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ABSTRACT
In this paper we study resistive processes in the preÑare phase of eruptive Ñares by means of the 2.5-

dimensional MHD numerical simulation. According to many detailed observations of solar Ñares, their
evolution is characterized by several phases, each of which has a distinct nature. In the Ðrst phase, some
kinds of radiation begin to be enhanced gradually, which implies the occurrence of the preÑare heating.
Then, at a certain time, that gradual energy-release phase is replaced by the violent energy-release phase
in which a huge amount of energy is released in various forms. So far, the nature of this violent energy-
release phase has been well studied by using a Ñare model based on the fast magnetic reconnection,
although those problems of the preÑare heating and the transition from the gradual energy-release phase
to the violent one have not been sufficiently discussed yet. In this paper, in order to tackle these prob-
lems, we start with a 2.5-dimensional force-free current sheet under a uniformly distributed resistivity,
which is subject to a very small random velocity perturbation. At Ðrst the evolution enters on the linear
stage of tearing instability and later a sufficient amount of thermal energy is produced in the nonlinear
stage, which is considered to have a relation with the preÑare heating. In this nonlinear stage, the com-
ponent of magnetic Ðelds perpendicular to the sheet (perpendicular magnetic Ðelds) Ñows away from X-
points formed in the sheet and eventually the current sheet collapses at these points. This collapse
strongly reduces the thickness of the sheet if the magnetic Reynolds number is quite large and the
plasma beta is quite low. Since the formation of thin current sheet leads to the occurrence of locally
enhanced resistivity (anomalous resistivity), the transition from the gradual energy-release phase under a
uniformly distributed resistivity to the violent one under a locally enhanced anomalous resistivity can be
accomplished, which causes the fast magnetic reconnection responsible for various explosive phenomena
in the Sun.
Subject headings : MHD È Sun: corona È Sun: Ñares È Sun: magnetic Ðelds

1. INTRODUCTION

Explosive phenomena are often observed in the solar
corona, which are now widely believed to be energy conver-
sion processes from the magnetic energy to the other types
of energy. Since the corona is generally a good conductive
medium, any dynamical evolution in the corona is usually
described within the context of ideal MHD theory, where
the e†ect of resistivity is negligible. It is therefore necessary
to investigate the small-scale region where the magnetic
energy can be efficiently converted into the other types of
energy when we consider any explosive phenomenon in the
corona. That region in which a certain component of mag-
netic Ðelds changes abruptly across the sheet so that a large
amount of currents can Ñow through it is known as current
sheet. Owing to this enhancement of current density, the
Ohmic dissipation efficiently works in current sheet, com-
pared with other normal regions in the corona.

From this viewpoint, many authors have tried to explain
various coronal explosive phenomena by using the concept
of current sheet. For example, Heyvaerts, Priest, & Rust
(1977) presented a Ñare model, in which a current sheet was
formed between the emerging subphotospheric magnetic
Ðeld and the overlying coronal magnetic Ðeld. This Ñare
model was lately investigated in detail by Shibata et al.
(1989, 1992) and Yokoyama & Shibata (1996) who per-
formed two-dimensional MHD numerical simulations and
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clariÐed many interesting features of this type of Ñares. As
for the model of the so-called two-ribbon Ñares, Mikic,
Barnes, & Schnack (1988), Biskamp & Welter (1989), Finn,
Guzdar, & Chen (1992), Inhester, Birn, & Hesse (1992),
Kusano et al. (1994), Choe & Lee (1996), and Amari et al.
(1996) succeeded to develop a model in which a current
sheet is formed within a magnetic arcade by imposing a
particular photospheric motion in either the single-arcade
or the multiple-arcade system. Forbes & Priest (1983),
Forbes, Malherbe, & Priest (1989), and Forbes & Malherbe
(1991) performed two-dimensional MHD numerical simula-
tions in order to study the physical structure of the two-
ribbon Ñares. They found that a closed magnetic structure
was formed in the lower part of a current sheet and that
structure well reproduced several observational features of
postÑare loops. With respect to the coronal heating, Parker
(1994) discussed that current sheets were spontaneously
formed as singular layers in the corona where a sufficient
amount of thermal energy for the coronal heating is produc-
ed by the Ohmic dissipation. Recently, Karpen, Antiochos,
& DeVore (1996) showed an interesting simulation result
that many current sheets are distributed all over an active
region.

When we study the natures of solar Ñares, we have an
important problem with their timescale. Since the magnetic
Reynolds number in the corona is quite large, di†usive pro-
cesses in current sheet proceed very slowly, which cannot
explain such a short timescale as is observed in real Ñares.
This problem has prompted solar physicists to consider a
rapid energy-conversion mechanism in the current sheet,
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which is now known as magnetic reconnection. Historically,
the Sweet-Parker model (Sweet 1958 ; Parker 1963) was the
Ðrst dynamical model and later Petschek (1964) proposed a
remarkable model in which the rate of magnetic reconnec-
tion was little dependent on the magnetic Reynolds number.
The main di†erence between these two models lies in the
size of a di†usion region. The Sweet-Parker model has a
long di†usion region while the Petschek model has a small
one, which makes the latter a more efficient energy con-
verter than the former.

PetschekÏs proposal seemed to solve the problem of the
timescale of solar Ñares, although there appeared one big
difficulty in forming a small di†usion region. Biskamp
(1986) performed two-dimensional MHD numerical simula-
tions under a uniformly distributed resistivity and showed
that a di†usion region became longer as the magnetic Rey-
nolds number is large. This implies that the PetschekÏs con-
Ðguration does not arise but Sweet-ParkerÏs does in such a
large magnetic-Reynolds-number system as the solar
corona (see Biskamp 1993 for details).

On the other hand, by assuming a localized resistivity in
current sheet, Ugai & Tsuda (1977) and Sato & Hayashi
(1979) successfully reproduced the Petschek-like conÐgu-
ration in their two-dimensional MHD numerical simula-
tions. Ugai regarded the localization of resistivity as a key
factor in the efficient energy-conversion mechanism and
then developed the fast-magnetic-reconnection model, in
which a locally enhanced anomalous resistivity naturally
brings about such a converging Ñow pattern as is preferred
by the Petschek model. (In this respect, Priest & Forbes
1986 and Priest 1991 claimed that the nature of magnetic
reconnection was characterized by the Ñow pattern seen in
the system, although this has not yet been conÐrmed by
self-consistent MHD simulations.) UgaiÏs recent researches
in the fast magnetic reconnection can be seen in Ugai (1994,
1995) and Ugai & Shimizu (1996).

