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Extended Abstract

In this thesis, we study solar flares by comparing the theoretical results obtained by

means of the MHD numerical simulation with the observational results to understand their

driving mechanism and physical structure. Detailed accounts of the organization of this thesis

are given below.

Chapter 1. General Introduction

In this chapter, we show a brief lead-in toward this thesis, that is, we mention both the

background and the aim of our studies in this thesis.

Chapter 2. Physical Structure and Evolution of The Postflare Loops

In this chapter, on the basis of the Masuda’s discovery of a hard X-ray loop-top

source (see Masuda 1994; Masuda et al. 1994), we consider the physical structure of the

postflare loops, which are those closed loops observed after the occurrence of flares (see

Figure 1. 1). Masuda discovered that there existed a hard X-ray source above the soft X-ray

postflare loops, which implies that a sufficient amount of energy is released outside these

loops. In order to explain this observational fact, we use a flare model based on the magnetic

reconnection and investigate the process of how such loop-top source is formed.

Chapter 3. Plasmoid Dynamics in Eruptive Flares

In this chapter, we cast our attention to ejected plasma blobs (plasmoids) observed

frequently in solar flares (see Figure 1. 1). By referring to the observational results presented

by Ohyama & Shibata (1997) who analyzed several Yohkoh soft X-ray images and showed

the evolution of plasmoids, we study the dynamics of plasmoids in detail.

Chapter 4. 3-Dimensionality of Solar Phenomena

In this chapter, we consider some 3-dimensional solar phenomena. To do researches

on that topic, we develop a numerical code for the 3-dimensional MHD numerical simulation.

We explain this code briefly as well as show some interesting results obtained by means of

the 3-dimensional MHD numerical simulation.



Appendix A. Summary of The Important Physical Processes in Solar Flares

In this appendix, we summarize several important physical processes relevant to solar

flares, such as the magnetic reconnection, the tearing instability, and the anomalous resistivity.

Appendix B. Specification of A Numerical Code

In this appendix, we explain a numerical code used in this thesis. A family of the

MHD partial-differential equations are converted into a set of difference equations, which are

solved on the basis of the modified Lax-Wendroff scheme.

Most of the studies in this thesis (except for Chap. 4) are done by using a code for the

2.5-dimensional numerical simulation developed originally by Dr. Shibata and Dr. Yokoyama

(see Shibata et al. 1989; Yokoyama 1995) with some modifications. The author is responsible

for such modifications and the analyses of numerical data, while the interpretations of results

and the discussions have been made cooperatively among the author, Dr. Shibata, and Dr.

Yokoyama. Also the author has developed a code for the 3-dimensional MHD numerical

simulation which is shown in Chap. 4. Some of the results in this thesis have been already

reported in Magara et al. (1996a, b), Magara & Shibata (1997), and Magara, Shibata, &

Yokoyama (1997).



Chapter 1. General Introduction

As is well known to us, the sun is the nearest and the most familiar star in the

universe. Many interesting phenomena on the sun, therefore, have attracted people widely

and deeply for a long time. Also, many efforts to try to understand the physical processes

running behind these phenomena have been made continuously. Out of such interesting solar

phenomena, I take up solar flares as a subject of my thesis and study their physical aspects by

comparing the theoretical results with the observational one.

Solar flares are one of the most prominent phenomena observed in the outer atmosphere

of the sun. Before the occurrence of flares, some area in an active region slowly enhances

several kinds of radiation. This is called the preflare phase, which is followed by an violent

phase when all sorts of electromagnetic wave are strongly emitted, plasma blobs are ejected,

and highly energetic particles are generated. This violent phase is often called the impulsive

phase, continuing in a fairly short time (typically 10–102 s). After that violent phase, the

radiation gradually decreases to its normal level. This phase is called the gradual phase (see

Figure 1. 2).

Since they were first observed in the photosphere by Carrington in 1859, solar flares

have been one of the most important topics in the solar physics. However, it had been quite

difficult to understand their whole image as long as only the photospheric information was

usable, because solar flares are the events observed mainly in the upper atmosphere of the

sun, such as the chromosphere and the corona, and its behavior could not be understood well

by means of the white light observation.

