial range is designated by S.
This supply rate is equally apportioned to L and R fluctuations since H,, is random
in the inertial range. We assume that the only external contribution to dEy, g/dt is
due to the cascade term S, and that in the dissipation range there is no exchange be-
tween E;, and Eg, or exchange between kinetic and magnetic energies. The quantity
v, represents a decay rate due to cyclotron-resonant absorption by thermal protons,
and it appears only in the L equation since we assume that fluctuations are out-
ward propagating and By is inward. (This would also occur for inward propagation
and outward By.) The remaining damping term, 7, appears in both the L and R
equations and represents decay processes that produce no signature in the magnetic
helicity. Included in vy are contributions from Landau damping and other mecha-
nisms that do not involve cyclotron resonance, as well as mechanisms that are fully
nonresonant.

We can now proceed to estimate a typical relative strength of cyclotron-
resonant and non-cyclotron resonant processes. If we suppose that the cascade is
steady, so that dE, r/dt = 0, we may equate the right hand sides of equations (3.6).
From the data, we take a typical value of magnetic helicity to be o, & —1/3. This
corresponds in equation (2.3) to Ex = 2F in the dissipation range. Then, for
consistency with equations (3.6), we must have 7y &~ 7., indicating that cyclotron

and non-cyclotron absorption mechanisms are approximately of equal strength.
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Since observed values of H, are not pure, the above argument should be re-
fined to account for a distribution of propagation directions relative to the slower
thermal protons. Assume, then, that there is a probability P(L) that fluctuations
are propagating outward, which produces a resonance between left-handed struc-
tures and thermal protons, and implies the appearance of v, in the Ej equation.
Assigning the probability of inward propagation to be P(R) = 1 — P(L) implies
that resonance between right-handed structures and thermal protons is weighted

accordingly. Therefore, the cascade balance equations become:

dE s

d = o P PnE

dE s

—dtR = 3 Y%oEr — P(R)VEr (3.7)

According to the FElsdsser [1950] representation, fluctuations with energy E_
tend to propagate parallel to the mean field By while fluctuations having energy E.
tend to propagate antiparallel to By. We assume for simplicity that the probability
that, at any location in the plasma, a typical thermal proton will “see” outward
propagation is proportional to the average outward propagating energy. Thus,

B E_ _I+o,
E_+E, 2

P(L) (3.8)

and therefore P(R) = (1 — o.)/2.

With this interpretation, we can make use of the data in Figure 3.2 to con-
strain our model and arrive at further insights about the dissipation processes. From
the steady form of equations (3.7), along with the definitions of equations (2.2), (2.3)
and (3.8), and assuming that - and 7, are independent of o, o,,, and other plasma
turbulence parameters, we find that

o= — (1 + 2@> . (3.9)

Yr

The best-fit line forced through the origin is o, = —1.900,,, while the best-
fit straight line through the data is 0. = —1.800,, + 0.10. Considering either 32
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or 31 degrees of freedom accordingly, the reduced chi-squared values of the two
fits are x2 = 1.78 and 1.55. Putting 0. = —1.900,, in equation (3.9) implies that
Yr = 2.227,. The other important consequence of equation (3.9) is that only when

Y = 0 do pure Alfvén waves lead to exclusively helical states.

3.5 Quasi-2-D (Oblique) Wave Vectors

In section 3.1 we considered the spectrum of fluctuations in a field-aligned
coordinate system and found that the ratio of power in the two perpendicular di-
rections to the parallel direction decreased in the dissipation range with respect
to the inertial range (Figure 3.1). Following Bieber et al. [1996], in a test based
on the analysis of Qughton [1993], we can use the ratio of the power in the two
perpendicular directions as another test of the geometry of the fluctuations.

Define a right-handed orthogonal coordinate system in which the z axis is
aligned with the mean magnetic field and points away from the Sun, the z axis is in
the plane defined by the mean field and the solar wind velocity vector (assumed to
be radial) and also points away from the Sun, and the y axis completes the right-
handed system. This is the (X, ¥, %) system used by Bieber et al. [1996]; Belcher and
Davis [1971] used the equivalent right-handed triad (§, —%,%). P,,(v) is, therefore,
the power spectrum of fluctuations parallel to By = (B). Bieber et al. call P,,(v)
the “quasi-parallel spectrum” P)(v) because the fluctuation component under con-
sideration (z) has a component parallel to the sampling direction; similarly, they
denote Py, (v) as the “perpendicular” spectrum P(,y(v) because the y component
is perpendicular to the (radial) sampling direction. (The Bieber et al. terminology
is based upon standard turbulence nomenclature [e.g., Batchelor, 1970].) The total
spectrum for fluctuations perpendicular to the mean magnetic field P, , as discussed

in section 3.1, is
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Pi(v) = Fyv)+ Puv)

= Pu(v) + Py (v).

In this notation, the familiar Belcher and Davis [1971] result becomes P, :

P(||)ZPzz=5l421.

3.5.1 Slab and 2-D Fluctuations

To conduct our ratio test of turbulence geometry, we first assume a two-
component model, which is a composite of slab and 2-D geometries. Although the
results of sections 3.1 and 3.3 allow for the possibility of oblique wave vectors at
other than 0° and 90° relative to By, we will adopt this limitation for the purpose of
demonstration. Theoretical models and observational evidence suggest the presence
of a significant 2-D component [Matthaeus et al., 1990; Zank and Matthaeus, 1992a;
Bieber et al., 1994, 1996].

Again following the notation of Bieber et al. [1996], the amplitudes of the
two components of the model are C's and Cs; i.e., the slab spectrum in the range
of interest is parameterized by Csv~%, and the 2-D spectrum by Cov~9. The “slab
fraction” r is the contribution of the slab component to the energy spectrum, relative

to the total energy:
Cs 1
Cs + Cy 14

where ' = Cy/Cs. We assume that both P, and P, satisfy the same power law

(3.10)

r=

with spectral index —g. This is not strictly correct, at least not within our dataset,
but is approximately true. Equations (16) and (17) of Bieber et al. [1996] and the
above definitions and assumptions yields the following formula for the ratio of power

between components:
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1—q
2ny 2q 27y
CS (VSWCOSH) + G (H-(I) (VSWSIUG)
2

Cs (votmn) '+ Co () (o)
B (cos )41 4o (12;1 ) (sin @)1 -
h (cosB)a 1 + 7! (1+ )(sin@)‘l—l. (3.1)

The ratio P,,/P,, and the parameters § = Opy and ¢ are derivable from
observations by a single spacecraft. Thus, the only unknown in equation (3.11) is 7/,
which, in turn, gives us the slab fraction r. Note that both the solar wind speed Vsy
and frequency v cancel from equation (3.11), which thereby becomes independent
of frequency in the relevant range.

For both slab and 2-D models, there is no power in the parallel fluctuations
and P,,(v) = 0. Pure slab turbulence (r = 1; 7' = 0), contributes equally to P,
and Py, [Bieber et al., 1996], whereas a pure 2-D geometry predicts that the ratio
Py, (v)/Pyz(v) be equal to the power law index ¢. Equation (3.11) also gives the
dependence on field-to-flow angle : as § — 0°, Py, /P,; — 1, and as § — 90°,
P,y /Py — g, assuming r' # 0 (i.e., forcing a composite geometry).

Although there may be a frequency dependence as the spectrum extends
further into the dissipation range, we make the simplifying assumption that there
is no frequency dependence for 7 or r' within the frequency range of interest. For
each interval in our WIND dataset we obtain one ratio P,,/P,, by averaging the
ratio Py, (v)/Pys(v) for each frequency v, excluding those frequencies within a £10%
guard band of any harmonic of the spacecraft spin tone. An error bar was determined
from the variance of the data.

We computed a P,,/P,, ratio for the same frequency ranges used to com-
pute the spectral slopes of the high-frequency extent of the inertial range and the

dissipation range, as discussed in chapter 2. These frequency ranges were not the
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same for each interval (they depend on the break frequency of the spectrum) but
typically were ~ 0.01 to ~ 0.3 Hz for the inertial range and < 1to < 2 Hz for the

dissipation range.

3.5.2 Results

The results of Py, /P, as a function of field-to-flow angle are shown in Fig-
ure 3.7. The curves shown are minimum y? values of r, taking the spectral slopes to
be constant (1.66 for the inertial range and 3.04 for the dissipation range, which are
the average spectral slopes for our data). However, the x? statistic of the dataset
was computed using the observed value of ¢ for each data point.

For the high-frequency inertial range described above, the minimum x? of
10.87 occurs at 7 = 0.1173%. The indicated error bounds were determined from the
values of 7 for which x?(r) = x2,, +1 [Bevington, 1969]. Note that the error bounds
include 7 = 0, or a pure 2-D geometry; in fact, x%(r = 0) = 11.28, which is still an
acceptable fit. Despite the large error bars on the data points, we have 32 degrees
of freedom, which implies that » = 0.11 is a good fit to the data. In the pure slab
limit, x?(r = 1) = 23.67, which is almost low enough to be acceptable.

For the dissipation range, the minimum y2 of 7.31 occurs at r = 0.461513.
This is a good fit, whereas x?(r = 0) = 106.0 and x*(r = 1) = 30.72 are not.
The best fit value of » = 0.46 indicates that the slab fraction is increased in the
dissipation range relative to the inertial range. There is a higher percentage of energy

that resides in wave vectors aligned with the magnetic field in the dissipation range

than in the inertial range.
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Ratio of perpendicular to parallel component spectra as a function of
field-to-flow angle: (top) for the inertial range the best-fit curve is for
r = 0.11 (11% slab component); (bottom) for the dissipation range,
r = 0.46. Dashed curves show the best fit using individual observed
power law indices, while the solid curves show the prediction of the
best fit ratio using constant indices.
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3.5.2.1 On the meaning of x?
The 2 statistic of a fit is the total square deviation of the fit from the data,

inversely weighted by the errors in the estimates and is calculated from
N N — )2
X2 — Z (y xz)Q yz) ’ (3‘12)

where o; is the error bar of the ith estimate y;. The reduced chi-squared is defined
as x2 = x?/(N — n), where N is the number of data points to be fit and n is the
number of free parameters to the fit.

Does the “almost low enough to be acceptable” inertial range x*(r = 1) =
23.67 mean that the result is indeterminate?

It is (almost) certain that not all sources of error were included. Each of
the data points in the top panel of Figure 3.7 has an error bar computed from
the variance of the 300 or so P,,/P,, estimates for the inertial range frequencies.
Computational errors from calculating the power spectrum, including propagation
of error from individual components to the trace and those from leakage and aliasing
not removed by the methods discussed in Appendix A, the error in the mean B,
resulting from averaging finite duration intervals, and even digitization and zero-
level-offset errors from the magnetometer sensor are ignored.

As such, it can be argued that small differences in x? have little physical
meaning. To two significant figures in x?, the inertial range is as well fit by a pure
2-D geometry and a composite geometry of 11% slab waves; since their x? values
are half that of the pure slab wave description, the pure 2-D and composite fits are
twice as good as a pure slab wave description. Neither of the pure cases is a good

fit in the dissipation range.

3.6 The January 1997 Coronal Mass Ejection
The analyses of section 2.2 and this chapter were repeated on 60 contiguous

one-hour intervals through the January 1997 CME. As noted in section 2.1.1, 10
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hours did not give clean spectra, so the results summarized here are for 50 one-hour
intervals only.

We analyzed the spectral properties for each interval in the (fixed) range of
spacecraft-frame frequencies 0.02 < v, S 0.2 Hz for the high-frequency end of the
inertial range, and 1 < v, < 2 Hz for the low-frequency end of the dissipation range.

Figure 3.8 shows the spectrum for one subinterval within the magnetic cloud.
The data are rotated into the Bieber et al. coordinate system that we use to perform
the geometry analysis of section 3.5 and described on page 59.

Note that the high frequency noise flattening is much worse in Figure 3.8
than it is in either Figure 2.1 or Figure 2.2. The signal level is so low in the parallel
(P,,) component that it is obscured by noise even before the spectral break at

0.77 £ 0.18 Hz. This is indicative of the result that we shall now discuss.

3.6.1 Anisotropy

Considering our variation on the Belcher and Davis analysis (i.e., using spec-
tral powers rather than average variances) yields inertial range anisotropies less than
Belcher and Davis before the magnetic cloud in the solar wind: the transverse-to-
parallel ratio is (3.4 £ 0.5) : 1. In the sheath region, where the fluctuation levels
(Brms) are elevated, the fluctuation anisotropy does not change significantly and
the ratio is (4.2 £ 1.5) : 1. In the magnetic cloud, however, the fluctuations are
highly transverse, and within the cloud the ratio is (61.7 &+ 8.5) : 1. Figure 3.9
shows the inertial-range anisotropy ratio for each hour-long subinterval through the
whole event. The magnetic cloud, as defined by Burlaga et al. [1998] and shown in
Figure 1.4 on page 12, is clearly identifiable from the enhanced transverse power.

In the high speed solar wind behind the magnetic cloud the anisotropy ratio
is not steady, but is more consistent with the conclusions of Belcher and Davis [1971]
at (8.2 £ 1.3) : 1. It is hard to differentiate the prominence material from the high

speed solar wind using the anisotropy results and Figure 3.9 alone.
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Figure 3.8: Diagonal elements of power spectral matrix computed in the mean-field
coordinate system outlined in the text. Fit spectra for the combined
perpendicular components, elevated for clarity, are shown with the fit
spectral indexes. The z-component spectrum, P,,, is multiplied by
a factor of 10. The other two spectra are shown at computed power
levels. The break at the dissipation scale (0.77 4 0.18 Hz) is evident
at a frequency greater than the proton gyrofrequency (0.22 Hz), as in
all other intervals studied outside the magnetic cloud.
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Figure 3.9: Ratio of transverse to field-aligned power in the inertial-range spec-
trum of magnetic fluctuations for each of the 60 hourly subintervals.
Uncertainties are computed from the variation of the power ratio com-
puted across the frequency interval. The anisotropy of the dissipation-
range fluctuations are not statistically significant or reliable due to the
noise level in the P,, component.
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3.6.2 Geometry

Figure 3.10, which is analogous to Figure 3.7 shows the results of P, /P,,
as a function of Opgy for the magnetic cloud. The solid curves through the data
represent minimum 2 values of r, assuming a constant (average) value of spectral
index g. Although the curves shown use the average value of the spectral indices, the
x? statistics of the fit were evaluated using observed values of g of each individual
subinterval (dashed lines). For the high-frequency end of the inertial range (upper
panel of Figure 3.10) the minimum x? of 7.90 occurs at r = 0.29 4+ 0.29. For the
dissipation range (lower panel) the minimum x? of 1.35 occurs at r = 0.0470:35. As
before, the indicated error bounds were determined from the values of r for which
X2(r) = X%, + 1 [Bevington, 1969).