By using a Ñare model based on the fast magnetic recon-
nection, Magara et al. (1996) and Magara, Shibata, &
Yokoyama (1997) studied natures of eruptive Ñares and suc-
ceeded to explain several new observational results
obtained by Y ohkoh. However, as Magara et al. (1997) men-
tioned, there remains one problem about the initial localiza-
tion of resistivity which later causes the violent energy
release. In Magara et al. (1996, 1997), that initial localiza-
tion of resistivity was given by a particularly selected per-
turbation. However, in actual situations, that localization
does not occur independently but it occurs through the
mutual interaction among several physical processes of the
Ñare evolution. Therefore, in order to understand the
overall evolution of solar Ñares, we need to clarify how the
localization of resistivity proceeds in the Ñare evolution (see
Shibata 1997). The aim of this paper is to study this
problem by paying a particular attention to the nonlinear
resistive evolution of current sheet.

The next section presents the basic description of this
study. In °° 3 and 4, we exhibit and discuss our results.
Our conclusion and summary are given in °° 5 and 6,
respectively.

2. BASIC FORMULATION

2.1. Basic Equations
In this study, we use the standard set of MHD equations,

except that the e†ects of gravity and viscosity are both

neglected. These equations are expressed as follows :
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where o, B, P, c, g, k, R, and T mean the gas density, Ñow¿,
velocity, magnetic Ðeld, gas pressure, adiabatic index, mag-
netic di†usivity, mean molecular weight, gas constant, and
temperature, respectively. On the basis of these equations,
we perform the 2.5-dimensional MHD numerical simula-
tion in the Cartesian coordinate. All the physical variables
are dependent on both the x-coordinate and the z-
coordinate but independent of the y-coordinate, while the
y-components of velocity and magnetic Ðelds are included
in our calculations, which means the 2.5-dimensional
numerical simulation. In practice, all the calculations are
carried out in the nondimensional form based on several
physical units summarized in Table 1.

2.2. Initial Conditions and Boundary Conditions
Figure 1 shows the initial conditions of our numerical

simulation. Since the aim of our study is to investigate the
dynamical behavior of the current sheet formed in the
corona, we assume that the sheet is initially in a force-free
state, in which both the antiparallel component (z-com-
ponent) and the perpendicular component (y-component) of
magnetic Ðelds exist. Accordingly, the initial distributions of
physical variables are expressed as
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and

T \ T0 , (11)

where Here b isP0\ 1/c, B0\ (8nP0/b)1@2, T0\ cP0/o0.the so-called plasma beta (the ratio of gas pressure to mag-
netic pressure), and in this study we usually set c\ 5/3,
b \ 0.15, and except for the high-b case (b \ 0.2)o0 \ 1
and the low-b case (b \ 0.1).



FIG. 1.ÈCalculation region and initial conditions of our numerical simulation are displayed, associated with some examples of the current sheet formed in
the corona. A gray area indicates the region of Ðne meshes.

FIG. 2.È(a) Time variation of the logarithmic increment of the reconnected magnetic Ñux t(t) (dotted line) produced on the part of the z-axis, 0 ¹ z¹ 10,
in the standard case (b \ 0.15 and An evolutionary line of the maximum linear growth rate of tearing instability is also shown by a solid line. (b)R

m
\ 1000).

Time variations of the magnetic energy (solid line), thermal energy (dotted line), and kinetic energy (broken line) in the standard case (b \ 0.15E
m
(t) Eth(t) E

k
(t)

and R
m

\ 1000).
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As for the actual calculations, we use the modiÐed
Lax-Wendro† scheme and carry out our calculations only
over a half-domain (0¹ x ¹ 5L , 0¹ z¹ 50L ) of the calcu-
lation region shown in Figure 1 by assuming a symmetry
with respect to the z-axis. In addition, the calculation region
is divided into three areas, each of which has Ðne meshes,
intermediate ones, and coarse ones. The Ðne-mesh area
([L ¹ x ¹ L , 0 ¹ z¹ 10L ) has the mesh size of (*x, *z)
\ (0.004L , 0.04L ) and this area is displayed in gray in
Figure 1. The coarse-mesh area has the mesh size of (*x, *z)
\ (0.1L , 1.0L ), located near the boundary of the calculation
region. Consequently, the total mesh number is (N

xAs is derived in equation (8), the total] N
z
)\ (340 ] 340).

thickness of the sheet is initially about L /2n so that the
initial number of grid points included inside the sheet is
about 40.

The boundary conditions are described as follows. As
both the top boundary (at z\ 50L ) and the bottom bound-
ary (as z\ 0), we set
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On the z-axis (at x\0), we set
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At the side boundary (at x\5L ), we set
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2.3. Initial Perturbation
Magara et al. (1996, 1997) used a model based on the fast

magnetic reconnection and succeeded to reproduce several
violent natures of eruptive Ñares. In these previous works
we regarded the state of locally enhanced resistivity as the
initial state of simulations, although, in the present work,
this state is not the initial state. The locally enhanced resis-
tivity results from the occurrence of anomalous resistivity,
which requires a very thin current sheet, that is, the thick-
ness of the sheet must lie in the range of microscopic values.
In the active region of the solar corona, this value is thought
to be about 10 m. [For example, Priest 1982 shows the
condition of the thickness as cm,l0\ 1.3] 1013B0/(nT 1@2)
with in G, n in cm~3, and T in K. Hence the criticalB0length becomes 13 m when T \ 106 K, n \ 109 cm~3, and

G.] As to the formation of current sheets in theB0\ 102
corona, many authors have studied and conÐrmed that an
MHD current sheet, whose length and thickness are still in
the range of macroscopic values, was formed within a mag-
netic arcade through ideal MHD thinning processes (Mikic
et al. 1988 ; Biskamp & Welter 1989 ; Finn et al. 1992 ; Inhes-
ter et al. 1992 ; Kusano et al. 1994 ; Choe & Lee 1996 ; Amari
et al. 1996). The next step is to determine how the thickness
of the current sheet falls in the range of microscopic values,
which can cause the anomalous resistivity. In this respect, it
is unrealistic to imagine that the thickness of the sheet is
reduced from the range of macroscopic values (10 km, for
example) toward the range of microscopic values (10 m, for
example) only through ideal MHD thinning processes,

because the resistive processes based on a large magnetic
Reynolds number in the corona probably work before the
thickness of the sheet falls in the range of microscopic
values. In other words, the timescale of resistive processes
eventually become shorter than that of the ideal MHD thin-
ning processes. From these considerations, it seems reason-
able that we start with an MHD current sheet of
macroscopic thickness, which is subject to the di†usive
e†ect caused by not a locally enhanced but a uniformly
distributed resistivity.