A turning point of the study of solar flares came when one spacecraft, called Skylab,

succeeded to take many beautiful pictures of the corona through 1973 to 1974. This operation

has been memorized as a milestone which taught solar physicists the important role that the

magnetic field plays in various coronal activities, and solar flare is not exception. Before this

operation, several primitive flare models including the effect of the magnetic field were

proposed (Carmichael 1964, Sturrock 1966). After the operation, not only these magnetic-

filed-based flare models were widely accepted but also it began to be believed that various

coronal activities had a direct relationship to the release of the magnetic energy stored by the

coronal magnetic field. From this viewpoint, Hirayama (1974) and Kopp & Pneuman (1976)

presented a flare model based on the magnetic reconnection. This model, called CSHKP

model by including the results of Carmichael and Sturrock, suggested that the magnetic

reconnection occurs in a current sheet formed in the corona so that the magnetic energy was

converted into both the thermal and the kinetic energy, associated with the formation of

closed loops and the eruption of plasma blobs (plasmoids) (see Figure 1. 1).



In addition to that qualitative study of solar flares, more fundamental researches

started, that is, solar physicists began to investigate the possible equilibrium configuration of

the coronal magnetic field and its stabilities. Zweibel & Hundhausen (1982) found several

2-dimensional magnetohydrostatic solutions analytically. This work was extended by Melville,

Hood, & Priest (1984) and Su (1985, 1990). Cargill, Hood, & Migliuolo (1986), Velli &

Hood (1986), and Hood & Anzer (1987) studied the MHD stability of the cylindrically

symmetric magnetic arcade. The effect of the viscosity on that kind of arcade was discussed

by van der Linden, Goossens, & Hood (1988) and Bogaert & Goossens (1991). Recently,

Neukirch (1997) succeeded to find out a family of 3-dimensional analytic solutions of the

magnetohydrostatic equations.

Researches on the evolution of the coronal magnetic field causing eruptive phenomena

have also become an important subject in terms of studying the onset condition of solar

flares. Historically, this kind of work started when we regarded the preflare evolution as the

transition process in a series of force-free equilibria. Barnes & Sturrock (1972) studied the

behavior of the cylindrically symmetric force-free field subject to a particular photospheric

twist motion. Low (1977) introduced the generating-function method and obtained a family

of force-free equilibria characterized by a certain parameter, which was later reconsidered by

Jockers (1978) and Klimchuk & Sturrock (1989). Zwingmann (1987) showed a series of

magnetohydrostatic solutions of the coronal magnetic field and explained the onset condition

of eruptive phenomena, which was reconsidered by Platt & Neukirch (1994). Recently, Aly

(1995) showed the possibility that an axisymmetric force-free magnetic field subject to a

shearing motion reached an open-field state in a finite time.

In this respect, the recent development of computers enabled us to trace the temporal

evolution of the coronal magnetic field by means of numerical simulations. These studies are

found in Mikic, Barnes, & Schnack (1988), Biskamp & Welter (1989), Finn, Guzdar, & Chen

(1992), Inhester, Birn, & Hesse (1992), Kusano, Suzuki, & Nishikawa (1995), Choe & Lee

(1996), and so on. All of these successfully confirmed the formation of a current sheet within

a magnetic arcade, though there has been one controversy about the topological configuration

causing the formation of a current sheet, that is, in order to form a current sheet within a

magnetic arcade, it was suggested that at least two neighboring arcades were needed (Biskamp

& Welter 1989) or a converging motion toward the neutral line had to be added to a shearing

motion (Inhester et al. 1992). Lately Amari et al. (1996) obtained an interesting result on this

problem, in which they showed that a current sheet could be formed within a single magnetic

arcade by imposing a long-lasting shearing motion alone.

Turning to the solar observation, the surprising development of observational tools

has greatly contributed to our understanding of the magnetic and gaseous fine structures of

solar flares. For example, Kurokawa (1987, 1989) made high-resolution Hα observations and

concluded that the twisted flux tube emerging from the subphotosphere played a crucial role



in the occurrence of flares. Tanaka (1991) studied the complex-subsurface magnetic-rope

structure of a very flare-active isolated δ group by means of high-resolution evolutionary data

from BBSO magnetic & velocity data. Wiik et al. (1996) used MSDP (Multichannel Subtractive

Double-Pass Spectrograph) and derived the bulk-flow velocity field along a postflare loop.