In the undisturbed solar wind, we find that the inertial range comprises 89%
2-D turbulence and 11% slab waves and the dissipation range comprises 54% 2-D
turbulence and 46% slab waves. We might postulate that in the quiet solar wind
the increased dissipation range slab fraction is due to preferential dissipation of 2-D
structures. This assumption is invalid in the magnetic cloud, where slab waves are
completely absent. At the same time, we must reconcile the increased inertial range
slab fraction (29% compared to 11%) in the magnetic cloud. Within error bounds,
though, the inertial range values are the same.

We repeat the geometry fitting analysis for the slow solar wind prior to the
magnetic cloud and in the high speed stream that follows it. In the 12 hours prior to

the shock, the inertial range is also best described by 29% slab waves (r = 0.29703;

with x2. = 1.63); however, the dissipation range is 91% slab waves (r = 0.9170%
with x2., = 4.87). In the high-speed stream the inertial range is best characterized
by a 34% slab component (r = 0.341333 with x2,, = 4.88), and the dissipation
range by r = 0.327013 (x2,;, = 2.64).

If we explain the increase of one geometry in the dissipation range relative to
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Figure 3.10: Geometry of the magnetic fluctuations in the high frequency region
of the inertial range (top panel) and the dissipation range (bottom
panel). In both cases the energy is composed predominantly, and
almost exclusively, of 2-D fluctuations with wave vectors nearly at
right angles to the ambient magnetic field. The solid curves corre-
spond to the best-fit values of r using the average spectral index: for
the inertial range, » = 0.29, and for the dissipation range r = 0.04.
The dashed lines correspond to the best-fit values using the individ-
ual observed spectral indices. Uncertainties are computed from the
variation of the power ratio computed over the spectral subrange in
question.
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the inertial range value to be due to the preferential dissipation of the other, why is
the cloud’s geometry in the dissipation range almost purely 2-D fluctuations while
in the preceding solar wind, the fluctuations are over 90% slab waves? Consider
the following. The inertial range geometry is approximately constant with 30% slab
waves; it is the dissipation range geometry that varies. From the preceding solar
wind to the high-speed stream to the cloud, the average proton plasma 3 decreases
from 1.362 to 0.609 to 0.039, and the proportion of slab waves decreases from 91%
to 32% to 4%. Low (3 favors the collapse to 2-D, as is suggested by considering the
equations of reduced MHD [Zank and Matthaeus, 1992a], and this process may be
more rapid at the smaller scales of the dissipation range.

We tried to fit geometry models to the sheath and prominence observations,

but the uncertainties and x? values were too large to lend confidence to the results.

3.7 Chapter Summary

In this chapter we have repeated the analyses of two inertial range studies
[Belcher and Davis, 1971; Bieber et al., 1996] and extended their results to the
dissipation range using the increased capabilities of the WIND spacecraft.

The results of our investigation of magnetic fluctuations agree for the most
part with those of Belcher and Davis [1971]: the total variances transverse to and
aligned with the mean field are in a ratio 10.4 : 1 for the high-frequency end of the
inertial range. In the same coordinate system (B x R,B x (B x R),B) used by
Belcher and Davis the ratio of geometric mean variances is 6.7 : 3.7 : 1. In the
dissipation range, transverse fluctuations are less dominant, and the ratio of total
transverse to parallel powers falls to 4.9 : 1, while the component-to-component
ratio becomes 3.3 : 1.6 : 1.

The onset of the dissipation range, the spectral break frequency v, occurs at
frequencies roughly comparable to the proton cyclotron frequency €2,/27. Together

with a bias in the magnetic helicity spectrum that implies a depletion of outward
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propagating Alfvén waves (observed in all but six of the 33 events used in this
study), one might expect resonant cyclotron damping to explain the dissipation
range. However, we find that Doppler-shifted resonant damping cannot explain the
observations, and the percentage errors tend to 100% as the field-to-flow angle © gy
approaches 90°. In fact, any imposed ©py dependence leads to a systematic error
in the results.

Repeating the analyses of Bieber et al. [1996] in section 3.5, we find that
fluctuations in the high-frequency end of the inertial range are best described as a
mixture of 11% slab waves and 89% 2-D geometry with the greatest percentage of
wave vectors at large angles to the mean magnetic field. In the dissipation range
the fluctuations are best described by a mixture of 46% slab waves and 54% 2-D
geometry. The increased slab fraction may be explained by the preferential dissi-
pation of oblique structures. Whatever the mechanism of dissipation, it must leave
a polarized magnetic helicity spectrum in the remaining slab fraction exactly as
observed.

The two-component model constrains the 3-D spectrum since it is formed
from only slab and 2-D components. As mentioned at the start of this chapter,
Sari and Valley [1976] suggested that (moderately) oblique waves were necessary in
addition to slab Alfvén waves, because of the existence of nonzero spectral power
for the component along the mean magnetic field. Despite the fact that no direct
observation of magnetosonic waves had (or still has) been made, Sari and Valley
[1976] claimed that all the intervals they studied were consistent with < 20% of power
in magnetosonic waves. It seems likely that the fully 3-D spectrum is a combination
of slab, 2-D, and oblique wave vectors. This analysis suggests that the 2-D, or at
least, highly oblique component dominates.

In sections 1.2 and 1.4 we discussed two paradigms for the IMF fluctuations

and their implications for solar wind heating. While the results of this chapter have
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not entirely ruled out the simpler paradigm of noninteracting waves, its applicability
has been severely limited. The conclusion of this study is that a a significant fraction
of the magnetic wave energy must necessarily reside in highly oblique waves or quasi-
2-D structures. Furthermore, the onset of dissipation cannot be governed by the
dynamics of ion cyclotron damping of parallel-propagating waves.

In the next two chapters we consider the possibility that obliquely propagat-

ing waves form at least a portion of the inferred 2-D component.
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Chapter 4

PROPERTIES OF THE KINETIC ALFVEN WAVE

4.1 Introduction

As discussed in section 3.3, the observed data cannot be explained solely by
parallel-propagating waves. From an entirely different perspective, the examination
of the data in section 3.5 suggests that a substantial fraction of the magnetic fluctu-
ation energy in the dissipation range resides in highly oblique Fourier modes. The
latter result is entirely of a geometric nature and makes no biasing assumptions as
to the dynamical nature of the excitations associated with the oblique wave vec-
tors. (Note, however, that conversion from frequency f to wave vector k using a
single spacecraft requires use of the “frozen-in assumption,” which requires that the
characteristic speed of the fluctuations be much smaller than the solar wind speed.)
In any event, there remains the challenge of finding a dynamical model that might
adequately describe these highly transverse, nonslab fluctuations, thus forming a
physical basis for understanding the couplings between fluid and kinetic scales in
the dissipation range.

Consider the possibility that obliquely propagating waves form at least a por-
tion of the inferred 2-D component. There are three wave modes for low-frequency,

obliquely propagating electromagnetic waves:
1. the fast magnetosonic wave;

2. the shear Alfvén wave; and
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3. the slow-mode wave.

Both the fast magnetosonic wave and the slow-mode wave are heavily damped
in a high-g plasma, regardless of wavelength [Barnes, 1979]. However, WIND data
studied herein, as well as those reported elsewhere, indicate the presence of a spectral
breakpoint at scales near those of ion gyromotion, which we associate with the
dissipation processes. In this interpretation it is highly unlikely that the fast- and
slow-mode waves can provide an adequate explanation of the observed data. The
shear Alfvén wave becomes the kinetic Alfvén wave which develops a substantial
parallel electric field component when the wavenumber £ increases such that &, p; ~
1, where p; = V4 /€2, is the ion inertial scale [Hasegawa and Sato, 1989; Stiz, 1992].
(In a 8 ~ 1 plasma, the condition for the onset of the parallel electric field may
be written as k; Ry, ~ 1, where R = v,/ is the proton Larmor radius.) In
this regime, the kinetic Alfvén wave is highly dispersive, and the real part of the
wave frequency asymptotically approaches the ion cyclotron frequency. Electron
Landau damping becomes important because of the presence of the parallel electric
field component, and ion cyclotron damping can also play a significant role in the
damping process if w ~ (2,,.

The onset of substantial damping appears to scale with the Larmor radius,
as is suggested in Figure 4.1, which shows two representations of the relationship
between the Larmor radius for thermal protons and the dissipation wavenumber
kaiss = 2mvyp/Vsw. Dissipation sets in when k~! scales are of the order of the
proton Larmor radius, without regard for ©py. A slab geometry would introduce
an extra factor of cos ©py into the dependence of k4, on Rp, which is manifestly
absent in Figure 4.1. We have already seen in Figure 3.5 on page 54 that the
particular choice of a slab geometry fails to organize the observations. On the
other hand, Figure 4.1 seems to suggest that there are always fluctuations that

project onto Vs as (some multiple of) R, to mark the onset of dissipation. The
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Figure 4.1: Two scatterplots showing the inverse relationship between the observed
frequency marking the onset of the dissipation range and the Larmor
radius for a thermal proton. The solid line in each case corresponds to
the best-fit straight line of the bottom panel, namely k.. = (3.172 &
0.152) Ry, and the dashed curve corresponds to the best-fit hyperbola
of the top panel, kq;ss = (0.195+£0.012) R, '. Observations in the quiet
solar wind dataset are shown as triangles, and those from the January
1997 ICME are represented by circles.
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fluctuations contain a component besides just an ensemble of parallel-propagating
(“slab”) Alfvén waves. What is needed, according to Figure 4.1, is a more nearly
isotropic dissipation mechanism that is associated, at least in part, with cyclotron
resonance.

The damping of kinetic Alfvén waves is one such possibility. The advantages

of an explanation based upon kinetic Alfvén waves are that:

1. they possess wave vectors at large angles to the mean magnetic field, which is

in general agreement with the conclusions of chapter 3;

2. they provide both cyclotron resonant dissipation and dissipation via the gen-

eration of parallel electric fields at comparable wavenumbers; and

3. the two distinct dissipation mechanisms provide separate, coincident mecha-

nisms for heating both background ions and electrons.

In this chapter we shall pursue this suggestion with both a general examina-
tion of the damping of obliquely propagating kinetic Alfvén waves and an additional
examination of the observations. We explore the damping rates of kinetic Alfvén
waves under a wide range of interplanetary conditions using numerical solutions of
the linearized Maxwell-Vlasov equations and demonstrate that these waves display
the nearly isotropic dissipation properties inferred.

Using the results of this chapter, in the next chapter we present a simple
model to predict the onset of the dissipation range, broadly following the method
of section 3.3.2 using the numerical Maxwell-Vlasov solutions, and compare these
predictions to the observations.

The kinetic Alfvén wave (KAW) can be viewed as a coupling of the ion-
acoustic mode (w = +czk) and the Alfvén wave [see, e.g., Hasegawa, 1976; Lysak
and Lotko, 1996; Hollweg, 1999]. It was introduced by Hasegawa with the inclusion of

finite Larmor radius effects in the MHD equations. It also experiences both electron
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and ion Landau damping through its coupling to the electrostatic mode [Hasegawa
and Uberoi, 1982]. It produces compressive (parallel) magnetic field fluctuations and
has a parallel electric field component. Unlike the magnetosonic mode considered by
Barnes [1966], the kinetic Alfvén wave experiences Landau damping only at scales
comparable to the ion Larmor radius.

Kinetic Alfvén waves have been connected to a wide variety of geophysical
processes from the ionosphere to the solar corona [for an exhaustive list, see Hollweg,
1999]. There are a number of reasons why kinetic Alfvén waves provide an interesting
model for our problem of solar wind IMF fluctuations.

At low wavenumbers, for instance, they are mostly transverse, with a mini-
mum variance direction close to By and are thus not inconsistent with the observa-
tions of Belcher and Davis [1971], even though they are not propagating parallel to
By.

The object of the rest of this chapter is to analyse in detail the properties of
the KAW in association with the dissipation and damping of IMF fluctuations.

4.2 Analytic Approximations to the Kinetic Alfvén Wave Dispersion
Relation

Even though numerical calculations are the most accurate method of de-
termining the full KAW dispersion relation, we first consider its derivation, using
analytic approximations, for the purposes of demonstrating the mode couplings.
Here we follow the derivation of Hasegawa and Sato [1989].

The parallel electric field component, generated by the finite Larmor radius
effect, requires use of the Vlasov equations to properly account for dissipation due
to Landau damping. It also allows the Alfvén wave to couple with the ion acoustic
wave. The compressional component of the magnetic field perturbation, B,, can

be assumed much smaller than the transverse components. This allows us to use a
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scalar potential, ¢, to represent the transverse components of the electric field, E |,

because then B, becomes zero. To represent the parallel component of the electric
field, we must use a different potential, so that the transverse components of V x E

are not zero:

o
E,=——" 4.2
P (4.2)
The appropriate field equations are Poisson’s equation,
azw % e
Vie+ 52 = 4me [n() —nl )] ~ 0 (4.3)
and the z component of Ampere’s law,
0 oo 0 146 _ e
5, Vi6 —v) =dno 70— J©]. (4.4)

The quantities n(?, n(®) J® and J© are obtained from the linearized Vlasov
equation for each species. For electrons, the linearized distribution function fﬁ‘”
becomes, assuming £k, p. >~ 0 and w < €2, the electron cyclotron frequency,

e ki 5f(§e)
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For ions, by retaining the finite Larmor radius effect,
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where 6 is the phase angle of the Larmor motion, and the J’s are Bessel functions of
the first kind. The Fourier amplitudes of the charge density and the current density

perturbation are obtained from

@) = Oy [ fd (47)
Jg) = q(j)no/v l((j)dv (4.8)

where j can be either i or e.
If 3 > me/m;, the electron thermal speed will be larger than the Alfvén speed

and the resultant charge and current density perturbations may be reduced to

(4) Wi A wpik A :
dmeny = —03:,[1—10(Ai)e— o+ T (M) N1~ id)vn (4.9)
w? |
dreny = —EE(1+i6,) (4.10)
Uth,e
i WQz']f , .
arJ§) = C—ZE”Io(Ai)e’*’(l—zéi)wk (4.11)
w2 w
ArJ9 = e (1406, ) (4.12)
k V3 o K|

where \; = k2 p?, Iy();) is the modified Bessel function of the first kind,' vy, ; and
Ush,e are the ion and electron thermal speeds, respectively, and 6; and J. are the

fractional Landau damping rates,

8 = 278 exp(—A7) (4.13)
. 12 (TG 1/2 m;\ ~1/?
oo = van (1) (2) (4.14)

! Modified Bessel functions are simply Bessel functions of pure imaginary argu-
ment. They are defined by I,(z) = i7"J,(iz), and are real functions for real
z and v. (All odd powers of = have vanishing coefficients in the power series
expansion of J,(z).)
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The dispersion relation can be obtained by substituting equations (4.10)—(4.12) into
equations (4.3) and (4.4). If we ignore the damping,

Io(\)e X — A B PR (1 - L()e™)| = W (1 - Lo(A)e ™)
(4.15)

where ¢, = (kgT,/m;)'/? is the ion sound speed with electron temperature, and V4
is the Alfvén speed. Subscript symbols | and || refer to the directions perpendicular
and parallel to the mean magnetic field, respectively.