Accordingly, we initially assign a uniformly distributed
resistivity. In addition, we impose a very small random
velocity perturbation within the region of ([0.08L , 2L )¹
(x, z) ¹ (0.08L , 8L ) as the initial perturbation. Owing to
the limitation of our numerical simulation, the magnetic
Reynolds number, L /g), is mainly set to beR

m
(4c

s
R

m
\

1000 and the maximum amplitude of the random velocity
perturbation is set to be less than 1% of wherevA, c

sand are the adiabatic[4(cP0/o0)1@2] vA [4B0/(4no0)1@2]sound velocity and the velocity in the initial state.Alfve� n

3. LINEAR AND NONLINEAR EVOLUTION OF TEARING

INSTABILITY IN A UNIFORMLY DISTRIBUTED RESISTIVITY

3.1. Growth Rate and Energetics
In this section, we show several basic features observed in

our numerical simulation by using the results of the stan-
dard case (b \ 0.15, R

m
\ 1000).

Figure 2a represents the time variation of the logarithmic
increment of the reconnected magnetic Ñux t produced on
the part of the z-axis (dotted line), which is deÐned as

t(t) \
P
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x
(0, z, t) o dz . (15)

This value is often used as an evolutionary index for the
tearing process in current sheet. According to the precise
linear analysis (see Furth, Killeen, & Rosenbluth 1963 ;
Sturrock 1994), the maximum growth rate in the linear
stage of this process is given by wherec
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where l is a half-thickness of the current sheet. In our formu-
lation, the unit of time is given by the sound crossing time,
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Hence we obtain the normalized growth rate as c
m

q
S
D

This is about 1.49 with0.63R
m
1@2[cb/2]1@4[l/L ]3@2. R

m
\

1000, c\ 5/3, b \ 0.15, and l/L \ (4n)~1. In Figure 2a, we
also draw the evolutionary line of this growth rate, rep-
resented by a solid line.
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TABLE 1

UNITS FOR NORMALIZATION

Physical Values Normalization Units

Length . . . . . . . . . . . . . . . . . . . . . L
Velocity . . . . . . . . . . . . . . . . . . . c

s
a

Time . . . . . . . . . . . . . . . . . . . . . . . L/c
s

Density . . . . . . . . . . . . . . . . . . . . o0
Pressure . . . . . . . . . . . . . . . . . . . o0 c

s
2

Temperature . . . . . . . . . . . . . . kc
s
2/cR

Magnetic Ðeld . . . . . . . . . . . . (8no0 c
s
2/cb0)1@2

Magnetic di†usivity . . . . . . c
s
L

NOTEÈc, k, and R are the adiabatic index, theb0,mean molecular weight, the plasma beta, and the gas
constant, respectively.

is the adiabatic sound velocity deÐned bya c
sc

s0 4 (cRT0/k)1@2.

In Figure 2b, the time variations of the magnetic energy
(solid line), thermal energy (dotted line), and kineticE

m
Ethenergy (broken line) are presented. These values are cal-E

kculated by
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Figures 2a and 2b tell us some important features of this
evolution. Figure 2a suggests that the evolution Ðrst enters
on the linear stage characterized by the maximum growth
rate predicted by the linear analysis. After the linear stage,
we Ðnd that the growth rate slows down; this is known as
one of the most important features in the nonlinear stage of
tearing process, that is, an exponential growth in the linear
stage is reduced or even replaced by an algebraic one in
some cases (Rutherford 1973 ; Steinolfson & van Hoven
1984). According to Steinolfson & van Hoven (1984), if the
length of current sheet is sufficiently larger than its thick-
ness, the nonlinear evolution does not show an algebraic
growth but an exponential one whose growth rate is lower
than the previous one. This is conÐrmed in our case. The
same authors also pointed out that another feature of the
nonlinear stage is that the released magnetic energy is
mainly converted into the thermal energy, which is consis-
tent with our result shown in Figure 2b.

3.2. Current-Sheet Collapse in the Nonlinear Stage
The slow-down of the growth rate of resistive processes

described above makes us disappointed, because it implies
that we could not expect such a violent energy-release phase
as is observed in real Ñares. The way to avoid this difficulty
is to change the distribution of resistivity from a uniformly
distributed resistivity to a locally enhanced one, the latter of
which can cause the fast magnetic reconnection.

As a parameter representing the local enhancement of
resistivity, we introduce the so-called ion-electron drift

velocity, which, in our formulation, is deÐned as

v
d
4

o j
y
o

o
, (23)

where is the y-component of current density ( j \ $ Â B)j
yand we call this the perpendicular current density hereafter.

When the drift velocity is sufficiently large, the e†ect of
particle-wave interactions becomes more dominant than
that of particle-particle collisions. This means that the resis-
tivity is strongly enhanced over the normal value based on
particle-particle collisions, which is known as the anom-
alous resistivity (see Treumann & Baumjohann 1997). We
therefore pay attention to the temporal and spatial varia-
tions of drift velocity in order to investigate whether the
anomalous resistivity can occur or not.

As for the standard case (b \ 0.15, Figure 3R
m

\ 1000),
displays how the spatial distribution of drift velocity varies
with time. In this Ðgure, contour lines and arrows indicate
the magnetic Ðeld lines and velocity Ðeld projected onto the
(x, z)-plane. A gray-scale map represents the value of drift
velocity. A displayed area is ([1, 0) ¹ (x, z) ¹ (1, 10).