As for the X-ray observation, several space operations such as SMM (Solar Maximum Mission,

starting in 1980) and Hinotori (starting in 1981) took over the role of Skylab and presented

many interesting results. Sakurai (1985) used some hard X-ray images obtained by Hinotori

and studied the magnetic structures causing flares.

After the launch of solar-A satellite, called Yohkoh, in 1991, the researches in solar

flares entered on the next stage (Ogawara et al. 1991). Since the spacial and time resolutions

of this spacecraft are both high, it becomes possible to make a detailed comparison between

the Yohkoh X-ray images and other data. For examples, Schmieder et al. (1995, 1996) and

van Driel-Gesztelyi (1997) studied the features of the postflare loops by comparing Hα data

with soft X-ray data. Yoshimura et al. (1996) studied several emerging flux regions by using

soft X-ray data and Hα data. Aschwanden & Benz (1997) used both radio data and soft X-ray

data to estimate the gas density inside the postflare loops and at a region where the particle

acceleration occurs.

Not only the comparison among several kinds of observational data but also the

comparison of theoretically predicted results with fine observational results makes a large

contribution to our understanding of the real image of solar flares. Since solar flares are fairly

complicated and nonlinear phenomena, it is appropriate to use the method of numerical

simulations for the direct comparison between theory and observation. This is why we perform

the MHD numerical simulation and compare the results to some observational results in this

thesis.



Chapter 2. Physical Structure and Evolution of The Postflare Loops

Abstract

In this chapter, we investigate the physical structure and evolution of the postflare

loops by performing the 2-dimensional MHD numerical simulation with a particular attention

paid to the observational results brought by Yohkoh. By using a flare model based on the

magnetic reconnection, we confirm that a hot and dense region appears behind a fast MHD

shock which is formed through the interaction between the reconnection jets and the postflare

loops. That dense and hot region is maintained by the magnetic pressure walls, that is, the

enhanced magnetic pressure confines a mass of energetic gases into a small region. Since

such energetic region exists above the soft X-ray closed loops in the impulsive flares, we

conclude that it corresponds to the so-called Masuda source (see Masuda et al. 1994).

As for the evolution of the postflare loops, we plot the time variation of the height of

the reconnected magnetic-field line and confirm its decrease tendency with time, which is

consistent with observational results. Moreover, the overall expansion behavior of the postflare

loops is also reproduced in our simulation.

2. 1. Introduction

There are several different ways to classify solar flares (see Table 2. 1). Here, we

distinguish between the LDE (long duration event) flares and the impulsive flares. Morpho-

logically, the former has a cusp-shaped loop structure, while the latter does not, having only a

simple loop structure. Since these two types of flares are different in appearance, it has been

long thought that a different mechanism may operate for each of them. For example, the LDE

flares (hereafter referred to as cusp-type flares) has been understood by the classical model

for two-ribbon flares, that is, it was long suspected that the magnetic reconnection occurred

above a cusp-shaped loop and the stored energy was almost released outside this loop (see

Carmichael 1964, Sturrock 1966, Hirayama 1974, and Kopp & Pneuman 1976). Yohkoh

actually confirmed this hypothesis by discovering a cusp-shaped loop in the LDE flares (see

Figure 2. 1 and also Tsuneta et al. 1992). Impulsive flares (hereafter referred to as non-cusp-type

flares), on the other hand, have been explained by a loop flare model in which the main

energy release occurs inside the loop and the magnetic reconnection does not take place

outside this loop (Alfvén & Carlqvist 1967, Spicer 1977, Uchida and Shibata 1988). To sum

up, it has been thought that there was a clear distinction between cusp-type and non-cusp-type

flares.



A doubt has been cast on this interpretation, however, when an intense hard X-ray

emission was observed from above the soft X-ray closed loops in some impulsive limb flares

(see Figure 2. 2 and also Masuda et al. 1994). Previously, this type of flares was classified as

non-cusp-type flares, because only closed loops could be seen in soft X-ray. The presence of

a hard X-ray source above the closed loops has now established that an impulsive energy

release occurs not inside but outside the loops in at least some of non-cusp-type flares.