Equation (4.15) neglects damping, i.e., w is only the real part of the fre-
quency. It should be noted that for a high-8 plasma like the solar wind (8 ~ O(1)),
the correction to equation (4.15), due to the neglected damping and the other ap-
proximations used above, can be substantial [H. K. Wong, private communication,
1998]. Nevertheless, equation (4.15) clearly shows the coupling of the ion acoustic
mode (zero of first parenthesis) and the Alfvén wave (zero of square brackets). For
small values of \;, Iy()\;)e * ~ 1, so the right-hand side of equation (4.15) tends to
zero, the first parenthesis tends to (1 —w?/ kﬁcf), which is the ion acoustic dispersion
relation. Similarly, the Alfvén bracket [...] tends to 1 — w?/kfV3.

In a low-3 plasma, ¢ < V3, the coupling is weak and the dispersion relation

for the kinetic Alfvén wave becomes
w2 . /\z 4 Te
kﬁVj 11— Li(\)e ™ T,

i (4.16)
Furthermore, if \; < 1, the dispersion relation reduces to

3 T,
w? = k{VE 1+ K o (— + —)] : (4.17)

4 T
Equations (4.15)—(4.17) are all from Hasegawa and Sato [1989).

4.3 Methods of Numerical Calculation of Wave Dispersion Relations

In cgs-Gaussian notation, Maxwell’s equations are
V-E = 4dmp (4.18)
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V-B = 0 (4.19)

10B
E = ——— 4.2
V x - (4.20)
47 10E
B = —34+——. 4.21
VX c It c Ot ( )

In what follows, all first-order fluctuations are assumed to vary as exp|i(k - x — wt)].
It is assumed that the wave vector k is real; w may be complex. After Fourier
transforming equations (4.21) and (4.21) in both time and space, we obtain the
homogeneous plasma wave equation

2

Ek X (k x 6E)+€-0E =0, (4.22)
which may be written

D-JE =0, (4.23)

where D(k,w) is the dielectric tensor.

The condition for a nontrivial solution of the vector wave equation (4.23) is
that the determinant of the 3 x 3 matrix be zero (cf. equation (1.5)). This condition
gives the dispersion relation that determines w as a function of k. As pointed out by
Stiz [1992], the dielectric tensor is additive in its components, whereas a dispersion
relation is not. One cannot add a “dispersion relation for electrons” to a “dispersion
relation for ions” to obtain the dispersion relation for a neutral plasma. But one can
so add together the contributions to the dielectric tensor, not just from electrons
and all ion species present, but, for example, just the high-energy tail of a velocity
distribution and trace its identifiable effect on the waves. This is precisely what
will be done in section 4.5, where the ion contributions to Landau damping are
determined by lowering (. to very small values, effectively removing all electron

contributions.
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Contained in the dielectric tensor are the magnetic susceptibility and conduc-
tivity of the plasma, which may be derived from the distribution functions f,(x, v, )

and the equation of motion, or Vlasov equation

aa];“+v-%+%<E+VXB> %{j. (4.24)
Goldstein et al. [1985] give the dielectric tensor as
Dii(k,w) = (1 + k202> i+ — a “kik;
+ 27 Z / dv”/ dvy v |"UJ_ gf” o gﬁ] 27
— 271'; n_z_oo / dv”/ dv, o ch;gw —
X {w;{j + k) leg—iﬁ - U||%] } , (4.25)

where the background field By is assumed to be in the z direction, w, and 2, are
the plasma frequency and cyclotron frequency, respectively, of the ath species, and

Tg") is defined by

n’Q2 inQy nQy
k2 J2 Hz J_J J’ HU”J%
T — | —infd 1 2( 71\2 . 1
a —&kL vy Jnd), v (J)) v dnd,,
oy 12 vy T, 272
kL ’U|| n ZU”UJ_ ndn U”

where J,, = J,(k1v1 /€Q4) is the Bessel function of order n and J) is its derivative.
If f, is a Maxwellian, then the integrals in equation (4.25) may be done

analytically. We shall limit ourselves to a single Maxwellian,

1 v} Uﬁ
fa=—-—=—€xp [— < +——11. (4.26)
¢ 73/2U?h,a Ut2h,a UtQh,a
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although each component may have a temperature anisotropy (7 # 7 ), a stream-
ing velocity parallel to the background magnetic field, or both, and still be analyti-
cally integrable.
The integration over v, is done first, using the following Bessel function
identities:
/ dr zJ2(x) exp(—2?/2)) = AA,(N)
0
/ dz 220, (2)J (z) exp(—a2/2)) = A2A’(N)
0
/ dz [T (1)) exp(=22/2)) = n2AAL(A) — 2A3AL ()
0

where A,(\) = e *I,(\) and I,,(\) is the modified Bessel function, as before. A’ is

the derivative with respect to A, which may be written
AN =—=A(N\) + % [An_1(N) + A (V)] (4.27)

The integrals over v can be written in terms of the Plasma Dispersion func-

tion, which satisfies the differential equation

Z'(&) = —2[1+ & Z(&)]- (4.28)

and is essentially the Hilbert Transform of a Gaussian

Z(&) = —1/2/°° " 4 4.29
€)= [ s, (1.29)
where
w — nfly,
L= YT 4.30
¢ k| vih,a (4.30)

As previously explained, the dispersion tensor can be written as the sum
over each component’s contribution. After some algebra, each component of the

dispersion tensor can be written
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k2c? ki kyc?
- L + me a sz,a Lw” + sz a
Dijaa(k’ w) = Qyz,a k C + ny, Qyz,a ’ (431)
ki kyc? k
iwg_ + sz,a Qyz,a 1- + sz o
where the @);;, are defined by
n’Q2  w
wa,a = —Z @
CU2 Z kﬁ_vtha k||Utha (g )
Qx a — A, @
Y Z 2 k‘”Uth a (5 )
w
Qacz,a = Z o
w2 Z /ﬁvm a k)| Vih,a (&)
Qyz,a = Qﬂ?y,
Quya = n?A, — 2X2A! Z(&,
vy w2 Z kL/Utha ( ) ||vth,a (6 )
A w
Z, 00 _22_ “ ;L o Z a
sz, w? 2 k1vih o kv, (&)
sz,a = sz,a
sz,a = Qyza
w
2z, — A + iZ a]- 4.32
Qua = 28T A [ s ea(e) (432)
The final forms of Q and D above are not unique, since
> nhh= 3 (IL—1,)=0,

so certain terms can be added and subtracted if they do not depend on n. From
this fact, and equation (4.28), some authors [e.g., Chen, 1984; Swanson, 1989] prefer

to recast 0z, @y, and @,,, and thus the corresponding elements of D, in terms of

Z'(&a)-
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4.4 Damping Mechanisms

Various types of damping are contained within the expressions for the suscep-
tibility and dielectric tensors above: ion cyclotron, ion Landau and electron Landau
damping, and transit-time magnetic damping. Landau damping and transit-time
damping are both part of the contribution from the n = 0 term of the dielectric
tensor [Stiz, 1992]. The n = 0 contribution can be either resonant or nonresonant

in nature, depending upon the underlying particle and field parameters.

4.4.1 Landau Damping

Landau damping occurs in the absence of particle collisions. It is the in-
teraction between a distribution of particles and the electric field of a propagating
wave. Calculating the damping rate analytically is tedious and demanding, involving
contour integration in the complex plane. However, the following offers a general,
nonmathematical, explanation of the effect.

We may write the condition for Landau resonance as v = w/k. Particles
which are close to resonance are the ones which can exchange energy with the
wave most efficiently. First consider particles far from resonance, which are moving
rapidly in the wave frame, and so experience a rapidly oscillating electric field.
Thus they undergo alternate accelerations and decelerations, but the average effect
is very small. However, particles close to resonance are almost at rest in this frame.
They therefore experience a roughly constant electric field, and will undergo a large
acceleration (if ¢£ > 0) or deceleration (if ¢E < 0).

The fact that the particle undergoes a large acceleration or deceleration means
that its velocity changes. It moves away from resonance, and the large acceleration
or deceleration will cease. The magnitude of the effect on any individual particle
will depend on how long it stays close to resonance.

Consider particles that are moving slightly faster than the wave. Those that

are accelerated move away from resonance, but those that are decelerated move
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closer to resonance. These particles therefore stay close to resonance for longer, and
the effect on them is larger. Averaging over the whole wave, particles which are
moving slightly faster than the wave are, on average, slowed down. Similarly, those
particles which are moving slightly slower than the wave are, on average, speeded
up.

The Maxwellian distribution function is a decreasing function of v for all v.
So, no matter what phase velocity the wave has, there will always be more particles
moving slightly slower than the wave than slightly faster. Overall, therefore, the
particle kinetic energy increases. This energy comes from the electric field of the

wave, which is therefore damped.

4.4.2 Cyclotron Damping

Landau damping exists even in the absence of a magnetic field permeating
the plasma in question. A magnetic field changes particle trajectories into helices
spiralling around the magnetic field lines. Resonances in the individual perpendicular
particle motions now arise at all multiples of the cyclotron frequency, the strongest
of which occurs at the fundamental cyclotron frequency. This set of resonances may
be contrasted with the single resonance at zero frequency for parallel oscillation (i.e.,
Landau damping). The cyclotron resonances give rise to damping which is akin to
Landau damping.

When a particle moving along By in a wave with finite k; has the right
velocity, it “sees” a Doppler-shifted frequency w — kjv = £nf2, and is therefore
subject to continuous acceleration by the electric field of the wave. Those particles
with the “correct” phase relative to E, will gain energy; those with the “wrong”
phase will lose energy. Since the energy change is force times distance, the faster
accelerated particles will gain more energy per unit time than the slower decelerated
particles lose. There is, therefore, a net gain of energy by the particles, on average,

at the expense of wave energy and the wave is damped. This mechanism differs from
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Landau damping because the energy gained is in the direction perpendicular to By,
and hence perpendicular to the velocity component that brought it into resonance.

Neglecting any motion parallel to By, we may write the equation of motion

as
dw, _ dmi
dt dt 2
oy VL
- Lt
B
= qVL'lEL+Vt ] (4.33)

Further neglecting changes in the orbit due to the E field, we may write E =
#2E cos(kLz — wt), z = ppsin(Qt + ¢). Then

dW
dt

qEQpy cos [k pp sin( + ¢) — wt] cos(Qt + B)
= ¢EQp.R l ) Jn(kLpL)ein(Qt+¢)_iwt] R[] (4.34)

where we have used the identity [Montgomery and Tidman, 1964]

e—izsin(ﬂt+¢) — i e—im(Qt+¢) Jm(z)
m=—0o0

It is seen from equation (4.34) that increases in W, will occur at w = (n = 1)Q2 for

all n at rates proportional to prJ, (kL. pr) cos[(n £ 1)¢].

4.4.3 Transit-Time Damping

Landau damping and transit-time magnetic damping are both wave-particle
interactions that may be identified with the n = 0 terms in the susceptibility tensors.
Nevertheless, they are two distinct physical processes. Transit-time damping comes
from the interaction of the adiabatic magnetic moment of a charged particle, u =
mwv? /2By, with the parallel gradient of the magnetic field. The equation of motion
is

dvy _

—l = _uB-VB. :
m—, uB -V (4.35)
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The equation is identical to the electrostatic force equation (Coulomb’s Law) with
u replacing the charge and B = |B| the electric potential. The damping that
results from this magnetic interaction is thus the magnetic analogue of Landau
damping. Landau damping is due to the interaction of the particles with the wave
electric fields, and is mainly electrostatic, whereas transit-time damping is due to
the interaction of the particles with the parallel magnetic field § B, (the compressible
perturbation) and is electromagnetic in nature.

Finally, it is worth noting that the terms involving parallel motion to Z and
may be expressed in terms of Z'(£,) (cf. page 84) are the terms that give rise to
Landau and transit-time damping when n = 0.

Further, more mathematical discussions of all three damping mechanisms
may be found in any good plasma physics textbook [e.g., Stiz, 1992; Chen, 1984;
Swanson, 1989].

4.5 Calculated Properties of the Kinetic Alfvén Wave

Figure 4.2 shows the dispersion relations we compute for waves propagating
at various angles to the mean magnetic field and for the specific value of 3, =
B. = 0.5. (As mentioned above, in writing equation (4.26), we assume single-
temperature Maxwellian distributions for both protons and electrons. Furthermore,
unless otherwise stated, we take (3, = f3..) From the wave frequency (upper) panel,
we can see that dispersion is fairly independent of propagation direction until fyp 2
60°. This is due to the k) (cosfyp) dependence in the zeroth-order approximation
to the kinetic Alfvén wave dispersion relation (see, e.g., equation (4.17)). The
parallel-propagating wave has the greatest decay rate for a given k (lower panel).
However, the decay rate for oblique propagation is of comparable magnitude until
large oblique angles (fxp = 60°). This “quasi-isotropic” dissipation is in agreement

with the implications of Figure 4.1.
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We calculate the ratios of the fluctuating electric field components JE of the
wave via equation (4.23) and then the fluctuating magnetic field components 0B,
via equation (4.20), Faraday’s Law. Figure 4.3 shows the ratio of these fluctuating
0B components, along with the dispersion relation.

Although the codes are capable of calculating the dispersion relation at ar-
bitrarily large k, each panel in Figure 4.3 is truncated at the wavenumber at which
v/w (the long dashed curve) = —0.5. At this wavenumber the wave is critically
damped, and at even larger k, the wave can no longer be regarded as propagating.