By looking at Figure 3, we Ðnd that the coalescence
process between those magnetic islands formed in the linear
stage proceeds during the nonlinear stage. Schumacher &
Kliem (1996) pointed out that the Joule heating is a domi-
nant factor in this process. It is also found that there appear
the regions where the drift velocity has a large value. Such
regions are found around the so-called X-points, located
around (x, z) \ (4.1, 0) and (7.5, 0) at t \ 9 and around
(x, z) \ (4.1, 0) and (8.5, 0) at t \ 12.

Figure 4 is a schematic illustration of the physical situ-
ation around an X-point. Through the linear stage of
tearing process, several X-points are formed in the current
sheet. This Ðgure shows that the current-sheet collapse
occurs in an X-point, where the thickness of the sheet is
reduced strongly. This collapse is caused by the e†ective
outÑows from X-points, which carry away a sufficient
amount of perpendicular magnetic Ðelds (y-component of
magnetic Ðelds). The thinning e†ect of this collapse is even-
tually balanced by the di†usive e†ect and the sheet reaches
another steady state, which is suggested by Figure 5. This
Ðgure shows the time variations of drift velocity (solid line),
the absolute value of perpendicular current density (dotted
line), and gas density (broken line) in the standard case
(b \ 0.15 and all of which are averaged overR

m
\ 1000),

the range of (0, 3.72) ¹ (x, z) ¹ (0, 4.52) which corresponds
to the position of the collapsed sheet (see Fig. 3). In Figure
5, it is found that there are three di†erent stages in the
temporal development of current-sheet collapse. In the Ðrst
stage, both the drift velocity and the absolute value of the
current density gradually decrease with time because cur-
rents are dissipated under a uniformly distributed resis-
tivity. After that, they being to increase rapidly, which
reÑects the dynamical collapse of the sheet. Finally, such
enhancements of these physical variables Ðnish and all these
physical variables are kept constant, which suggests that the
sheet reaches another steady state. Here, using the Sweet-
Parker model of the current sheet, we then investigate the
physical situation of this steady state. If we assume that the
length of the collapsed sheet is nearly equal to the wave-
length of the most unstable tearing mode, that length is
expressed as

j/L D 4.9R
m
1@4(cb)~1@8(l/L )5@4 , (24)
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FIG. 4.ÈSchematic illustration of current-sheet collapse caused by the e†ective outÑows carrying a sufficient amount of perpendicular magnetic Ðelds
away from an X-point. j is the wavelength of the most unstable tearing mode, which is considered to be nearly equal to the length of the collapsed sheet ; isl

ca half thickness of this sheet.

where l is an initial half-thickness of the sheet,R
m

4 c
s
L /g,

and L is a unit length (see, for example, Sturrock 1994). For
the standard case [b \ 0.15, l/L \ (4n)~1],R

m
\ 1000,

equation (24) gives us j/L D 1.4. When we see the panel of
t \ 12 in Figure 3, we can Ðnd that this value is approx-
imately equal to the length of the collapsed sheet. (Actually,
this length becomes large with time so that its value [about
two in the panels of t \ 12 in Fig. 3] is slightly larger than
the wavelength of the most unstable tearing mode [about
1.4 derived from eq. (24)].) Next, we evaluate the thickness

FIG. 5.ÈTime variations of drift velocity (solid line), the absolute value
of perpendicular current density (dotted line), and gas density (broken line)
in the standard case (b \ 0.15 and all of which are averagedR

m
\ 1000),

over the range of (0, 3.72) ¹ (x, z)¹ (0, 4.52) which corresponds to the
position of the collapsed sheet (see Fig. 3).

of the collapsed sheet and the inÑow velocity. Once the
Sweet-Parker model is established in the collapse sheet, the
half-thickness of this sheet and the inÑow velocity(l

c
)

toward the sheet are expressed as(vinflow)

l
c
\ (j/2)/R

m,S~P
1@2 , (25)

and

vinflow\ vA/R
m,S~P
1@2 , (26)

where (see Parker 1994). In our formula-R
m,S~P

4 (j/2)vA/g
tion, these values are evaluated in the following way :

l
c
/L D 1.3R

m
~3@8(cb)3@16(l/L )5@8 , (27)

and

vinflow/csD 0.8R
m
~5@8(cb)~3@16(l/L )~5@8 . (28)

Then we check the validity of these formulae by using the
standard case (b \ 0.15, Figure 6 indicates theR

m
\ 1000).

horizontal distributions of perpendicular current density
(solid line) and inÑow velocity (dotted line). An elapsed time
is 12, and both distributions are averaged over the range of
3.72¹ z¹ 4.52, which corresponds to the position of the
collapsed sheet. We also depict the initial distribution of
perpendicular current density in this Ðgure, represented by
a broken line. In this case, equations (27) and (28) give

and with c\ 5/3,l
c
/L D 0.02 vinflow/csD 0.06 R

m
\ 1000,

b \ 0.15, and l/L \ (4n)~1. Compared with these results,
Figure 6 shows that the half-thickness of the collapsed sheet
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FIG. 6.ÈHorizontal distributions of perpendicular current density
(solid line) and inÑow velocity (dotted line). An elapsed time is 12 and both
distributions are averaged over the range of 3.72 ¹ z¹ 4.52. A broken line
shows the initial distribution of perpendicular current density. The nega-
tive value of inÑow velocity means that a plasma Ñows into the current
sheet.

is about 0.03 and the inÑow velocity is about 0.05. These
results suggest that the above formulae based on the Sweet-
Parker model describe the dynamical collapse fairly well.
We also checked the cases in which we changed the values
of magnetic Reynolds number and plasma beta and con-
Ðrmed that these formulae had a reasonable validity in
those cases.