Moreover, in the same impulsive limb flares as Masuda studied, Shibata et al. (1995) found

the soft X-ray signature of plasmoids moving upward at about 50–400 km / s, which is about

10 % of the coronal Alfvén velocity, vA, because vA ~ 3000 (B / 100 G) (n / 1010 cm– 3)– 1 / 2 km

/ s in a typical active region in the corona. Since the plasmoid eruption is one of the key

features associated with cusp-type flares, Shibata’s discovery also supports the idea that at

least part of non-cusp-type flares may have a close similarity with cusp-type flares (see

Shibata 1995).

Now a question arises as to the relationship between non-cusp-type and cusp-type

flares. To answer this question, we apply a flare model based on the fast magnetic reconnection

originally developed by Ugai (1986) to solar flares and study the physical structure and

evolution of the postflare loops. In this study, we perform the 2-dimensional MHD numerical

simulation and investigate some key characteristics of cusp-type flares, keeping in mind the

application of them to non-cusp-type flares. We give our physical assumptions, basic equations,

and method of calculation in § 2. 2. The results are presented in  § 2. 3. We then introduce

some observational results relevant to our study in § 2. 4. In § 2. 5, we discuss the relationship

between the impulsive flares and the LDE flares, trying to generalize the cusp-type flare

model based on the fast magnetic reconnection. The final section is devoted to a summary.

2. 2 Basic Formulations

2. 2. 1. Basic Equations

In this study, we use the standard set of the MHD equations except that the effects of

gravity and viscosity are both neglected. These equations are

    ∂ρ
∂ t

+ ∇ ⋅ ρ v = 0, (2. 1)

     
ρ

∂v
∂t

+ v ⋅ ∇ v = – ∇ P + 1
4 π ∇ × B × B, (2. 2)

     ργ

γ – 1
∂
∂ t

P
ργ + v ⋅ ∇ P

ργ =
η

4 π ∇ × B
2
, (2. 3)



     ∂B
∂ t

= ∇ × v × B – ∇ × η ∇× B , (2. 4)

   P =
ρ R T

µ . (2. 5)

Additionally, we use     ∇ ⋅ B = 0 as the initial condition for equation (2. 4). Here all the

symbols, such as P, ρ, T, v, and B have their usual meanings, γ is the adiabatic index, R is the

gas constant, µ is the mean molecular weight, and η is the electrical resistivity. On the basis

of these equations, we perform the 2-dimensional MHD numerical simulation in the Cartesian

coordinate. All the physical variables are dependent on both the x-coordinate and the z-coordinate

but independent of the y-coordinate. In practice, all the calculations are carried out in the

nondimensional form derived by some particular units. These units are summarized in Table

2. 2.

2. 2. 2. Initial Configuration & Boundary Conditions

Figure 2. 3 shows the initial configuration of the present numerical simulation in the

(x, z)-plane. Initially, the magnetic field is set to be antiparallel with respect to the z-axis. A

hatched area represents the region where the artificial resistivity is turned on as the initial

perturbation (during 0 < t < 0.6), while a gray area represents the region where the initial

density is enhanced for modeling on the lower dense atmosphere of the sun. In the actual

calculations, we solve the basic equations only over a half domain of the calculation region (x

> 0), assuming a symmetry with respect to the z-axis.

The physical variables are initially set to be in equilibrium and described as

   v = 0, (2. 6)

    B x , z = – B0 tanh 3
2 π x z , (2. 7)

   
P x, z = P0

1

β cosh2 3
2

π x
+1 , (2. 8)

  
T x , z = T0 0.45 tanh 100 z – 0.1 +0.55 , (2. 9)

   
ρ x , z = γ

P x, z

T x, z
, (2. 10)

where we set β = 0.2, γ = 5 / 3, P0 = 1 / γ = 0.6, B0 = [8 π / γ β]1 / 2  = 8.68, and T0 = 1 in this

calculations. Since the initial magnetic field is antiparallel, a current sheet is formed along the

z-axis, where the gas pressure is enhanced to obtain the balance of forces. As we mentioned,



for modeling on the massive layers such as the chromosphere and the photosphere, we put a

dense region between z = 0 and z = 0.1. This region plays an important role in line-tying the

magnetic field at the base.