From V - B = 0 we have 6B,/0B, = —cotfp (the linearized Maxwell-
Vlasov codes assume that the mean field is in the Z direction and that the wave
propagates in the z—z plane), which is a constant for a given propagation direction.
At low values of k, |0B,/0B,]| is large, demonstrating the transverse nature of the
KAW. As k increases, the KAW becomes more compressive, and the ratio |0B, /0B, |
decreases towards unity. Rather than showing ratios of the components of JE, we
show in Figure 4.3 the quantity |k - JE|/|k x JE|, which may be viewed as a proxy to
the ratio of Landau to cyclotron damping. We see that |k - §E|/|k x dE| increases
for increasingly off-axis propagation directions, implying that cyclotron damping
becomes less important for increasing 6.

In general, it is extremely difficult to separate the contributions from vari-
ous damping processes (since both the n = 0 and +1 terms contribute significantly
to the dispersive properties of the KAW). However, Figure 4.3 does indicate that
0B, < 6B, for all angles at low-to-moderate wavenumber, which suggests that
transit-time magnetic damping might not be as important as other damping pro-
cesses in this parameter regime. (The magnetosonic wave, by its more compressive
nature, therefore, is much more susceptible to transit-time damping than the KAW.
However, as mentioned on page 74, the magnetosonic wave damps too quickly to be

capable of an adequate explanation of the observed data.)
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Figure 4.3:

A refinement of Figure 4.2 showing the polarization properties of the
wave mode. (a—e) The angle 6z = 15°, 45°, 60°, 67° and 75°. The

solid curve corresponds to |0B,/dB,|; the

dot-dot-dot-dashed curve,

|k - 0E|/|k x 6E|; the dashed curve, w/,; and the long dashed curve,
v/w. The horizontal trace in each panel corresponds to |§B,/dB,|,

which is a constant for given 6.
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We can isolate the electron and ion contributions to Landau damping by
lowering 3. to very small values. Whatever damping remains is due to the protons.
We cannot, however, separate and quantify the two contributions of the two ion
damping mechanisms. Using solutions such as those shown in Figure 4.2, we can
compute contours of constant /2, for a range of 5. Figure 4.4 shows the changes
in the contour 7/, = —3 x 10™® with changing .. For negligible 3, (solid curve),
as we move further off-axis we need to go to higher k£ to find the the same damping
rate, as we would expect for cyclotron damping. The minimum value of k£ actually
occurs at # ~ 15°, where the two damping mechanisms combine. We can infer from
the very shallow nature of the minimum that the cyclotron contribution is greater
than that of Landau damping but that some Landau damping occurs. A 4-order of
magnitude increase of 3, from 107% to 1072 produces no clear change in -, so we
conclude that the Landau damping observed in these cases is due to ion Landau
damping. As [, increases further, electron Landau damping increases. Damping
is strongest at # ~ 15°-30°, where ion cyclotron damping also contributes, but
continues to large angles.

The other feature to note in Figure 4.4 is that as 6, — 90°, v/Q, — 0,
and the contours become parallel to the k-axis. The KAW, or, at least, our linear
codes, cannot address damping of rigorously 2-D turbulence. However, contours of
constant 7/w are finite as Oy — 90° for 3 of the 4 values of . that appear in
Figure 4.4.

It is typical to examine contours of constant v/w to compare the two halves
of the solution to the dispersion equation. Such contours are shown in Figure 4.5
as a kj—k_ plot. Figures 4.4 and 4.5 show that ion-cyclotron resonance dominates
dissipation for small angles, but electron-Landau damping dominates above the
cusp.

We can attempt to identify the origins of the various features of Figures 4.3
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Figure 4.4: Contours of constant /€2, as a function of increasing .. All three
contours have (3, = 0.5, the solid curve is 3, = 107° (so as to virtually
remove electron effects from the contour), the dot-dashed curve is
Be = 0.5, and the long-dashed curve is (3, = 2.5. Electron effects have
very little effect when B, = 0.01, and the corresponding contour is
indistinguishable from the solid curve.
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Figure 4.5: Electron resonance effects control the shape of the v/w = —3 x 1073
contour. All three contours have (3, = 0.5; from the outside in, the
values of 3. for the three contours are 1079, 0.5, and 2.5. The “spikes”
seen in the innermost contour at intermediate angles are real; we at-
tribute them to cyclotron effects (n = 2, 3, 4), and the rest of the
contour is dominated by electron-Landau damping.
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point the wave may no longer be viewed as propagating (see text). (a)
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and 4.4 by looking at contour plots of |k - 0E|/|k x dE|, as shown in Figure 4.6. To
first order, as 0 increases, so does |k - dE|/|k x §E| and Landau damping becomes
more important. This suggests that the cusp in Figures 4.4 and 4.5 is due to the
combined effects of cyclotron and Landau resonance which are both efficient when
Oxp ~ 15°.

Note also, in Figure 4.6, that for small values of £ in the range 6y = 15°—
30° there is a local increase in |k - JE|/|k x JE| that persists for all values of f,.
We might infer from this a localized enhancement of ion Landau damping, but we
cannot verify this, for reasons explained in the following paragraph.

Notice that for almost all points in k space, |k - JE|/|k x JE| decreases with

increasing (.. This is somewhat counterintuitive, as we would expect the electron
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damping strength (all due to Landau resonance) to increase with increasing (..
This effect is especially pronounced in the two “wells” at 8 ~ 75° in Figure 4.6¢c
(B. = 2.5). We may be able to explain this behavior as follows: as [, increases
(relative to fixed (3,) the enhanced damping affects the dispersion relation w(k),
as suggested by equations (4.16) and (4.17), which in turn causes |k - 6E|/|k x JE|
to decrease. For this reason, we are not able to separate the contributions of ion
Landau and ion cyclotron damping by considering |k - E|/|k x E| alone. Pursuing
this goal by other methods (e.g., Taylor expansion of the dispersion tensor D(k,w))
is beyond the scope of the present effort.

Consideration of the simple turbulence model of section 3.4, which balances
cascade rate with dissipation for left- and right-hand polarized structures, suggests
that, as a global average, cyclotron-resonant damping rates are approximately twice
the sum of Landau-damping and other, nonresonant damping rates. However, since
v(k) varies greatly with increasing k£ and 6, as we have shown, we cannot say what
the relative contributions of ion Landau and ion cyclotron damping are at any
particular point in k space.

To conclude this section, we show in Figure 4.7 contours of v/, for a range
of 3, and in Figure 4.8 contours of v/w. Figure 4.7 demonstrates concisely the effect
on (k) of k, 0 and . Throughout the range of 3, contours of large (negative) /S,
(the upper contours) follow a nearly positive-definite rise to larger k£ with increasing
frp. For the lower contours, where dissipation is less, a greater degree of structure
can be seen as the Landau resonances display their variability. If one envisions an
established 3-D spectrum that is convected at varying values of 6y, the variability
of the lower contours will lead to changes in the dissipation range onset frequency in
a possibly fairly complex manner. Prediction of that onset in the measured reduced
spectrum is therefore sensitive to both # and 6, 5. We shall show in section 5.2 that

the onset prediction also depends on O gy, .
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Figure 4.7: Contour plots of constant /€, as a function of ;g for six dif-
ferent values of g: (a-f) 8 = 0.01, 0.1, 0.3, 0.5, 1.0 and 3.0.
The six contours are the same for all six panels; from the outside,
v/§Y, = —0.1 (solid), —0.05 (dashed), —0.02 (dot-dashed), —0.01 (dot-
dot-dot-dashed), —5x 102 (long-dashed) and —2x 103 (solid). In all
cases, both the wave frequency w and the growth (damping) rate -y ap-
proach zero as the wave propagation direction becomes perpendicular
to the mean field.
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Figure 4.8: Same as Figure 4.7, but contours of constant 7/w. The numerical
values of the contours are the same as Figure 4.7.

99



Note that in both Figures 4.7 and 4.8, the contours at low 6, change very
little with increasing 3. The contours of higher v/w are noticeably more independent
of Oy g over the whole range of 3 in Figure 4.8, i.e., more isotropic, than the contours
of 7/€Q,. At the same time, a much higher degree of variability is seen in the lower
contours. We argue in the next section that the onset of the dissipation range is

determined by these lower, highly variable contours for surprisingly small values of

v/w-

4.6 Chapter Summary

We have examined the damping properties of kinetic Alfvén waves and tested
if an ensemble of these waves can account for the observed features of the power
spectrum of IMF fluctuations at 1 AU.

For values of 3 typically found in the solar wind at 1 AU, contours of constant
v/w on a kj—k, plot have a double-lobed form. The parallel lobe, for angles < 15°,
is dominated by proton cyclotron resonance; and the second lobe 2 30° is controlled

by electron Landau resonance.
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Chapter 5

KINETIC ALFVEN WAVES AND THE DISSIPATION
RANGE

5.1 Synthesized 3-D Spectrum

The purpose of the present section is to test how well the observed properties
of IMF fluctuation power spectra can be explained by the damping of kinetic Alfvén
waves. On the basis of the previous chapters, we have (i) a collection of observed
reduced power spectra F(f) exemplified by Figure 2.1; and (éi) solutions of the
linear KAW dispersion relation. On the basis of these solutions, we shall construct
a sample 3-D spectrum E(k), and test if the power law and abrupt break can be
preserved when it is reduced to F'(f). In this way, we may test whether our KAW-

based model is consistent with the observations.

5.1.1 Assumptions

We should like to reproduce the spectrum shown in Figure 2.1. Our synthetic
E(k) is azimuthally symmetric about B,. We make the critical assumption that all
magnetic fluctuation energy is contained in KAWs. We do this since, as previously
mentioned, the fast magnetosonic wave and the slow-mode wave are heavily damped
in a high-3 plasma, regardless of wavelength and thus are incompatible with the
observations.

This heavy damping discounts the presence of solar-generated fast magne-

tosonic waves. However, in situ generation by secondary processes is not ruled out
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[see Sari and Valley, 1976, and references therein], and some authors still include
fast magnetosonic waves in their models [e.g., Gary, 1999].

Taking the whole set of KAW solutions for § = 0.5 (recall that the observed
B, = 0.48 for that interval), we assume that dissipation sets in at some contour of
constant y/w. We choose contours of constant «y/w rather than constant -y (or, more
precisely, v/€,) for two reasons: (i) contours of y/w remain finite as § — 90°; and
(74) v/w is more relevant than v alone for determining the time taken for a wave to

decay [Barnes, 1966]. Thus

Ek) = E(k,0)
Agk—11/3 k <k,

- —11/3 -5 ’ (5-1)
Aok (k/k.) k > k.,

where k,(0) defines the contour of v/w. Ajg is a global scaling factor, and is not
a function of #. The only anisotropy present in the assumed spectrum is that
which arises from the k() contour. FE(k) is set up as a 200 x 181 array, with
200 logarithmically spaced k values between kV,/€, = 5 x 10~* and 21.0, and
181 angles in half-degree steps from zero (parallel) to 90°. The exponents are set
at —11/3 and —5, so that the reduced one-dimensional power spectrum will have
inertial- and dissipation range spectral indices of —5/3 and —3 if the spectrum
reduces correctly.

The values of £,(90°) and £.(89.5°) are set equal to £.(89°). Linearized
Maxwell-Vlasov codes cannot determine a dispersion relation for # = 90° (perpendic-
ular fluctuations do not propagate). We can see from the flat nature of the contours
at large angles in Figure 4.8 that this is a reasonable approximation. Since waves

cannot propagate at # = 90°, our model cannot address rigorously 2-D fluctuations,

! Recall that reduction to frequency spectrum involves integration over the two
directions in k space perpendicular to the (radial) sampling direction. Dimen-
sionally, then, for a reduced spectrum to have a k=7 dependence, the generating
3-D spectrum must fall off as k—(@+2).
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but may be able to damp waves propagating nearly, but not exactly, perpendicular
to (B). We do obtain propagating solutions for # as high as 89°.

Evidently, the assumption that k. (#) is defined by the contour v/w = constant
is ad hoc. This reflects the underlying nature of turbulence which predicts the on-
set, of a dissipation range spectrum when dissipation becomes competitive with the
cascade of energy from larger spatial scales [Batchelor, 1970]. We neglect the issue
of self-consistently identifying the onset of the dissipation range spectrum according
to dissipation dynamics alone.

There are several reasons that partially justify our assumption. Firstly, the
linear decay rates, v, computed in the previous section increase more rapidly after
the initial onset of dissipation than the vk? form of hydrodynamics. In hydrody-
namics, dissipation responds to increases in the energy cascade rate by moving the
spectral breakpoint to larger £ until the balance between energy cascade and dis-
sipation is reestablished. Such a response in this system is unlikely to result in a
significant shift in kg4 due to the rapidly increasing functional form of ~.

Secondly, recall from section 1.3 that Kolmogoroff [1941a] and Kraichnan
[1965] took the triple correlation time, 73, on which the shape of the power spectrum
depends, to be Ty and 7% /T4 respectively. Suppose instead that the timescale gov-
erning the cascade of energy in the MHD inertial range is 74 ~ 1/kV4 = 1/w, and
that this range ends when the dissipation timescale 1/7 is some (significant) frac-
tion of the cascade timescale. If we balance dissipation timescales against cascade
timescales, 77 = 7/w becomes a natural, if not unique, measure for the increased
importance of dissipation. Admittedly, most of the inertial range spectra in our set
of observations are closely comparable to the k=5/3 prediction of Kolmogoroff, and,
to a lesser extent, the k~3/2 prediction of Kraichnan. Furthermore, by excluding the
nonlinear timescale from 73 it is not clear how one would obtain such a power law

power spectrum at all.
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However, we note that the comparisons in the rest of this chapter are in-
tended only to illustrate the likely role of kinetic Alfvén waves in the evolution of
the dissipation spectrum. We recognize the extreme complexity of building a tur-
bulence model that accounts for anisotropic spectral transfer, the dissipation of 2-D
fluctuations and the dependence of both upon ambient plasma parameters. This

simple analysis is offered as a reasonable beginning.