Next, we present the results on the timescale of the
dynamical collapse. Figures 7a and 7b show the time varia-
tions of the enhancement of perpendicular current density
under several values of magnetic Reynolds number and
plasma beta, respectively. The current density is averaged
over the part of the z-axis which corresponds to the position
of the collapsed sheet. These Ðgures clearly show that the
collapse in the nonlinear stage proceeds rapidly when the
magnetic Reynolds number is large and the plasma beta is
low. We think that this is because a weak di†usive e†ect is
made on the external magnetic Ðelds when the magnetic
Reynolds number is large. Therefore, there can exist a
strong external magnetic force in that case and this force
gives rise to strong inÑows, which is clearly conÐrmed in
Figures 8aÈ8c. These Ðgures show the temporal develop-
ment of inÑow velocity in the cases of and 1500.R

m
\ 1000

Here the inÑow velocity is averaged over the part of the
z-axis which corresponds to the position of the collapsed

sheet. A dotted line and a dashed line represent the cases of
and 1000, respectively. Elapsed times are t \ 1R

m
\ 1500

(linear stage), t \ 4, and t \ 7 for Figures 8a, 8b, and 8c,
respectively. From these Ðgures, it is found that there is little
discrepancy between the two cases in the linear stage (see
Fig. 8a), while the case of larger magnetic Reynolds number
is found to have a stronger inÑow in the nonlinear stage (see
Figs. 8b and 8c). According to Fu & Lee (1986), the growth
rate of current density in the current sheet is expressed as

iuD
2
d
A
vinflow[ g

d
B

, (29)

where iu is a growth rate and d is a half-thickness of the
sheet. Equation (29) also implies that the rapid enhance-
ment of current density occurs when the magnetic Reynolds
number is large (small resistivity) and the inÑow is strong.
As for the e†ect of plasma beta, a similar argument can be
made, that is, when the plasma beta is low, the inÑow
becomes strong because the external magnetic Ðelds are
relatively strong in that case (see Fig. 7b).

It may be worth considering, in passing, how the current-
sheet collapse proceeds in those current sheets of no perpen-
dicular magnetic Ðelds, where the initial force balance is
maintained by the enhancement of gas pressure inside the
sheet instead of the pressure of perpendicular magnetic
Ðelds. The initial gas density is uniformly distributed so that
the temperature is enhanced inside the sheet. We call this
case the enhanced gas-pressure case and compare it to the
case of perpendicular magnetic Ðelds (force-free case).
Figure 9a shows the time variation of the logarithmic
increment of reconnected magnetic Ñux, represented by a
dotted line (force-free case) and a solid line (enhanced gas-
pressure case). This Ðgure clearly shows that the nonlinear
““ slow-down ÏÏ of magnetic reconnection begins earlier in the
enhanced gas-pressure case. Another interesting point is
found in Figure 9b in which the time variation of the absol-
ute value of perpendicular current density is presented.
Here a dotted line and a solid line are the force-free case and
the enhanced gas-pressure case, respectively. The current
density is averaged over the part of the z-axis which corre-
sponds to the position of the collapsed sheet. Both cases in
this Ðgure qualitatively have similar evolutions, although
they are di†erent in the timescale of current-sheet collapse,
that is, the collapse proceeds faster in the force-free case
than in the enhanced gas-pressure case. This implies that
the transition from a relatively gentle energy-release phase

FIG. 7a
FIG. 7b

FIG. 7.È(a) Time variation of the enhancement of perpendicular current density under several values of magnetic Reynolds number ; (solidR
m

\ 2000
line), 1500 (dotted line), and 1000 (broken line). The current density is averaged over the part of the z-axis which corresponds to the position of the collapsed
sheet. (b) Time variation of the enhancement of perpendicular current density under several values of plasma beta ; b \ 0.1 (solid line), 0.15 (dotted line), and
0.2 (broken line). The current density is averaged over the part of the z-axis which corresponds to the position of the collapsed sheet.
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FIG. 8a FIG. 8b

FIG. 8c

FIG. 8.È(a) Horizontal distribution of inÑow velocity in the cases of and 1500. An elapsed time is t \ 1. The negative value of inÑow velocityR
m

\ 1000
means that a plasma Ñows toward current sheet. (b) Elapsed time of t \ 4. (c) Elapsed time of t \ 7.

to the violent energy-release phase occurs more rapidly in
the force-free case than in the enhanced gas-pressure case,
which can be roughly understood in the following way. In
the enhanced gas-pressure case, a high-pressure gas always
Ðlls the current sheet to resist the rapid collapse of sheet. In
the force-free case, on the other hand, once perpendicular
magnetic Ðelds are ejected out of the current sheet, there is
neither high-pressure hot gas nor perpendicular magnetic
Ðelds in it so the sheet can collapse freely until the gas
pressure in the sheet is enhanced strongly enough to
balance the external magnetic pressure. We will do more
detailed study on this topic in our future work.

4. FAST MAGNETIC RECONNECTION TRIGGERED BY THE

OCCURRENCE OF ANOMALOUS RESISTIVITY

In this section, we discuss how the system can evolve to
the stage of fast magnetic reconnection, which causes the
violent energy release. First of all, we cast our attention to
the time variations of the intensities of several kinds of radi-
ation observed in solar Ñares. Figure 10 shows a schematic
illustration of them, associated with the names of obser-
vational phases. This Ðgure tells us some important features
of the Ñare evolution. For soft X-rays and EUVs, it is found
that their intensities begin to increase in the preÑare phase.

FIG. 9a FIG. 9b

FIG. 9.È(a) Time variation of the logarithmic increment of reconnected magnetic Ñux, represented by a dotted line (force-free case) and a solid line
(enhanced gas-pressure case). (b) Time variation of the absolute value of perpendicular current density, represented by a dotted line (force-free case) and a
solid line (enhanced gas-pressure case).
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FIG. 10.ÈSchematic illustration of the time variations of the intensities
of several kinds of radiation observed in solar Ñares, associated with the
names of observational phases.

After reaching a critical point, they are abruptly enhanced
and at the same time the pulselike behaviors of hard X-rays
and microwaves are observed. These features imply that a
signiÐcant energy release occurs even in the preÑare phase
and that energy release is dramatically enhanced when
going over a critical point.

Then we try to explain these observational features by
using the results obtained in this study. Here, one important
point we should notice is the existence of the preÑare
heating, which suggests that not ideal MHD but resistive
MHD processes work in the preÑare phase. (In this respect,
it may be possible to consider any ideal MHD process
causing the adiabatic heating, although we do not discuss
this process here. The study of this topic is left to our future
work.) In ° 3.1 we make some investigations on the growth
rate and energetics of the tearing process. The initially
stored magnetic energy is mainly converted into the thermal
energy during the linear and nonlinear stages, and the
amount of the produced thermal energy is quite small in the
linear stage compared to that in the nonlinear stage (Fig. 2b
shows that the amount of the produced thermal energy in
the linear stage is at most 10%È20% of that in the nonlinear
stage). From this consideration, we infer that the nonlinear
stage of tearing process mainly contributes to the preÑare
heating.