To carry out our calculations, we have to set four boundary conditions around the

calculation region. At the top boundary (at z = 24), we set a free boundary condition:

   ∂Bz

∂z
=

∂vx
∂z

=
∂vz

∂ z
=

∂P
∂z

=
∂ρ
∂z

= 0, and     ∇ ⋅ B = 0. (2. 11)

Along the z-axis (at x = 0), at the side boundary (at x = 8), and at the bottom boundary (at z =

0), we set

   
vx = Bz =

∂vz

∂x
=

∂Bx
∂x

=
∂P
∂x

=
∂ρ
∂x

= 0, (2. 12)

   
vx = Bx =

∂vz

∂x
=

∂Bz

∂x
=

∂P
∂x

=
∂ρ
∂x

= 0, (2. 13)

and

   
vz = Bx =

∂vx
∂z

=
∂Bz

∂ z
=

∂P
∂z

=
∂ρ
∂z

= 0, (2. 14)

respectively. We perform the present numerical simulation on the basis of the modified

Lax-Wendroff scheme. The number of grid points is (Nx × Nz) = (100 × 100) for the low-resolution

case and (137 × 400) for the high-resolution case. In the former case, grid points are distributed

uniformly along both the x-coordinate and the z-coordinate, and hence the mesh size is (∆x,

∆z) = (0.08, 0.24), while, in the latter case, grid points are distributed uniformly along the

z-coordinate but nonuniformly along the x-coordinate with fine meshes assigned to the region

of a current sheet (0 < x < 0.2). Accordingly, the mesh size is (∆x, ∆z) = (0.02, 0.06) inside

the sheet and (∆x, ∆z) = (0.1, 0.06) in the distant region from the sheet.

2. 2. 3. Initial Perturbation

Initially, the electrical resistivity is set to be zero everywhere except in a small region

of 
   

x2 + z – 4.0
2 1/ 2

≤ 0.8 (gray area in Figure 2. 3) where η = 1 / 30 is assigned in a finite

time, 0 < t < 0.6. Owing to this resistivity, the magnetic field can begin to dissipate, which

causes inflows toward this resistive region. These flows drag the magnetic field, making a

X-type neutral point. Consequently, the current density increases and turns on the anomalous

resistivity (see below).



2. 2. 4. Anomalous Resistivity

We may safely assume that the fast magnetic reconnection is responsible for the

violent energy release observed in solar flares. Among several physical processes capable of

causing the fast magnetic reconnection, the anomalous resistivity is probably one of the most

important processes. We, therefore, give a brief explanation of this process in Appendix. A.

3. The anomalous resistivity is known to have a close relationship with plasma microturbulences

(see Parker 1979; Treumann & Baumjohann 1997). Suppose that the ion-electron drift velocity

exceeds its sound velocity, the mean flow of electrons excites the plasma microturbulences,

which provides a seed for the anomalous resistivity. It is important to note that the anomalous

resistivity can make the diffusion region localized into a fairly small area and thereby the

Petschek-like configuration is formed around the diffusion region. That configuration is

actually favored in terms of causing the fast magnetic reconnection (see Yokoyama and

Shibata 1994). Ugai pointed out the essence of the fast magnetic reconnection by using a

spontaneous fast-magnetic-reconnection model. He described a new-type nonlinear instability

that grows by the self-consistent interaction (or feedback) between the microscopic anomalous

resistivity and the macroscopic global reconnection flows (Ugai 1996). The anomalous resis-

tivity is also used to understand other active phenomena in the universe. For example,

Borovsky (1986) explained the extragalactic jet by a hybrid double-layer/anomalous resistivity

model.

In the present study, we assume the following form for the anomalous resistivity

except that η is over 1. In that case η is constantly set to be 1.

   

η =
1
15

vd
vc

– 1 , for vd ≡
jy
ρ ≥ vc ,

0, for vd < vc ,

(2. 15)

where     j = ∇ × B, vd represents the ion-electron drift velocity, and vc is a threshold velocity

(see Ugai 1986). In the present study, we take vc = 12.

2. 3. Structure and Evolution of The Postflare Loops

2. 3. 1. Overview

Figure 2. 4 shows how the magnetic reconnection proceeds in this simulation. Here,

contour lines and arrows represent the magnetic field lines and velocity field, respectively.

Elapsed times are t = 0 (top-left), 6 (top-right), 12 (bottom-left), and 18 (bottom-right). Note

that part of the calculation region, (– 4, 0) ≤ (x, z) ≤ (4, 20), is displayed here.