5.1.2 Reduction to Frequency Spectrum
Having constructed our synthetic 3-D spectrum E(k), we now reduce it to a

Doppler-shifted frequency spectrum according to

= [ B ( (k- sz+w(k))—f) dk (5.2)

where w(k) is the real part of the wave frequency determined from the linear Vlasov-
Maxwell solutions, §(...) is the Dirac delta function,® f is the spacecraft-frame
frequency, and for Vg we take the observed solar wind velocity for the interval in
question. At this point the constant Ay in equation (5.1) is set by trial-and-error so
as to match the observed inertial range amplitude of the interval shown in Figure 2.1.
The results of this reduction are shown on the left-hand scale of Figure 5.1. It is
seen that the spectrum does indeed reduce correctly to —5/3 and —3 power laws,
and that the break in the spectrum is almost exactly reproduced. The two vertical
lines in Figure 5.1 correspond to the observed spectral break at 0.235 Hz and the
lowest frequency in Figure 2.1, 2.7 x 102 Hz. The break contour used in computing

Figure 5.1 is 7/w = —3 x 1073,

2 The dimensions of a Dirac delta function are the inverse of its argument, fre-
quency in this case, so F/(f) does indeed have dimensions as the observed spectra
of the type shown in Figure 2.1, namely nT? Hz !
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Figure 5.1: Synthetic power spectrum of kinetic Alfvén waves (left-hand scale) and
heating rate dF(f)/dt as a function of frequency. The total heating
rate, which is the sum over all the 250 logarithmically spaced frequency
bins used, is 6.36 x 10717 J s~! m~>. Under the heating rate curve are
the electron and proton contributions, at slightly lower and higher
frequencies, respectively.
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5.1.3 Heating

Having successfully tested our synthetic 3-D spectrum’s ability to reproduce
the break in the reduced frequency spectrum, we can now calculate the rate at
which damping of kinetic Alfvén waves with this spectral form heats the background
plasma.

The heating rate (in SI units) is given by

0= 2%0 / 2 (k) (k)dk (5.3)

where (k) is the imaginary part of the wave frequency. Evaluating this integral for
the E(k) computed above gives Q = 6.36 x 1077 J s~ m™3.

By including a Dirac delta function similar to that in equation (5.2), we can
determine the frequency distribution of heating. This is shown in the second curve
and right-hand scale of Figure 5.1. Some heating occurs in the inertial range of the
spectrum, but the bulk of the heating is at dissipation range frequencies, peaking
at ~ 1 Hz.

In view of our earlier discussion on how electrons and protons affect the
contours of constant 7/w, it is of interest to see how much of the dissipated energy
goes into heating electrons and how much heats protons. To do so, we take our
solutions of (k) for 8, = 107% thereby effectively removing all electron-resonant
damping. Using the same FE(k), we recompute the heating rate of protons only,
which is 3.66 x 10717 J s™* m~2 or 58% of the total. The electron contribution is
never determined by itself, but is taken to be the difference of total and proton
heating. The two heating distributions as functions of frequency are also shown in
Figure 5.1. The proton contribution is broader, peaks at a higher frequency, and

the electrons alone contribute to inertial range heating.
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Figure 5.2: The same as Figure 5.1 but with g, = 2.5, 8, = 0.5. The spectral
break frequency is underestimated by a factor of about 3. The total
heating rate is now 4.09 x 1077 J s~! m~3, of which the protons con-
tribute only 40%. Note the large amount of heating at inertial range
frequencies due to the electrons.

5.1.3.1 Differing electron and proton temperatures

As a demonstration of electron effects, we have also investigated increasing
B, and with it the damping rates for oblique propagation. Again, keeping 3, = 0.5,
we increased [, to 2.5. A new FE(k) was determined using newly computed KAW
dispersion solutions, but keeping the same critical value of 7/w for the spectral
break contour; ¢.e., using the innermost contour of Figure 4.5. Figure 5.2 shows the
frequency spectrum F'(f) and heating rate @ based on this elevated 3.

The break in the new F(f) is now at about 0.09 Hz, despite the fact that the
proton-dominated parallel lobe of Figure 4.5 is virtually unchanged with increased
Be. We might reasonably expect therefore that the parallel lobe plays little role in
determining the location of the spectral break in this example, which is controlled

mostly by: (4) electron, rather than proton effects; and (éi) dissipation at moderate
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to large angles of propagation. This is at variance with the commonly held intuition
that proton cyclotron resonant effects alone determine the location of the spectral

break.

5.1.3.2 Solar wind temperature profile

The observed radial solar wind proton temperature profile would be expected
to fall as T, ~ R™*/3 if the solar wind were to cool adiabatically as it expands out
into the heliosphere. Instead, the observed Voyager 1 and 2 profile from 1-43 AU
falls as T, = TR~/ [Richardson et al., 1995, shown here in Figure 1.6]. Gazis and
Lazarus [1982] fitted the data from 1-10 AU and found a 7, ~ R~%7 dependence. In
either case, there must be, therefore, in situ heating of the solar wind. The equation
of solar wind temperature evolution | Williams et al., 1995, their equation (2)], is

% N g% B gVSW?TLkB’ (54)
where n is the local solar wind number density and kg the Boltzmann constant.
When no in situ heating occurs, Q = 0, and an adiabatic temperature profile results.
We can compare our KAW-calculated ion heating rate (58% of Q), to the value
required to balance the two sides of equation (5.4).

If we take the observed data to fall as T, ~ R~%, then the excess heating (left-
hand side of equation (5.4)) at 1 AU is [% — a] Ty K AU™'. Richardson et al. [1995]
took Ty, the temperature at 1 AU, to be 3.8 x 10* K. For our exemplary period,
we find the proton temperature gradient excess at 1 AU, derived from Q via the
right-hand side of equation (5.4), to be 1.10x 10° K AU, which is 3.5 times greater
than required if we take the Richardson et al. values for a and Tj, or only 1.1 times
greater than required if we take the corresponding observed local temperature for
the 1-hour interval, T, = 1.2 x 10° K. The overestimates become worse if we take the

Gazis and Lazarus [1982] profile, or any other profile that falls faster with distance
than R~1/2.

108



One might argue that those measurements further from the sun have more
weight in determining the power law indices for the Voyager radial temperature

~1/2 profile is less applicable at 1 AU.

profile, and as such, the observed T, = Ty R
Freeman [1988] uses Helios data from 0.3 to 1 AU and finds good power-law tem-
perature dependence inside 1 AU. Freeman separates his data according to so-
lar wind speed and finds that the power law index decreases with increasing solar
wind speed, while the temperature at 1 AU increases. At very low wind speeds,
Vew < 300 km s ', there is almost no implied heating excess. For solar wind speeds
in the range 500 < Vg < 600 km s™*, such as is the case in our exemplary period,
Freeman fits a 7, = 1.3 x 10°R%# K power law, which implies that the calculated
KAW heating is 1.7 times greater than is required to match Freeman’s power law.

We believe that these results, within a factor of 3 of observation, represent
acceptable agreement, given the simple nature of our theory and the inherent vari-
ability of the solar wind. Indeed, the assumption, as made by Richardson et al.
[1995], of a single power law temperature profile for all heliocentric distances is by
no means certain. A power law is scale invariant, and as such will not be a reason-
able approximation if new physics becomes important at a specific scale, as is the
case for pickup ions beyond about 10 AU. At large heliocentric distances, pickup
ions are believed to contribute, if not dominate, the heating through the cascade of
ion-excited wave energy [Williams et al., 1995; Zank et al., 1996; Matthaeus et al.,
1999b|, which causes the radial temperature profile to be flatter than it otherwise
would. At the inner extremes of Helios’ orbit the temperature profile may deviate
from adiabatic for another reason, such as the (fast) damping of initial-condition
waves |Tu, 1988; Marsch, 1991] and the slow spectral transfer of energy due to high
cross helicity [e.g., Dobrowolny et al., 1980b; Grappin et al., 1982, 1983; Roberts
et al., 1987Db].
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5.1.3.3 Comparison with turbulent cascade rate

The final test we can do with our calculated dissipation rate is to compare
it to the turbulent cascade rate ¢ inferred from the observed inertial range power
spectrum (Figure 2.1). We would expect approximate equality between the two. In
the turbulence picture of fluctuations, the rate at which energy enters the dissipation
range is balanced by the rate at which it is dissipated and heats the background
plasma. To ease comparison with previous work in this field, where ¢ is expresses in
cgs units (ergs g~ s71), we will scale our calculated dissipation rate € in cgs units
(ergs g~! s71). The total heating rate (both proton and electron contributions from
our synthetic KAW spectrum), is found to be Q = 8.38 x 107 ergs g~ 5L,

To infer ¢ from the observed power spectrum, we follow the approach of Cole-
man [1968], although we shall correct a slight and subtle error that he introduced.
Coleman used the magnetohydrodynamic formulation of Kraichnan [1965] to calcu-
late e: the omnidirectional inertial-range spectrum of turbulent kinetic energy (per
unit mass) is

E(k) = A(eVy)' 26732, (5.5)

where V4 is the Alfvén velocity and A is a numerical constant. From the (hydrody-

namic) formulation of Kolmogoroff [1941a]:
E(k) = Ce*3k 573, (5.6)

The two numerical constants A and C can be linked by the relation A = C3/*
[Matthaeus and Zhou, 1989]. Taking C' = 1.6 [Batchelor, 1970] gives A = 1.42.

The E(k) term in equations (5.5) and (5.6) is an omni-directional spectrum,
whereas Figure 2.1 depicts a reduced spectrum. From Batchelor’s equation (3.4.17)

and after some algebra, the reduced and omni-directional spectra can be related by

wE) =/ El(jl)dk’. (5.7)
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The derivation of equation (5.7) is included in Appendix D, where it is equa-
tion (D.5). For a power law form E(k) ~ k=, we have E"(k) = o 'E(k).

In the Kraichnan formulation we have

E7(k) = 2E(k) = 2A (V) /2 k312,

3

which upon rearranging gives
-2
e=(24) Vi [E(R) K

The frequency spectrum in Figure 2.1, denoted as F'(f), must contain the same
spectral power in range df as E"(k) contains in range dk. Therefore fF(f) = kE" (k).
By substituting k = 27 f/Vsy,, we obtain

e = (34) TR £ 5:5)

Since F(f) must be scaled to velocity (Alfvén) units, and taking the geometric
mean over the 370 spectral estimates in the range 0.003-0.1 Hz, we find that ¢ =
5.15 x 10% ergs g=! s71, which is 16 times smaller than the KAW dissipation rate
(for proton and electron heating combined).

Repeating the same procedure for the Kolmogoroff (k~%/3) formulation gives

c = (20) ™ (P ()P g2 (5.9)

Vsw
= 147 x10% ergs g™ 571,
which is only 1.75 times larger than the KAW dissipation rate. Given that the
observed spectral slope of the interval in Figure 2.1 is —1.67, we feel that the
Kolmogoroff-derived result has greater validity than the Kraichnan result.

For completeness, we could also try to compare our dissipation rate with the
simple hydrodynamic expression ¢ = u3/¢ [Batchelor, 1970], where u is the rms
fluctuation speed and / is the correlation scale. However, the correlation scale at
1 AU is typically longer than can accurately be determined from 1 hour of data,

implying that the resulting value of ¢ might not be reliable.
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Figure 5.3: Adaptation of Figure 4.5 showing the band of wave vectors k with the
same radial projection k - Vgy,. The shaded band is perpendicular to
Vsw; it is the scale that is not square.

5.2 Prediction of Spectral Break Frequency

From Figure 5.1, our model of a 3-D spectrum of kinetic Alfvén waves does
well at predicting the spectral break frequency, given a judicious choice of v/w. What
remains to be seen is how well the model works for all the intervals we have studied.
The method used to produce Figure 5.1, i.e., first calculating a k-6 contour for
each interval (with the observed () and each value of v/w, and constructing a fully
3-D E(k) which is then reduced to a frequency spectrum, is rather labor-intensive.
Instead, we take an array of values of k lying on contours of constant «v/w indexed
by B and € and interpolate between them for the precise value of 3 for the interval of
interest. For the purposes of demonstration, we assume that 3. = 3, and compare
the observed break frequency with the prediction derived from the observed 3,.

We adopt a simplified method of performing the frequency reduction shown

in Figures 5.1 and 5.2. For each of the intervals in our dataset, we determine the
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wave vector lying on the spectral break contour of constant v/w for which k - Vgy
is maximum and Doppler shift the frequency corresponding to this k (read off the
appropriate dispersion relation) into the spacecraft frame to be the KAW-predicted
break frequency marking the onset of dissipation. The “maximum projection” ar-
gument may be justified as follows. There exist a range of wave vectors k that
Doppler shift to the same spacecraft frame frequency f, as shown by the top-left
to bottom-right stripe perpendicular to Vgy, in Figure 5.3. Some of the wave vec-
tors in this stripe are “outside” the contour, and as such have very little energy
(since the dissipation spectrum falls steeply outside the break contour). However,
other wave vectors are still “inside” the contour, and have energy-containing inertial
range spectra. Those wave vectors whose spectra are already dissipative are hidden
by those that are not yet dissipative. Only when a spacecraft-frame frequency is
chosen for which no more inertial range energy is left in any 3-D wave vector can the
reduced spectrum demonstrate the dissipative form. This occurs when k - Vg, is
maximum along the contour of constant v/w. This simple shortcut has been tested
against the more detailed analyses of the previous section and verified.

We choose a single value of v/w to define the spectral break contour for all
intervals in our dataset. The value chosen to define the 7/w contours is varied
by trial-and-error until the best-fit straight line through the data has unit slope.
Figure 5.4a shows the observed break frequency versus the predicted value using
the best-fit value v/w = —0.01. Each point is calculated from the observed 3, for
the corresponding interval in the dataset.

Although the best-fit straight line, y = (—0.043+0.079) + (1.0254+0.108)z, is
plotted, we do not believe that this line truly represents the data. The January 1997
magnetic cloud data (open circles) clearly form a separate population from the
undisturbed solar wind data, and these points affect the slope and intercept of the

best-fit straight line. The best-fit line through all the data is clearly not the best fit
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to the solar wind data points.

According to Leamon et al. [1998¢, recapped in section 3.6.2] , the geometry
of magnetic fluctuations is much more two-dimensional in a magnetic cloud than in
the quiescent solar wind, so we must question the validity of our model of obliquely
propagating kinetic Alfvén waves on the grounds that a highly collapsed 2-D geom-
etry may exhibit behaviour that lies beyond the linear KAW dispersion relations.
A second reason for rejecting Figure 5.4a is that the angle between the mean field
and the wave vector k for which k - Vg is maximum is consistently in the range
60°-80°. (There are only four events which are best modelled by “slab” waves deter-
mined by ion cyclotron damping, i.e., Oy < 10°.) As we have shown in section 4.5,
at these angles electron Landau damping and thus . dominates the shape of the
contour. It would make sense then if we use 3, rather than (3, to predict the onset
of the dissipation range. This is precisely what is done to produce Figure 5.4b. The
procedure described above is repeated, but the observed (3, is used instead of §,
in interpolating between the different contours of /w derived from the numerical
solutions of the dispersion relation. There is far less scatter of the points around the
best-fit straight line of y = (0.099+0.047)+ (1.041+0.104)z, which also corresponds
to the contour v/w = —0.01. (There are fewer data points in Figure 5.4b because
electron plasma data are not available for all the the intervals studied.) Again, the
angle 0y p for which k - Vg is maximum is consistently in the range 60°-80°.