The next topic, which is the most important subject of
this paper, is to Ðnd out how the dramatic change of the
rate of energy conversions occurs when going over a critical
point. Rapid energy conversions are caused by the fast mag-
netic reconnection, and one of the crucial factors in the fast
magnetic reconnection is the anomalous resistivity, which
can arise locally in very thin current sheets. Accordingly, in
order to seek the cause of such change of the rate of energy
conversions, we have to consider how an extremely thin
current sheet can be formed naturally through the inter-
action among several physical processes of the Ñare evolu-
tion. The results presented in ° 3.2 suggest that the
current-sheet collapse occurs in the so-called X-points
inside the current sheet and that the collapsed sheet even-
tually reaches another steady state described on the basis of
the Sweet-Parker model. According to equations (24), (27),
and (28), we then try to consider how such collapse works in
the real circumstances of the corona. In this study, we take a
unit length as L \ 100 km, so that the length scale of typical
large Ñares is about 103L . As for the magnetic Reynolds
number and the plasma beta in the corona, we set c

s
L /g D

m s~1)(105 m)/(1 m2 s~1) \ 1010 for the former and(105
0.01 for the latter. In this case, the length and the half-
thickness of the collapsed sheet are given by equations (24)
and (27) as follows :

j/L D 4.9R
m
1@4(cb)~1@8(l/L )5@4 D 100 , (30)

l
c
/L D 1.3R

m
~3@8(cb)3@16(l/L )5@8D 2 ] 10~5 . (31)

Here we set c\ 5/3 and l/L \ (4n)~1. Let us assume that an
MHD current sheet of macroscopic size whose length is
equal to a half-length of Ñares, that is, 5 ] 102L , is initially
formed within a magnetic arcade through some ideal MHD
processes (see Mikic et al. 1988 ; Biskamp & Welter 1989 ;
Finn et al. 1992 ; Inhester et al. 1992 ; Kusano et al. 1994 ;
Choe & Lee 1996 ; Amari et al. 1996). Then equation (30)
suggests that there appear about Ðve X-points inside the
sheet (see Fig. 11). The region near these X-points is subject
to the dynamical collapse so that the thickness of the sheet
around such points becomes l

c
D 2 ] 10~5L \ 2 ] 10~5

] (100 km)D 2m. Since the initial thickness is lD
(4n)~1L \ (4n)~1] 102 km D10 km, the thickness of the
sheet is reduced about 104 times owing to that collapse.
This value lies in the range of microscopic values, that is, it
satisÐes the condition for the occurrence of anomalous res-
istivity in the corona (see ° 2.3). Accordingly, we can expect
that the anomalous resistivity occurs in those X-points
formed inside the current sheet. Moreover, we think that
such situation may be reÑected by some observational facts.
Taking a careful look at the time variation of hard X-ray
intensity, we often Ðnd multiple enhancements in it. Since
the energetic electrons producing hard X-ray emissions are
considered to be generated in those regions where the resis-
tivity is locally enhanced, such multiple enhancements in
the hard X-ray intensity may be due to the frequent
occurrence of the anomalous resistivity in the current sheet.
This supports the idea that there appear multiple X-points
inside the current sheet, in each of which the anomalous
resistivity occurs. As to the inÑow toward an X-point, its
velocity is expressed as

vinflowD0.8R
m
~5@8(cb)~3@16(l/L )~5@8c

s
D0.4 m s~1 , (32)

when we take c\ 5/3, b \ 0.01, l/L \ (4n)~1,R
m

\ 1010,
and m s~1 in equation (28). This value is extremelyc

s
\ 105
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FIG. 11.ÈSchematic illustration of how the dynamical collapse of the sheet works in the real circumstances of the corona. For details, see text.

small, but if the resistivity is enhanced about 105 times and
the inÑow velocity is also enhanced about the same amount,
it becomes of the order of 4.0] 104 m s~1, which is consis-
tent with the result derived from the fast magnetic reconnec-
tion Ñare model (see Magara et al. 1996). In this respect,
Treumann & Baumjohann (1997) pointed out that the e†ec-
tive collision frequency becomes an order of the ion plasma
frequency when the ion-electron drift velocity is very much
larger than the ion-acoustic velocity. In the coronal

environment, the ion-electron collisional frequency is about
10 K and cm~3), while the ions~1(T

e
\ 106 n0\ 109

plasma frequency is about 106 s~1, so that the e†ectiveness
of resistivity is enhanced about 105 times, although the
precise mechanism of the resistivity enhancement in the
corona is still unknown.

We then see how the occurrence of anomalous resistivity
a†ects the Ñare evolution. To do this, we perform the
numerical simulation including the e†ect of anomalous
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FIG. 12b FIG. 12c

resistivity, the formula for which is given by

g \
q

r

s

t

t

0.01
v
d

200
, v

d
º 200 ,

0.001 , v
d
\ 200 ,

(33)

where 200 is the critical value for the occurrence of anom-
alous resistivity. (The value 200 does not have a physical
meaning. We take this value in order to investigate the
qualitative nature of the Ñare evolution.) The results of this
simulation are shown in Figures 12aÈ12c. In Figure 12a,
contour lines and arrows indicate the magnetic Ðeld lines
and velocity Ðeld projected onto the (x, z)-plane. The gray-
scale map represents the value of the temperature. A dis-
played area is ([1, 0)¹ (x, z)¹ (1, 10). Figures 12b and 12c
are similar to Figures 2a and 2b except for the inclusion of
the e†ect of anomalous resistivity (anomalous resistivity
case) instead of a uniformly distributed resistivity (standard
case). The anomalous resistivity starts at t D 9 so that both
cases show similar evolutions until that time. However,
after that time there appears a prominent discrepancy
between the two cases. Comparing Figure 12a with Figure
3, it is found that a magnetic island of the anomalous resis-
tivity case includes more magnetic Ðeld lines in itself than
that of the standard case (see the panels of t \ 12 in Figs.
12a and 3), which implies that the fast magnetic reconnec-
tion occurs in the anomalous resistivity case. Figure 12b
also indicates the occurrence of fast magnetic reconnection
by the abrupt enhancement of the amount of reconnected
magnetic Ñux. Moreover Figure 12c shows that efficient
energy conversion processes really work after t D 11. These
results can allow us to explain the violent energy release
observed in solar Ñares. Several features of this phase have
been deeply studied by using the fast magnetic reconnection
Ñare model (see Magara et al. 1996, 1997). Such previous
works and Figures 12aÈ12c here strongly support the idea
that the violent energy release in solar Ñares is due to the
occurrence of the locally enhanced resistivity, whereby the
conÐguration of the current sheet is changed from the
Sweet-Parker type to the Petschek type. The characteristic
of the Petschek type of current sheet is the occurrence of
strong inÑows, which can permit the fast magnetic recon-
nection.