The fast magnetic reconnection sets in at t = 6 (see the top-right panel) and then a

plasmoid begins to be formed. As the magnetic reconnection still proceeds, the plasmoid

moves upward, getting larger in size. The reconnected field lines flow downward and form

closed loops in the range of 0 ≤ z ≤ 2 (see the bottom-left panel). At t = 18 (the bottom-right

panel), a cusp-like structure is formed near z = 3.  Basically, these evolutionary features are

consistent with the results of previous works (e.g., Forbes & Priest 1983). In the following,

we study the physical structure of such closed loops in detail, while the investigation of the

dynamics of plasmoids is left to Chap. 3.

2. 3. 2. Physical Structure of The Postflare Loops

We use the results of the high-resolution case to clarify the physical structure around

the loop-top region. Figure 2. 5a is composed of four color maps, each of which shows the

temperature (top-left), gas density (top-right), gas pressure (bottom-left), and current density

(bottom-right), respectively. An elapsed time is t = 10. Solid lines and arrows represent the

magnetic field lines and velocity field, respectively. Figures 2. 5b–5c show the spacial

distributions around the loop-top region of such physical variables as the fast-mode Mach

number (Ma), temperature (T), y-component of the current density (jy), gas pressure (Pg),

magnetic pressure (Pm), gas density (ρ), and the absolute value of the x-component of the

magnetic field (|Bx|). Figure 2. 5b is a vertical distribution along the z-axis and Figure 2. 5c is

a horizontal distribution along a particular horizontal line (z = 1.6). An elapsed time is t = 10.

The region of the maximum temperature appears around a neutral point, where the

temperature is about 8 times higher than in the surrounding region. There is little matter

around this point, because a lot of plasma has been flowed away along the z-axis due to the

strong reconnection outflows generated by the magnetic reconnection. Casting eyes to the

loop-top region, we find that a fast MHD shock is formed at z ~ 2 in Figure 2. 5b. Behind this

shock, a region which is hotter and denser than the ambient region appears at z ~ 1.6.

Moreover, the horizontal distribution given in Figure 2. 5c gives us other information about

this region. The profile of the current density implies the existence of a pair of slow MHD

shocks by which the surrounded gases are heated. In addition, when we look at the profile of

the magnetic pressure, it is found that such hot and dense gases are effectively confined by

the enhanced magnetic pressure, which we call the magnetic pressure wall .  Consequently, it

is clearly understood that a hot and dense loop-top source is formed and survives by the help

of the fast MHD shock and a pair of slow MHD shocks.

Figure 2. 6 is a picture showing the structure of the loop-top source schematically. If

the slow MHD shock is assumed to be the so-called switch-off shock with the upstream

magnetic field nearly tangential to the shock surface, the enhancement of the gas density and

temperature by this shock is expressed as



   ρII
ρI

=
1+ β I

2
5

+ β I

, (2. 16)

and

   TII

TI
= 2

5 β I

+1 , (2. 17)

where subscripts I and II means the value measured in the region I and II, respectively. Here

we take γ = 5 / 3 (see Forbes, Malherbe, & Priest 1989). Similarly, the enhancement of the

gas density and temperature by the fast MHD shock is expressed as

   ρIII
ρ II

=
– U + U2 + V

1 / 2

4 2 – γ
, (2. 18)

and

   

TIII

T II
=

ρ III
ρII

– 1

β II

γ – 1
ρIII
ρ II

2

+ 2 1 – γ ρ III
ρ II

+ γ 2 β II +1 – 1

γ 1 –
ρ III
ρII

+ 1 +
ρ III
ρ II

+1
ρII
ρIII

, (2. 19)

where

   
U = 2 β II +

γ – 1 γ β II + 2 M a
2

γ + 2 γ , (2. 20)

and

   V = 8 2 – γ γ + 1 γ βII + 2 M a
2 (2. 21)

(see, for example, Priest 1982 or Shu 1992). Here subscript III means the value measured in

the region III. In the present simulation, we have γ = 5 / 3, β  = 0.2, βII = 143, and Ma = 1.25

so that we obtain ρIII / ρII = 1.37 and TIII / TII = 1.24, which is consistent with the results

shown in Figure 2. 5b. Actually, an active region in the solar corona has such a plasma beta

as is much lower than the present numerical simulation so that those enhancements described

above become stronger in the real circumstances of the corona. For example, when we take βI

= 0.01, equations (2. 16) and (2. 17) give ρII / ρI = 2.5 and TII / TI = 40. Then if we assume Ma

= 1.25 and βII = 100, we finally obtain ρIII / ρI = 3.43 and TIII / TI = 50 by using equations (2.