We recognize that the data violate the assumption that 3./3, = 1, which
was used in producing both panels of Figure 5.4 and that 8./, # 1 affects the
damping rate. However, we have shown in section 4.5 (Figure 4.5) that F.-dependent
resonances control the shape of the v/w contour at angles above ~ 30°, and proton
effects dominate at less oblique angles. Given, therefore, the further observation
that the last wave vectors to damp are in the electron-dominated region, we can

ignore proton effects and 3./, # 1 in calculating the spectral break frequency.

116



We note in the regular solar wind intervals used to generate Figure 5.4, G,
was, on average, higher than f£,: (8.) = 0.94 + 0.56, (5,) = 0.66 £ 0.41, and
(Be/Bp) = 1.83 £ 1.41. The distribution of (8./8,) is decidedly not normal, with

large skewness and kurtosis moments.

5.3 Chapter Summary

We have examined the damping properties of kinetic Alfvén waves and tested
if an ensemble of these waves can account for the observed features of the power
spectrum of IMF fluctuations at 1 AU.

For values of 3 typically found in the solar wind at 1 AU, contours of constant
v/w on a ky—k, plot have a double-lobed form. The parallel lobe, for angles < 15°,
is dominated by proton cyclotron resonance; and the second lobe 2 30° is controlled
by electron Landau resonance.

We constructed candidate spectra (that were consistent with the observed
reduced frequency spectra F'(f)) to represent the unmeasurable 3-D spectrum E'(k).
E(k) was defined with a spectral break along a contour of constant v/w. For the
appropriate contour, v/w = —3 x 1073, the reduced frequency spectrum F'(f) has
a spectral break at the same frequency as in the observed power spectrum. This
is a surprisingly low damping rate. For the dispersion relation of g = 0.5, v/w =
—3 x 102 occurs at £V,4/, = 0.2 when w/€, = 0.14. The dispersion relation here
is still close to that of the MHD counterpart, yet we observe dissipation due to the
compressive nature of the kinetic Alfvén wave.

Using the same F(k) we find that the dissipation rate Q, as defined by
equation (5.3), is comparable (to within a factor of ~ 2) to: (i) the observed inertial
range turbulent cascade rate; and (i) the necessary in situ heating required for the
non-adiabatic radial temperature profile of the solar wind protons at 1 AU.

The overall conclusion of this chapter is that 3, and electron Landau damping

control the onset of the IMF dissipation range at spatial scales comparable to the
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ion gyroradius. At the same time, the waves become more compressive and have
greater fluctuations in |B|, as is seen in the observations (see Figures 2.4 and 3.1).
These characteristics are consistent with the onset of electron Landau damping
and the compressible nature of the KAW at the scale of the ion gyroradius. Also,
paradoxically, 3. influences the heating rate of protons, as shown in section 5.1.3.1.
We also find that about half the energy dissipated from the damping of kinetic

Alfvén waves goes to heating electrons.

5.3.1 Caveats
In closing, care should be exercised in interpreting the close agreement be-

tween our results and observations, given the assumptions made in producing E(k).

1. The use of contours of constant /w might appear to lead to fortuitously
good agreement with observations. v/w is the damping strength per unit
frequency; the wave amplitude will decrease by a factor e in (27|y/w|)™! cycles
[Barnes, 1966]. As discussed at the start of section 5.1.1, v/w is a more
relevant parameter than v alone [Barnes, 1966]. Thus, we may further justify
our assumption by claiming that waves that damp slower than this rate can
easily be replenished by a spectral cascade, whereas those waves that decay
faster than they can be re-excited by spectral cascade cannot remain in the
inertial range. Note that putting the appropriate numerical values for the
interval shown in Figure 5.1, namely |y/w| =3 x 1072 and w/Q, = 0.14, into

the above expression yields an e-folding time of a little over 1 hour.

2. The assumption of an isotropic distribution of power in the synthetic spectrum
(Ap not a function of @) is almost certainly incorrect, although we cannot
say to what extent. An exact heating average could always be calculated
by a more limited geometry, where not all wave vectors k are energetically

populated: e.g., a two-component model in which either only strictly parallel
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and strictly perpendicular modes, or modes within a < 30° cone of parallel
and perpendicular (whose contours therefore resemble the “Maltese Cross”
of Matthaeus et al. [1990]) are energetically populated. Observations [Bieber
et al., 1996; Leamon et al., 1998a, recapped in Section 3.5] suggest that 80-90%
of the inertial range energy is contained in fluctuations with 2-D or quasi-2-D

symmetry.

Even so, we find in section 5.2 that the wave vectors that have the most effect
in determining the spectral break frequency are at highly oblique (60°-80°)

angles to the mean magnetic field.

. We also do not consider the related possibilities of anisotropic spectral cascade;
i.e., € is a function of § and transfer of energy in the perpendicular direction
of k space but not in the parallel direction [Shebalin et al., 1983], or wave re-
fraction away from parallel propagation by interaction with pressure-balanced
structures of velocity shears [Ghosh et al., 1998a]. We do this to avoid biasing
our results with detailed assumptions of the spectral anisotropy that may not
be consistently supported by all events. Some degree of anisotropy seems un-
avoidable, but more observational work is needed for it to be more thoroughly
characterized. A higher degree of spectral anisotropy may not significantly al-
ter the computed heating rates given here as the total energy of any candidate

E(k) must be the same.

At first glance, kinetic Alfvén waves might seem an inappropriate means of

dissipating waves with @y ~ 90°. Our assumption, which we have attempted to

justify, that dissipation is controlled by y/w provides a fortuitous patch to this

difficulty. The class of observations that seems most poorly described by this theory

are the magnetic cloud events which as we have demonstrated [Leamon et al., 1998c¢]

are low-03 and highly two-dimensional and thus the most poorly addressed by this

mechanism.
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Chapter 6

DISCUSSION AND SUMMARY

6.1 Discussion

Here we discuss the implications of the results presented here, and where
future efforts might be best directed to further understanding of this particular
branch of physics.

This dissertation analyzed the magnetic fluctuations in over 80 one-hour in-
tervals of solar wind data from the WIND spacecraft. Of these intervals, 33 were
from quiet, undisturbed solar wind, while the rest were a contiguous sample through
a magnetic cloud. Admittedly, these data are exclusively from 1 AU, but they do
span a wide range of plasma parameters.

The results of chapter 3, if not offering decisive proof against, cast grave doubt
on the applicability of the parallel-propagating paradigm of IMF fluctuations. We
also showed that a large fraction (~ 85%) of the energy must be carried by highly
transverse wave vectors.

In chapter 5 we tested to see if a dynamical model based on an ensemble of
kinetic Alfvén waves could describe the highly transverse, nonslab fluctuations and
account for the features of the power spectrum of IMF fluctuations at 1 AU that the
parallel waves failed to do. We found that such a model could accurately predict the
onset of the dissipation range, and furthermore the energy dissipated was within a
factor of < 3 of that required to match the required in situ heating rate.

However, there are limitations to our model. For instance, it fails to ac-

curately explain the onset of the dissipation range inside magnetic clouds. The
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extremely low values of (3 inside magnetic clouds cause our model to flounder for
two reasons: (i) the fluctuations are of a highly transverse and two-dimensional
nature (our model, as it is based on propagating waves, cannot handle rigidly two-
dimensional fluctuations, be they in magnetic clouds or elsewhere); and (ii) low
values of  inhibit (electron) Landau damping that, according to the results of
sections 4.5 and 5.2, strongly influence the start of the dissipation range.

To test the global validity of the theory we have developed, within the limi-
tations discussed, we must ask the question: is KAW theory applicable to parts or
regions of the heliosphere other than at 1 AU?

In section 1.6 we discussed In the acceleration region of the solar corona, (3
is again extremely low; the much stronger magnetic field strength more than com-
pensates for the increased density and temperature. Recent efforts in this field have
focused on cyclotron damping [e.g., Cranmer et al., 1999], and even the gravita-
tional damping [Khabibrakhmanov and Mullan, 1999, and references therein] of slab
Alfvén waves. Scaling with magnetic field strength, the proton cyclotron frequency
is 4-5 orders of magnitude higher in the corona than at 1 AU. The generation
and maintenance of a high-frequency Alfvén wave spectrum in the corona remains
a major unresolved issue. Motivated by the pitfalls of wave heating models that
rely on such high frequency waves, Matthaeus et al. [1999a] have developed a model
based on heating by 2-D MHD turbulence driven and maintained by lower-frequency
waves. Is a kinetic Alfvén wave model applicable here? Landau damping would be
limited, for the reasons mentioned immediately above. However, our model predicts
the heating of electrons, although probably not to the approximate equipartion level
found at 1 AU (see Figure 5.1). Present resonant models do not address electron
heating; nevertheless, electron temperatures reach several million Kelvin.

We know that the slope of the dissipation range gets shallower as we move

out in the heliosphere [Smith et al., 1990b]. This probably represents no more than
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a detail to be fine-tuned in the model; we do not know how to predict the dissipation
range spectral index, so it is currently entered, somewhat arbitrarily, into the model
as the average of all the intervals studied. To test the heating rate at 3 AU, say,
we compute the 3-D spectrum of waves based on the observed local spectral slopes,
the 3-D damping rate based on the observed local 8, and 3, and thus the heating
excess based on the local temperature profile.

Beyond about 10-20 AU pickup ions generate waves; the damping of these
waves is the major source of energy for heating the background ions in this region
of space. Although all current models involving pickup ion-generated heating in-
volve cyclotron damping of parallel-propagating Alfvén waves, it is almost certain
that waves other than slab Alfvén waves are generated. Can the damping of pickup
ion-generated kinetic Alfvén waves by means similar to those discussed in chapter 4
provide better agreement with observations? We have reason to believe that an
oblique wave model would be even more effective in the outer heliosphere. The
pickup ions generate waves, mostly parallel, but with a small spread in obliquity.
Shebalin et al. [1983] and much of the recent work of Matthaeus [e.g., Matthaeus
et al., 1995b] suggest that the preferred direction of energy transfer is the perpendic-
ular direction. As the pickup ion-generated waves evolve to larger k, (perpendicular
to the magnetic field B), their initial finite k| remains unchanged [cf. Ghosh et al.,
1998a). Eventually, the now highly oblique waves will become resonant and be
prime candidates to provide heating. Furthermore, this far out in the heliosphere,
the magnetic field winding angle approaches 90°, such that maximum k - Vgy, will
occur very close to k|| Vsw.

Finally, kinetic Alfvén waves have been successfully used to model the heating
of magnetospheric plasma and the formation of aurorae. The introduction of Hollweg

[1999] again provides an extensive list of references.
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6.2 Two-Dimensional MHD Turbulence

Despite the successes of the kinetic Alfvén wave model, we must not imme-
diately decree that it is the only explanation for IMF fluctuations.

Consider, instead, and as noted and discussed in Leamon et al. [1998a], an
alternative dynamical model for dissipation range fluctuations whereby the model
of Bieber et al. [1996] and section 3.5 is exact, i.e., the fluctuations consist of two
components: (1) slab waves with wave vectors along (or nearly along) the mean field
and (2) 2-D MHD turbulence, having wave vectors (nearly) perpendicular to the
mean field. Unlike the kinetic wave description, this dynamical model does not lend
itself to a compact representation based upon eigenmodes and dispersion relations.
However, the dynamics of 2-D turbulence has been widely studied using statistical
theories and simulations [e.g., Kraichnan and Montgomery, 1980; Matthaeus and
Montgomery, 1980; Matthaeus and Lamkin, 1986]. The slab/2-D composite model
also emerges as a natural description of anisotropic plasma turbulence in the reduced
MHD regime [Montgomery, 1982] and can be seen to emerge as a consequence of a
formal treatment of nearly incompressible MHD at low and order-one 3, [Zank and
Matthaeus, 1993]. The two component model also has found use in various solar
wind applications (see review by Matthaeus et al. [1995b]), including transport of
turbulence [Tu and Marsch, 1993] and cosmic ray scattering [Bieber et al., 1994].

As far as we are aware, most previous studies that employ a two component
turbulence representation (or, its close relatives, quasi-2-D or reduced MHD models)
have not attempted to characterize magnetofluid or kinetic plasma dynamics in the
dissipation range in any detail. However, it is clear that such a model presents inter-
esting possibilities for influencing the dissipation range. For example, in a reduced
MHD or two-component model [Montgomery, 1982; Zank and Matthaeus, 1992a;
Kinney and McWilliams, 1997] the 2-D fluctuations are expected to engage most

vigorously in the cascade phenomena that transfer excitations through the inertial
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range and into the smaller dissipation scales. Thus established MHD effects are
capable of supplying the dissipation range with a flux of energy from the substan-
tial reservoirs typically found at the large scales. This dissipation, in models with
simplified transport coefficients [e.g., Matthaeus and Lamkin, 1986], is expected to
occur near X-type neutral points in the poloidal field through processes related to
magnetic reconnection.

A second relevant feature of models with a significant admixture of 2-D tur-
bulence relates directly to the potential for dynamical couplings with kinetic pro-
cesses. In particular, it has been established through studies of test particle orbits
in dynamical MHD fields [Ambrosiano et al., 1988; Gray and Matthaeus, 1992] that
2-D turbulence can account for substantial amounts of charged particle acceleration.
Typically, a broad spectrum of energetic particles is formed, and for turbulence with
energy-containing scale L, test particle energies can range up to values of Q,L/Vy4
times their initial low values (e.g., initial particle speed V). The process by which
this occurs is complex [Ambrosiano et al., 1988] and appears to involve temporary
trapping of test particles in or near small scale fluctuations that form near recon-
nection zones near magnetic X-points. A full analytical theory of this acceleration
process has not yet been developed, but it seems plausible that MHD structures with
transverse scales of the order of the thermal particle gyroradius might be involved.
The matching conditions associated with efficient acceleration of this type are most
likely temporal resonance conditions, but in any case cannot involve the usual spatial
resonance condition, equation (3.3), since such couplings are absent for 2-D MHD
fluctuations having k£ = 0. The scenario in which MHD energy flows into particle
energy can only be suggested by test particle studies. A full kinetic treatment is
required to demonstrate the feasibility of the above process as a means of coupling
MHD scales to kinetic scales and thereby forming a dissipation range. However,

the existing test particle studies provide ample motivation to further examine this
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possibility.