5. CONCLUSIONS

On the basis of the above discussions, we can safely
expect that the anomalous resistivity occurs in the coronal
environment where the low-b force-free balance is main-

tained and the magnetic Reynolds number is quite large.
The Ñare evolution starts with the formation of MHD
current sheet through some ideal MHD processes, and
when the timescale of such dynamical processes is longer
than that of the tearing process, the Ñare evolution enters
on the resistive stage. As for the timescale of the linear stage
of the tearing process, this is given by about (q

d
qA)1@2D

where Since the coronalR
m
1@2(cb)1@4(l/L )3@2q

S
q
S
4 L /c

s
.

value of the magnetic Reynolds number is quite large, the
duration of this stage becomes long. For example, we
obtain s with c\ 5/3, b \ 0.01,(q

d
qA)1@2D 103 R

m
\ 1010,

l/L \ 1/4n, and km/100 km s~1\1 s.q
S
\ L /C

s
\ 100

Then through the nonlinear resistive evolution, a uniform
distribution of resistivity changes into a locally enhanced
one. Consequently, the slow-down of the rate of energy
conversions can be avoided and the evolution enters on the
fast magnetic reconnection stage. One important result in
this paper is that we show that several physical processes
work cooperatively to change the distribution of resistivity
in the Ñare evolution. Such processes are the tearing
process, the coalescence process, and the current-sheet col-
lapse. In this respect, Bhattacharjee, Brunel, & Tajima
(1983) also discuss the importance of the coalescence
process in the Ñare evolution. In our previous works
(Magara et al. 1996, 1997), we could not investigate the
preÑare evolution because we started with a locally
enhanced resistivity so that the situation before the resis-
tivity is localized was out of the question in these works. In
this study, we surely Ðnd out the process of the local
enhancement of resistivity, which can smoothly connect
with the following evolution of huge energy release dis-
cussed in our previous works. In addition, from the view-
point of plasmoid eruption, Magara et al. (1997) suggests
that the preÑare phase is a quasi-static phase rather than a
dynamical one, in which many small magnetic islands are
probably formed by weak resistive processes and later they
are merged together through the coalescence process. This
is consistent with the results of the present work, in which
several magnetic islands formed by the tearing instability
continue to coalesce, producing a lot of thermal energy.

6. SUMMARY

Following the above considerations, we now summarize
the physical processes in the Ñare evolution. Figure 13 is a
schematic illustration of such processes and several stages,
each of which is characterized by a particular physical
process. In the upper part of this Ðgure, we show the sche-
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FIG. 13.ÈSchematic illustration of the physical processes in the Ñare evolution and several stages, each of which is characterized by a particular physical
process. In the upper part of this Ðgure, we show the schematic time variations of some physical values used in this paper, while physical processes are
displayed in the lower part of this Ðgure, associated with the physical conÐgurations relevant to such processes.

matic time variations of some physical variables used in this
paper, while physical processes are displayed in the lower
part of this Ðgure, associated with the physical conÐgu-
rations relevant to such processes. In the following, we
explain the feature of every stage in the Ñare evolution.

6.1. Ideal MHD Current-Sheet Formation Stage

During this stage, no resistive processes work efficiently
and a coronal structure makes a quasi-static ideal MHD
evolution. Through that evolution, a current sheet is formed
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within a magnetic arcade, which has been actually con-
Ðrmed in many works (Mikic et al. 1988 ; Biskamp & Welter
1989 ; Finn et al. 1992 ; Inhester et al. 1992 ; Kusano et al.
1994 ; Choe & Lee 1996 ; Amari et al. 1996). Since this stage
is dominated by macroscopic processes, the thickness of the
sheet always lies in the range of macroscopic values. Before
this thickness falls in the range of microscopic values, when
the dynamical timescale is longer than the resistive one,
resistive processes begin to work.

6.2. L inear Stage of Resistive Processes
There exists a relatively small but Ðnite resistivity in the

corona, so that any coronal structure including current
sheets in itself eventually has a resistive evolution. This
starts from the linear stage of tearing instability, generating
many small magnetic islands in the current sheet. Since the
magnetic Reynolds number in the corona is quite large, this
stage usually lasts long, although the amount of the pro-
duced thermal and kinetic energies in this stage is small
compared to the nonlinear stage. Consequently, this long-
lasting stage is less responsible for the preÑare heating.

6.3. Nonlinear Stage of Resistive Processes
In this stage, the coalescence process among those mag-

netic islands formed in the linear stage proceeds efficiently,
producing a sufficient amount of thermal energy. Therefore,
this stage corresponds to the phase in which we observe the
enhancements of soft X-ray and EUV emissions, which sug-
gests that the preÑare heating occurs. Moreover, a lot of
heat probably Ñows from hot regions in current sheet
toward the chromosphere, causing Ha brightenings (R.
Kitai 1997, private communication) and the plasma evapo-
ration (Ohyama & Shibata 1997) in the chromosphere. The
latter may contribute to the mass injection to a coronal
helical loop which will later be ejected as a plasmoid.

6.4. Current-Sheet Collapse
As the nonlinear evolution proceeds, the rate of magnetic

reconnection begins to slow down and energy conversions
weaken. However, owing to the outÑows from an X-point,
this region is strongly pressed by the external force and
su†er the current-sheet collapse. In a low-b and large-R

mregion such as the solar corona, this collapse eventually
generates a very thin current sheet, leading to the
occurrence of anomalous resistivity. In this way, the tran-
sition from a uniformly distributed resistivity to a locally
enhanced one is accomplished, causing the fast magnetic
reconnection which enables the violent energy release.