18) and (2. 19). These results imply that the temperature of the loop-top source is about one

hundred million degrees because TI is about 2  × 106 K. Observationally, Masuda et al. (1994)

and recently Sato (J. Sato 1997, private communication) found out that the temperature of



this source was about one hundred million degrees by assuming that the source has a thermal

emission. Hence our estimation is in good accordance with their result.

Turning our eyes to the inside of the postflare loops in Figure 2. 5a, there remains hot

regions because the present numerical simulation does not include the radiative cooling

effect. However, in the real circumstances of the postflare loops, this effect does play an

important role in reducing the temperature inside the postflare loops, which causes the so-called

Hα postflare loops (see § 2. 5 and Figure 2. 9). Forbes & Malherbe (1985, 1991) considered

that effect and studied the structure of the postflare loops.

2. 3. 3. Evolution of The Postflare Loops

Next, we turn our attention to the evolution of the postflare loops. In Figure 2. 7, each

dotted line represents the time variation of the height of the reconnected magnetic-field line

measured along the z-axis. Asterisks show the inflection points of dotted lines. These points

are considered to indicate the loop-top region which can made through the collision between

the downflow of the reconnected magnetic-field line and the pre-existed closed loops. A thick

curve line is drawn on the basis of the power-law fitting applied to such inflection points and

this line is considered to represent an evolutionary line of the postflare loops. From this

figure, we find that all the reconnected magnetic-field lines have a downward movement with

time. On the other hand, as to the overall behavior of the postflare loops, they rise rapidly at

first and then their rising speed gradually decreases.

2. 4. Observational Results of The Postflare Loops

2. 4. 1. Loop-top Source

In this section, we show two types of loop-top source observed by Yohkoh. One of

them is observed in the impulsive flares. This is known as the Masuda’s source and an

example of this is shown in Figure 2. 2. The character of this source is that it exists above the

soft X-ray closed loops and can be observed in such a high-energy electromagnetic wave as

hard X-ray. Another type is observed in the LDE flares and an example of this can be seen in

Figure 2. 1. Compared with the Masuda’s source, this source is formed inside the soft X-ray

closed loops and can be observed in soft X-ray.

2. 4. 2. Evolution of The Postflare Loops

Recently, Hiei & Hundhausan (1996) reported the shrinking behavior of the postflare

loops observed by Yohkoh. They showed that one loop appeared at a certain height and

shrank with time, then another loop appeared at the greater height than the previous one (see



Figure 2. 8). From Figure 2. 8, it is found that the downward velocity of each loop is about 3

km / s and the overall expansion speed is about 2 km / s. Such shrinking behaviors of the

postflare loops are also discussed by Forbes & Acton (1996), who compared the potential

magnetic field with the postflare loops observed by Yohkoh.

2. 5. Discussion

2. 5. 1. Physical Structure of The Postflare Loops

In this section, we discuss the physical structure of the postflare loops in both the

impulsive flares and the LDE flares. According to Figure 2. 5a, the temperature around a

neutral point and a pair of slow MHD shocks is so high that the thermal conduction can

efficiently transport a sufficient amount of energy to the lower atmosphere along magnetic

field lines. This is followed by heating of the chromospheric gases and then these heated

gases begin to evaporate into the corona. In this way, such evaporated gases eventually fill

the coronal loops in the postflare phase, which are observed as the soft X-ray closed loops.

On the basis of this consideration, we then consider why there are two types of loop-top

source. Here we pay attention to the efficiency of the magnetic reconnection in the impulsive

flares and the LDE flares. As to the impulsive flares, the magnetic reconnection proceeds so

rapidly that many closed loops can be formed. The evaporated gases try to fill these loops,

though they do not have enough time to fill the outermost closed loop because of the

quickness of the magnetic reconnection. As is mentioned in § 2. 3. 2, the loop-top source is

formed just behind the fast MHD shock which is located at the top of the outermost closed

loop, so that the loop-top source in the impulsive flares exists above the soft X-ray closed

loops. On the other hand, the rate of the magnetic reconnection in the LDE flares is so slow

that the evaporated gases can always fill even the outermost closed loop, which makes the

loop-top source surrounded by the soft X-ray flaring gases.