6.2.1 Comparison with Kinetic Alfvén Waves

The dynamical perspectives associated with the 2-D turbulence and kinetic
Alfvén waves are quite different, but the two paradigms are not inconsistent either.
Kinetic Alfvén wave theory takes into account couplings to the kinetic degrees of
freedom of the plasma and ignores “wave-wave” couplings among the waves. The
2-D turbulence perspective takes full account of the couplings between the various
MHD scale Fourier modes (analogous to wave-wave couplings) but discards the ki-
netic couplings. In this light, the two models are not contradictory but, rather, are
complementary. In fact, from a geometrical or kinematic point of view the two mod-
els are nearly indistinguishable, and the nonslab, transverse magnetic fluctuations
identified in section 3.5 might equally well display the dynamical features of either
model.

An additional feature that is common in the two models and that is of partic-
ular interest from the point of view of dissipation mechanisms is the parallel electric
field. For kinetic Alfvén waves the parallel electric field is an integral feature of the
eigenmodes at cyclotron scales and, as we have shown in chapter 4, provides a sig-
nificant amount of electron Landau damping. For 2-D turbulence a parallel induced
electric field is associated with §V x ¢B (where §V and dB are the plasma velocity
and magnetic field fluctuations, respectively). The parallel electric field would be
expected to couple to kinetic processes, for example, in the manner described by
Wong et al. [1997], presumably leading to heating of the plasma and dissipation of
MHD scale energy.

One would expect the characteristic length scale of a perpendicular current
sheet to be the ion inertial scale p; = v4/€Q,. We see from Figure 4.1 the good
correlation between the related quantity the Larmor radius and the onset of dissi-

pation. Preliminary investigations correlating the spectral break frequency with a
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quasi-perpendicular wave vector of ion inertial scale size and Doppler-shifted to a
frequency (via k - Vgy) are promising. However, we have as yet made no attempt
to assess the heating implied by a purely 2-D turbulence model.

An obvious extension to the kinetic Alfvén wave model is to incorporate
rigidly 2-D turbulence to ‘plug the hole’ at 90° left by the linear Vlasov codes. We
also need to incorporate transfer of energy in k space and an evolving spectrum
where cascade and dissipation balance. Such an effort should also go a long way to

explaining the observed dissipation range spectral index.

6.3 In Closing

In closing, as a brief summary of all the results presented in this dissertation,
I repeat from the summary of chapter 3: The conclusion of this study is that a
significant fraction of the magnetic wave energy must necessarily reside in highly
oblique waves or quasi-2-D structures. Furthermore, the onset of dissipation cannot

be governed by the dynamics of ion cyclotron damping of parallel-propagating waves.
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Appendix A

POWER SPECTRAL TECHNIQUES

A.1 Fast Fourier Transform

The (fast) Fourier transform (FFT) is the standard tool for the time- and
frequency-domain representation of a function. The “fast” modifier refers to tricks in
the algorithm used to compute the transform, which we shall not concern ourselves
with here.

Mathematically, the Fourier transform of a time series X (¢) may be expressed

as:

z(f) = FX(®)]
_ /_°° X (t)e~2miltgy, (A1)

with its reverse transform being
X@) = F'=(f)]
= /Oo z(f)e* I df. (A.2)

Following from the definition of F[X (¢)] is the important Shift theorem, which we

shall employ presently:
FIX(t—7)]=e ™I FIX(t)] (A.3)

In terms of space and wavenumber rather than time and frequency, we may

also imagine the transform pair X (r) = z(k), with the exponential factor F2mikr.
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In this work X (¢) is one of the components B,(t) of the interplanetary mag-

netic field. The energy spectrum tensor S is then computed by

Sii(f) = (B; (=1)B,(/))- (A.4)

The power spectrum F'(f), as shown in Figures 2.1 and 5.1, is the trace of S.

The ensemble average denoted by the angle brackets in equation (A.4) is
accomplished by performing a sliding P point average of S. Small data gaps and
bad data points, or “flyers” should be removed and linearly interpolated over, so
that the Fourier transform is supplied with contiguous data.

The drawback of the FF'T technique is that aliasing and “leakage” may distort
the high-frequency end of the spectrum.

Aliasing results from the power in fluctuations above the Nyquist frequency
appearing in the spectrum. Unless the original time-series data were collected prop-
erly, and low-pass filtered to remove all power above the Nyquist frequency, aliasing
will be present and may be a problem. Each frequency, no matter how high, is
indistinguishable from one (its alias) in the frequency band below the Nyquist fre-
quency. (The stroboscope uses a particular expression of this fact in apparently
“slowing down” rapidly rotating or oscillating objects.) The aliased spectrum is
“folded” about the Nyquist frequency. For a powerlaw true spectrum, this folding
results in a flat(ter) observed spectrum at the highest frequencies. As such, it is
more a problem for shallow spectra than for steeply falling ones.

Leakage is more of a problem for steeply falling dissipation range spectra.
Since we are computing a spectrum for a finite interval of time, we cannot calculate
the transform in equation (A.1) for all time. The resulting power spectrum is the
convolution of the “true” spectrum and the Fourier Transform of the data window.
The Fourier Transform of a (rectangular) data window is the sinc? function, which

has the first side lobe on each side of the main lobe about 1/5 the height of the
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main lobe (and negative). Power leaks, via these side lobes, from lower frequencies
to higher ones with less power.

Filtering the data by applying other window functions that have wider main
lobes and smaller side lobes can reduce the effects of leakage, but more reliable
estimates of the power spectrum can be obtained by the other methods. Leakage
effects can be minimized by applying a prewhitening filter to the data prior to

computing the spectrum via the Blackman-Tukey method.

A.2 Blackman-Tukey Method

The Blackman and Tukey [1958] method calculates S from the Fourier trans-
form of the correlation function R of the observations. This two-step technique is
obviously slower than the FFT technique, especially for large datasets, but it is

perhaps the most reliable method for calculating spectra.

A.2.1 Correlation Functions

Dynamical magnetic turbulence is most conveniently characterized by its
two-point, two-time correlation function and related transforms of this function. If
(...) represents an appropriately defined ensemble average, the two-point, two-time

correlation function is
R(r,7) = (B(x,t)B(x +r,t+ 7)) (A.5)

In a homogeneous medium the correlation R(r,7) is a function only of the relative
coordinates and will contain most of the accessible statistical information about the
medium [Matthaeus et al., 1990].

Since the solar wind is super-Alfvénic throughout most of the heliosphere (and
definitely in the region we are studying at 1 AU), it satisfies the “frozen-in flow”
hypothesis of Taylor [1938]. Therefore, the time and space lags are related (r =
TVsw = TVSWf{), and may be used interchangeably: Rij(TV5wf{, 0) = R;;(0, —7).
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In this case, the relation 27 f = w = Vswk can be used to relate frequency and
wavenumber spectra.
Once R;;(r) is computed, the energy spectrum tensor is evaluated according

to

S,i(k) = (%)3 [ Bywe (A.6)

A.2.2 Computation of the Correlation Function
The correlation function R;;(r) is computed by the formula
M—-n

>" Bi(P)B;(P +n), (A7)

P=1

1
Rij(n) = 37—

where n = 0,1,2,..., N, M is the number of data points in the record, and N is

the maximum lag for which R;; is evaluated. It is implicit that R;;j(n) = R;;(nAz),

where Az is the spacing of data points in the record.

A.3 Structure Function

This spectral method was developed and applied by Smith et al. [1990b]. The
correlation function R is approximated from the structure function D of the data
and then Fourier transformed as in the Blackman-Tukey method.!

The diagonal elements of the structure function
Dii(r) = ([Bi(t) — Bi(t +7)*) (A.8)
are related to those of the correlation function, R;;(7) = (B;(t)B;(t + 7)), by

Dii(t) = 2(B}) — 2Ry(7), (A.9)

1 Tt is unfortunate that the structure function and the dispersion tensor of sec-
tions 1.2.1 and 4.5 both are represented by D. We shall not consider the dis-
persion tensor here, nor shall we consider the structure function outside of this
appendix.

130



thus D (0) = 0 and R;(0) = 2(B2) > 0. The averaging period will affect (B?), and
thus the low-end of the spectrum computed from the correlation function. Ergodic
theory [e.g., Panchev, 1971] suggests that measurements of R;(7) are susceptible to
error from unresolved low-frequency power, while D;;(7) is less sensitive to errors
resulting from finite maximum lags. The spread of estimates of the correlation time
should be narrower for the structure function analysis, because D;;(0) = 0.

The field variance may be estimated according to (B2) ~ D;(Tmax)/2 (letting
R;i(Tmax) — 0 in equation (A.9), as one would expect for large lags), and the result-
ing approximation to the correlation function is Ry(7) ~ D;;(Tmax)/2 — Dyi(7)/2.
This may then be transformed into the energy spectrum tensor according to equa-
tion (A.6). The approximation to the correlation function contains the same level
of accuracy in the computed small scale structure as was obtained in the structure
function. As such, it is a better tool for dealing with steeply falling spectra.

The structure function method was used to confirm the results of the power
spectra computed from the Blackman-Tukey method. The two methods agreed
well. However, a method of calculating the magnetic helicity from the off-diagonal
elements of R has yet to be included in the structure function analysis, and despite its
potential merits, all the spectra of the data intervals and their secondary properties

shown in this dissertation were computed by the Blackman-Tukey method.

A.4 Treatment of data

As outlined in section 2.2, several operations were performed on the down-
loaded WIND magnetic field data prior to computation of spectra. For convenience,
all processing was done in fully automated Fortran ‘batch’ jobs that I wrote and
ran overnight on the Bartol Research Institute’s VAX/VMS cluster. The only pa-
rameters I needed to provide to the programs were the start and end times of each
interval of data, and the mean solar wind speed of that interval (to convert between

frequency f and wavenumber k).
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A.4.1 Automated Badpoint Removal

As mentioned in section 2.2, one outlying spike in the time series data con-
tributes energy across a large range of frequencies in the resulting spectrum. To this
end, the data are twice run through an automated bad point editor. On the first,
global, pass the variance of each of the four input time series (three components and
the magnitude) is computed. Any point that is more than 3.5 the variance o from
the mean in any component is flagged bad and its value changed to —99.9. The
second, local, pass splits the data into 2000-point blocks. The mean and variance
are computed for each block, and any point that is 2.5x the variance is flagged. A
more aggressive 2.50 limit is used as the variance is typically less for 2000 points
than it is for the full series. Typically, 1% of the dataset (~ 400 points out of 40 000)
are removed in this way.

The Fortran codes that calculate the Blackman-Tukey correlation function
(i.e., the computation of equation (A.7)) are smart enough to ignore any bad points
in the data. The bad value (—99.9) is not a numerical value, but rather just a flag
or code number. In this case the average over the (M — n) points is replaced with
a sum over (M — n — nyp,q) points.

This is another reason why the Blackman-Tukey method is chosen over the
simple Fourier transform, which requires that data gaps be linearly interpolated

over.

A.4.2 Prewhitening and Postdarkening
A prewhitening filter is a first-order difference operator applied to the data

before the spectra are computed. If xz[n] is the input time series data, then

y[n] = z[n + 1] — z[n] (A.10)
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is the prewhitened output times series. The output series is evidently one point
shorter than the input. This operation is known as ‘whitening’ because the spec-
trum of differences approaches that of white noise (i.e., flat). Postdarkening is the
subsequent inverse operation and corrects the spectrum produced from whitened
data to its true shape.

Bieber et al. [1993a] developed the technique as an extension to the Blackman-
Tukey correlation function method that is particularly effective at suppressing un-
resolved low-frequency power.

The x[n] that we are concerned with here are the components of the inter-

planetary magnetic field B. Define, then, the vector difference time series:
AB(t) = B(t+ A7) — B(t) (A.11)
from which is formed the correlation function of the differences (cf. equation (A.5)),
R}’;hite(r) = (AB;(t)AB;(t + 7)) . (A.12)

Using the definition of the difference series it then follows that the correlation of the
differences, equation (A.12), is related to the ordinary correlation, equation (A.5),
by

Rghite(T) =2R;;(T7) — Rij(T — AT) — R;;(T7 + AT). (A.13)

Taking the Fourier transform of equation (A.13) and employing the shift

theorem, equation (A.3), we obtain S}’;hite( f), the whitened spectral density matrix:

Siv;hite(f) — QSz](f) _ e—QWiATfSij (f) _ €+27riATfSij(f)
= 25;;(f)[1 — cos(2mrATf)].
Therefore, _
B S;};hlte(f)
~ 4sin®(rATf)’

where we have used the identity cos26 = 1 — 2sin? 6.

Sij(f) (A.14)
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A.5 Computation of Magnetic Helicity

The method used to compute the spectrum of magnetic helicity in the solar
wind from the correlation function R was developed by Matthaeus et al. [1982].

Magnetic helicity can be defined by H,,, = (A - B), where A is the magnetic
vector potential of B. Frequently, A and B are taken to be the fluctuating fields,
and as such, H,, is the helicity of the fluctuations.

In terms of a frequency or wavenumber spectrum, let H;; be the ¢jth com-

ponent of the Fourier transform of the (A - B) correlation (cf. equation (A.5)):

Hij(k) = (Ai(k)- Bj(k))
= (Ai(k) - (V x A(k));)

= (Ai(k) - (1k x A(k));)-

In terms of the Levi-Civita symbol, the ith component of V x A is €;;0;4; =
Eiﬂ(’ik)jAl. Thus,

Hij (k) = Aif‘:jrs (Zk)rAs
S.

i€ ipsky o2 A15
J kz (

where we have used the fact that A4; A, = S;;/k?, since B;B, = S;; and B =V x A.