6.5. Fast Magnetic Reconnection Stage
After the occurrence of anomalous resistivity, the rate of

magnetic reconnection begins to increase and the merging
among many small magnetic islands proceeds rapidly to
produce a large magnetic island, or plasmoid (see Magara et
al. 1997). In this stage, PetschekÏs conÐguration of the
current sheet is formed macroscopically, which enables
strong inÑows toward an X-point. Here the fast magnetic
reconnection can occur, whereby high-speed jets are pro-
duced, contributing to the acceleration of plasmoid. Since
these jets e†ectively Ñow away the residual perpendicular
magnetic Ðelds around an X-point, the rate of magnetic
reconnection is still more enhanced and the hard X-ray
intensity also reaches its peak (see Magara et al. 1997). The
heating of a plasma is now so lively that there is formed a
helical loop Ðlled with a hot plasma, which can be observed
as an erupting soft X-ray plasmoid.

We mainly focus our attention on solar Ñares, but we
think that the results presented in this paper can be also
applied to other transient explosive phenomena in the Sun.
That is, if such events have gradual heating as a precursor
to the following main explosion, we can expect that there
exist those physical processes shown above, apart from the
physical scale of events.

In summary, this paper aims at understanding how the
change of the energy conversion rate occurs in the Ñare
evolution, that is, the transition from the gradual energy-
release phase (preÑare phase) to the violent energy-release
phase (impulsive, or rise phase). We, in this study, conÐrm
that the current-sheet collapse occurs in the Ñare evolution
if the magnetic Reynolds number is quite large and the
plasma beta is quite low. This collapse causes the
occurrence of anomalous resistivity, and then the transition
from a uniformly distributed resistivity to a locally
enhanced one is achieved. In this way, a relatively gentle
energy release in the preÑare phase is replaced by the
violent energy release in the impulsive or rise phase in
which the fast magnetic reconnection is operating effi-
ciently.

The authors thank T. Yokoyama for his useful dis-
cussions and also thank the anonymous referee for his
instructive suggestions. The numerical computations have
been carried out using NEC SX-4 at the National Institute
of Fusion Science.

REFERENCES

Amari, T., Luciani, J. F., Aly, J. J., & Tagger, M. 1996 A&A, 306, 913
Bhattacharjee, A., Brunel, F., & Tajima, T. 1983, Phys. Fluids, 26 (11), 3332
Biskamp, D. 1986, Phys. Fluids, 29, 1520
ÈÈÈ. 1993, Nonlinear Magnetohydrodynamics (Cambridge : Cambridge

Univ. Press)
Biskamp, D., & Welter, H. 1989, Sol. Phys., 120, 49
Choe, G. S., & Lee, L. C. 1996 ApJ, 472, 360
Finn, J. M., Guzdar, P. N., & Chen, J. 1992, ApJ, 393, 800
Forbes, T. G., Malherbe, J. M., & Priest, E. R. 1989, Sol. Phys., 120, 285
Forbes, T. G., & Priest, E. R. 1983, Sol. Phys., 84, 169
Forbes, T. G., & Malherbe, J. M. 1991, Sol. Phys., 135, 361
Fu, Z. F., & Lee, L. C. 1986, J. Geophys. Res., 91, 13373
Furth, H. P., Killeen, J., & Rosenbluth, M. N. 1963, Phys. Fluids, 6, 459
Heyvaerts, J., Priest, E. R., & Rust, D. M. 1977, ApJ, 216, 123
Inhester, B., Birn, J., & Hesse, M. 1992, Sol. Phys., 138, 257
Karpen, J. T., Antiochos, S. K., & DeVore, C. R. 1996, ApJ, 460, L73
Kusano, K., Suzuki, Y., Kubo, H., Miyoshi, T., & Nishikawa, K. 1994, ApJ,

433, 361

Magara, T., Mineshige, S., Yokoyama, T., & Shibata, K. 1996, ApJ, 466,
1054

Magara, T., Shibata, K., & Yokoyama, T. 1997, ApJ, 487, 437
Mikic, Z., Barnes, D. C., & Schnack, D. D. 1988, ApJ, 328, 830
Ohyama, M., & Shibata, K. 1997, PASJ, 49, 249
Parker, E. N. 1963, ApJS, 8, 177
ÈÈÈ. 1994, Spontaneous Current Sheets in Magnetic Fields (Oxford :

Oxford Univ. Press)
Petschek, H. E. 1964, in Proc. AAS-NASA Symp. on Solar Flares, NASA

SP-50, 425
Priest, E. R. 1982, Solar Magnetohydrodynamics (Dordrecht : Reidel), 138
Priest, E. R. 1991, Philos. Trans. R. Soc. London A, 336, 363
Priest, E. R., & Forbes, T. G. 1986, J. Geophys. Res., 91, 5579
Rutherford, P. H. 1973, Phys. Fluid, 16, 1903
Sato, T., & Hayashi, T. 1979, Phys. Fluids, 22, 1189
Schumacher, J., & Kliem, B. 1996, Phys. Plasmas, 3 (12), 4703
Shibata, K. 1997, in Workshop on Solar Flares and Related Disturbances,

ed. T. Sakurai, E. Sagawa, & M. Akioka (Hiraiso : CRL), 36



No. 1, 1999 EVOLUTION OF ERUPTIVE FLARES. II. 471

Shibata, K., Nozawa, S., & Matsumoto, R. 1992, PASJ, 44, 265
Shibata, K., Tajima, T., Steinolfson, R. S., & Matsumoto, R. 1989, ApJ,

345, 584
Steinolfson, R. S., & van Hoven, G. 1984, Phys. Fluids, 27 (5), 1207
Sturrock, P. A. 1994, Plasma Physics (Cambridge : Cambridge Univ. Press)
Sweet, P. A. 1958, in IAU Symp. 6, Electromagnetic Phenomena in Cosmic

Physics ; ed. B. Lehnert (Cambridge : Cambridge Univ. Press), 123

Treumann, R. A., & Baumjohann, W. 1997, Advanced Space Plasma
Physics (London: Imperial College Press)

Ugai, M. 1994, Phys. Plasmas, 1, 2853
ÈÈÈ. 1995, Phys. Plasmas, 2, 388
Ugai, M., & Tsuda, T. 1977, J. Plasma Phys., 17, 337
Ugai, M., & Shimizu, T. 1996, Phys. Plasmas, 3, 853
Yokoyama, T., & Shibata, K. 1996, PASJ, 48, 353