Using only a single spacecraft, we cannot fully determine R(r) and hence
S(k). Instead, we have only correlations along a set of collinear separations r =
(r1,0,0). A full Fourier decomposition is not possible in this situation, but reduced,

(one-dimensional) spectra may be computed. The reduced spectrum tensor S" is

Sij(k1) = /Sij(klak2,k3)dk2dk3

1 .
= %/dTlﬁ_zklhRij(’f'l,0,0) (A16)
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The reduced magnetic helicity spectrum then becomes

T - k
Hy (k) = (Hy) (k) = / sjlsk—;Sjs(kl,kQ,kg)dkgdkg
[k
') k2

= Zkil (Sgg(kl) - 553(k1))

= zki (—2i3S55 (k1))

1

Hy (k) = 2385 (ki) / ko, (A.17)

[5312532(k1, ko, k3) 4 £213523(k1, ko, k3)] dkodks

where 57, refers to the imaginary part of SJ;. It is via equation (A.17) that
the magnetic helicity spectrum is calculated from the data in our Blackman-Tukey
computer codes.

As a final note, since we only have correlations along a set of collinear sepa-
rations in the radial direction, the ‘RTN’ coordinate system is a natural one to use

in the computation of magnetic helicity.
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Appendix B

COORDINATE SYSTEMS AND THEIR
TRANSFORMATION

B.1 Solar-Derived Coordinate Systems

The most commonly used solar-oriented coordinate system is the ‘RTN’ sys-
tem, standing for Radial, Tangential and Normal. In a right-handed system, the
x-axis points radially away from the sun, the z-axis is in the plane defined by the
sun’s axis of rotation and the z-axis, and the y-axis completes the right-handed

triad. RTN coordinates are what Parker [1958] used to originally define the IMF.

B.2 Earth-Derived Coordinate Systems

The ‘GSE’ (Geocentric Solar Ecliptic) coordinate system has its z-axis point-
ing from the earth towards the sun, its y-axis is in the ecliptic plane pointing towards
dusk (i.e., opposing planetary motion), and its z-axis, completing the right-handed
triad, is parallel to the ecliptic pole. Relative to an inertial system, this system has
a yearly rotation.

To within about 7° (the inclination of the sun’s equator to the ecliptic plane),
X~-R,Y~-Tand Z~N.

WIND magnetic field data is routinely provided in GSE coordinates, and
must be rotated into RTN coordinates in order to compute magnetic helicity. Recall
that from section A.5 we need one axis must be aligned with the (radial) flow

direction.
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B.3 Transformation to Mean-Field Coordinates

We want to rotate vector data from an original coordinate system to a new

‘primed’ coordinate system through the transformation A’ = RA, where R is some

rotation matrix.

In chapter 3 the primed coordinates are those of Belcher and Davis [1971],

namely, (B x R, B x (B x R), B). The required rotation matrix may be written as

1R & -T & -N
R= é2R é2T éQN 3

~ A~ A~

é&s-R é-T é-N

>

(B.1)

where the &’s are unit vectors in the new coordinate system. The simplest of these

A~

to write down is €3, which is simply the unit vector B:
_ BpR+ B;T + ByN

€3 =
VB% + B} + B},

The other two unit vectors require a little more work:

B xR
B x R
(BRR + By T + ByN) xR
N
ByT — BrN
Ny
obviously, then, N? = BZ + B%, and so

_ ByT- BN

1 —\/m

é =

(¢}

And for B x (B x R),

. B x (B xR)
e = = ~
' Bx(BxR)
(BRR+BTT+ BNN) X (BNT — BTN)

Ny

—(B? — B3)R + BpBrT + BgByN

Ny
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with
N22 = (BQ—B§)2+(BRBT)2+(BRBN)2
= (B*- B%)’+ BL(B* — B})

= (B’ - B})[(B* - B}) + B}

= BB -5
SO ) ) )
—(B? — B3)R 4 BgBrT + BpByN
& = ( r)R + BrBrT + BpByN (B.4)
BB~ By
Finally, then, the coordinate rotation matrix is
0 By —Br
VBB, /BRABY
= 7(B2*Bz) BgrB BrB B
R \/32(32—1;@ \/B2(I;32i3122) \/Bz(RB;iB-}z%) ) ( '5)
Bgp Br By
B B B

For rotation into the coordinate system of Bieber et al. [1996], we let —&, —

él and él — é2.
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Appendix C

WAVE DISPERSION RELATIONS

In this appendix, we provide an explanation of the workings of H. Kit Wong’s
linearized Maxwell-Vlasov codes used to generate Alfvén wave dispersion relations

numerically.

C.1 Application

The codes used to calculate dispersion relations via perturbation analysis of
the Vlasov equation are capable of calculating linear instabilities for much more
complicated situations than we consider here in calculating Alfvén wave dispersion
relations. As such, many of the input options are turned off or set to zero.

There are three contributions a that need to be summed to solve equa-
tion (4.31), namely ions, electrons and a third “beam” component of electrons. The
“beam” component may be an actual beam drifting through the other two compo-
nents, or simply a second, electron/ ion population with a different temperature or
temperature anisotropy.

The input parameters to the code are as follows:

1. np, ne, np. Strictly, the sum over n in equations (4.31) and (4.31) should be
from —oo to oo. We only consider the range +n,, to limit computations. All

the calculations used in this work took n, = 3 and n, = 10.

2. wp, we. The plasma frequencies (and hence densities) for the electron and

beam components, scaled to dimensionless units (by dividing by the cyclotron
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frequency). The ion plasma frequency is determined by charge neutrality,

w2 = (mp/me)(w? +w?). We never considered a beam component, and always

p
took wp = 0. We chose w, = 116.69, a typical value for the solar wind, which

gives w, = 5000.

. Bj,a» BLa- Since we only ever considered a single temperature Maxwellian

distribution (equation (4.26)), 8 = . for each component.

. Vo,a- The components are allowed to drift down the magnetic field at this
velocity (scaled to dimensionless units by the Alfvén speed). All drifts are

Z€ero.

. Kinitiat, Ak, Ng. The wavenumber, scaled to dimensionless units by V4 /€, (see
page 49). At wavenumbers smaller than ~ 0.1, the frequencies of the Alfvén
wave and fast magnetosonic wave are similar, and the root-finding code might
start following the wrong branch. Care must be taken to ensure that the code
is following the Alfvén branch. k. was always set at 0.1, and for smaller
wavenumbers stepped backwards, keeping all other parameters the same. The

two parts of the resulting output were then combined.

. Ok, AB, Ny. The angle to the mean field at which the wave propagates. The
other two parameters are looped over, if present after looping over the Ny
wavenumbers. Typically, this is done for Ny small, since for multiple angles,
the initial guess of an angle is the last returned frequency for the previous

angle.

. Wy, ¥- An initial guess for the real and imaginary parts of the frequency at k =
kinitia1- Lhis needs to be fairly accurate, so that the root-finding subroutine can
follow the intended branch. For the Alfvén mode, w, ~ kjV4. Equation (4.31)

simplified dramatically for parallel propagation, enabling the imaginary part
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C.2

of the frequency to be estimated. Gary [1993] gives the following formula for
the damping rate:

T wy
= 2k za: 1) o T

(C.1)

By taking small steps in #, initial estimates of + for oblique propagation may

be obtained.

The plasma dispersion function

The plasma dispersion function Z(&) is calculated either by its power series

expansion for |£| < 4, or by its asymptotic expansion.

The power series expansion [Fried and Conte, 1961] is

Z() = n'lPet —2¢ [1 - 2%2 + 41—554 - .. ]
_ e 00 v 71'1/2
e gnzzo( 5) (n—i—l)'.

5"

In practice, we take the upper limit of summation in the codes to be 100.

where

The asymptotic expansion [Fried and Conte, 1961] is

2 1 1
Z(€) = in?oet ——l1+—+i+...1

3 262 4g!
00 _ 1\
12 €2 —2n1(n 2)'
= irtoe™" =Y ¢ +)W7
n=0
0 >0
2 J¢E<O0

Again, in the program, rather than an infinite sum, only the first 25 terms are

calcul

ated.
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C.3 Bessel Functions

Calculation of the modified Bessel functions 7,,(A) is done following the algo-
rithm outlined in Numerical Recipes [Press et al., 1992, section 6.6]. The derivatives
of A,(\) = I,(\)e™ present in equations (4.32) are obtained by their recursion re-

lation, equation (4.27).

C.4 Root Finding

The calculation of w(k, #) follows the Muller method of root-finding. It is an
extension of the secant method [Press et al., 1992, section 9.1] that uses a parabola
to interpolate between guesses rather than a straight line. Solving the zeroes of the
quadratic allows the method to find roots in the complex plane, where the roots
w = w, + 17y are.

If f(w) = det D(k,w) is the function we are trying to find roots for (recall
that k = (k, ) is fixed), and given three previous guesses for the root w;_o, w;_1,

wj, then the next approximation w;,; is produced by the following formulae

flwj—1) — flwj—2)

Ap = He
Af, = TWi) = Fwia)
Wj —Wj—1
_ AR =Af
N Wi — Wj—2
= Afy— Alwj +w;_1)
C = f(w;)— Aw} — Bw; (C.2)

followed by
-2C

Yt T B L /BT —4AC

where the sign in the denominator is chosen to make the absolute value |w;;; — wj]

as large as possible. Although the algorithm will converge (albeit slowly) for any
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three initial guesses, we take

w; = w(k—Ak)— (0.01 +0.019)[w(k — Ak) + (0.001 + 0.0017)]
wis1 = w(k— Ak)
wisy = w(k— Ak) + (0.01 + 0.01d)[w(k — Ak) — (0.001 + 0.0013)],

where w(k — Ak) is the calculated root for the previous wavenumber .
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Appendix D

REDUCTION OF SPECTRAL TENSORS

D.1 Introduction

It is not at all obvious how equation (3.4.19) of Batchelor’s [1970] book The
Theory of Homogeneous Turbulence follows from the lines of algebra above it.

The purpose of this Appendix is to derive that equation. In doing so, we
shall derive equation (eqn:batch3417) of section 5.1.3.3, showing how the reduced
and omni-directional spectra may be related.

Batchelor’s equation (3.4.19) relates the lateral (perpendicular) and longitu-
dinal (parallel) reduced spectra. He refers to these two quantities as ©q5(%1, 0, 0)
and ¢(k1) = ©11(k1,0, 0) respectively. We shall refer to them as Sy, (k;) and Sy, (k)
respectively. In the three-dimensional case we shall consider S7,(k;) as well. As in
equation (A.16), we take the z direction to be the axis along which the spectra are
reduced. In the heliosphere, of course, this corresponds to the direction of solar
wind flow, which is effectively the radial direction R.

The full energy spectrum is denoted by E(k), and it may be viewed as a

single scalar function defining S”.

D.2 Two-Dimensional Turbulence
First, let us consider only two-dimensional turbulence, with only one inde-
pendent coordinate perpendicular to the direction in which the spectra are reduced.

In this instance, the spectral tensor has the following form and properties:
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k;k;
Sij(k) = <5ij - k;) E(k)
Trace S;; = Si = E(k)

since d; = 2 in two dimensions. The two reduced spectra are

ST (ky) = / dk( >E(k)

k‘2
Splks) = | " dk, (1 — k—g> E(k)

since k* = kI 4+ k2. Now let w = \/k2+£2, so that k, = \Jw?—k2, dk, =

wdw/y/w? — k2, and it is assumed that E(w) has the same dimensions as F(k),
i.e., E(k) depends on |k|.

Therefore,

Syy(ks) =

vy

Now consider

r o k2_k2
Sialks) = [ k=B (k)

[ wdw 9 o E(w)
- /kz F]Q _ k‘% (’LU kx) w2
2 211/2
= dw (w” = k) E(w)
ko w

145



and

d (wz _ k2)1/2
_ooqQr - _ fi E
T S k) LB
2 _ 1.2\1/2
+ —(w k) E(w)
w w=00
% 9 (w?— k)N
+ . dwakm ” E(w).

The first two terms are zero, so that

d
dk

(w)

L1, (k)

and, by inspection,

S;y(kw) - dk

D.3 Three-Dimensional Turbulence

In this instance,

kik;\ E(k)
Sij(k) = <5z'j - k2J> —
where the factor of 2 in the denominator again ensures S;;(k) = E (k).
The parallel component is
kr\ E(k)
(ky) = / dk,dk, (1 - ﬁ> =,
and the two perpendicular spectra are
: B\ B(k)
Spyke) = [ dhydk. ( - —3) =
k
ST (k) = /dk dk, ( —) %
Sy (kz) = S, (k) since E(k) depends only on k.
Adding Sy, and S,, gives
. k2 4+ k2\ E(k)
257, (k) = [ dkydb. (1 +1-s ) >
k) E(k)
= 1 —.
[ dkydr. ( + k2> >
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Thus,

2
287 — ST, = 2/dk dk, k—g. (D.2)

Now consider the integral on the RHS of equation D.2 in cylindrical polar
coordinates. Let w = (/k? + k2, so that wdw = k, dk, and, as before, E(w) has

the same dimensions as F(k). So,

E(k) ki dk,
2 — 2
k2 / by~ ol [ e
= 2rk? Bw) (D.3)
Now notice that
. dk? k%
Salle) = 2r [ S LB
’LU2 _ k2
= 2 z
7r/ w dw e (w)
d ., o dw
since
,w2 _ k2
ZE(w) = 0.
w2 w=kg
So,
dw
T _2 2
ke Stulhe) = —2nk2 [~ B (w)
(compare with equation (D.3), above).
Therefore,
T T d T
or
T 1 T d s

This is, in our notation, Batchelor’s equation (3.4.19).
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D.3.1 Trace

Note that the sum of the three components is

I, 4257, =8 (k) = 2 / dk,dk, B (k)
= 2.927 / kydk, E(K)

= 2-2r [ dwwE(k),
ke

where we have again used wdw = k, dk,. However, E°™ = £(k) = 4nk*E(k), so

S (k) = /°° ™). (D.5)

- w

Equation (D.5) is equation (5.7), albeit in a slightly different notation.
Expressed in a differential, rather than integral form, and since omnidirec-

tional turbulence is isotropic, equation (D.5) becomes

d o 1
or
£k) = —k-Lsr (k) (D.6)
- dk trace . .
D.3.2 Check

Finally, as Batchelor says, the explicit expression for £(k) in terms of the

measurable function S, (k) (his equation (3.4.18)) is

,d 1 dsﬂ

Ek) =k %l% dk

- k2 dk "k dk?
ds S

- _k TT k2 zz.
FTET®
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As a check, our results, equations (D.6) and (D.4) give

d
g(k) = _kﬁstmce

d
= _k% [Szz+25yy]

d d
= —k— 1|2 I M

dSzz  dSzz  d*See
B _k[Q dk — dk _kdm]
_ dSp  5d?Sk
= —k T +k T
v
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