Followed by the above discussion, we summarize our flare model based on the magnetic

reconnection which can be applied to not only the LDE flares but also the impulsive flares.

Figure 2. 9 is a schematic illustration of this model.

In the impulsive flares, there occur the downward flow of energetic electrons and the

thermal conduction, each of which originates from a neutral point and a pair of slow MHD

shocks. The electron flow and the thermal conduction direct toward the chromosphere along

magnetic field lines, while the latter forms the conduction front, whereby the neighboring

plasmas are heated (see Forbes & Malherbe 1985). The chromospheric gases are heated by

such electron flow and the thermal conduction so that the hard X-ray footpoint sources and

the Hα bright ribbons are generated (see Sakao 1994). The heated gases evaporate into the

corona, forming the dense soft X-ray closed loops. In this respect, it must be taken in mind



that a hot but low-density region cannot always be observed in soft X-ray because the

emissivity is more sensitive to the gas density than the temperature. The reconnection jets

collide with the outermost closed loop to form a fast MHD shock, which makes a hot and

dense core in cooperation with a pair of slow MHD shocks (see § 2. 3. 2). Since the

evaporated gases cannot reach this energetic core, it is observed that there is a hard X-ray

source above the soft X-ray closed loops.

In the LDE flares, the closed loops under a neutral point completely fill with the

evaporated gases. In this case, the evaporated gases contact with the conduction front so that

they are sufficiently heated up, forming a soft X-ray cusp-like structure, which gives the

reason to classify these flares into cusp-type flares (see Figure 2. 1). The loop-top source is

observed to be embedded by the evaporated gases. Inside the closed loops, heating by the

conduction front is no longer effective so that the plasma in the closed loops can cool via the

radiative cooling process, whereby the postflare loops can be observed in Hα. Van Driel-

Gesztelyi et al. (1997) investigated the formation process of the postflare loops in detail and

Heinzel (1994) studied the physical structure of the cool component of the postflare loops.

We have said that the difference between the impulsive flares and the LDE flares

comes from the difference in the rate of the magnetic reconnection, which can also give

appropriate explanations on other aspects of such two types of flares. First, when the rate of

the magnetic reconnection is high, the released energy per unit time is so large as to make

very energetic sources, such as hard X-ray loop-top and footpoint sources observed in the

impulsive flares. Second, if we assume that the total released energy is equal, the smaller the

rate of the magnetic reconnection is, the longer the duration of flares is, which supports the

long lifetime of the LDE flares. Finally, the topological aspect of flares is also influenced by

the rate of the magnetic reconnection. Since the impulsive flares are usually small in size, a

small diffusion region is expected in this type of flares, which implies that the fast magnetic

reconnection occurs in that configuration because the fast magnetic reconnection favors a

small diffusion region, known as the Petschek-type reconnection (see Appendix. A. 1). On

the other hand, when a diffusion region is long, the magnetic reconnection is not very

effective, which can be applied to the case of large-scale flares such as the LDE flares.

Those physical aspects seen in the impulsive flares and the LDE flares also can be

seen in the impulsive phase and the gradual phase of a typical flare. In the impulsive phase,

the energy-release rate dramatically increases, which means that the magnetic reconnection

proceeds rapidly. After that, the reconnected magnetic-field lines pile up and the size of the

postflare loops becomes large. Moreover, an ejected plasmoid makes a diffusion region

extended long, which decreases the rate of the magnetic reconnection. In this way, the

evolution enters on a not so energetic but long-lived stage, which is called the gradual phase.



2. 5. 2. Evolution of The Postflare Loops

Comparing Figure 2. 7 with Figure 2. 8, it is found that the height of a particular

postflare loop is always decreasing with time in both the theoretical results and the observational

results. Here, our attention is paid to the evolution after the inflection points in Figure 2. 7,

because a reconnected magnetic-field line can be recognized as a new postflare loop after it

collides with the pre-existed closed loops. By looking at Figure 2. 8, we find that the observation

suggests a very slow downward velocity of a postflare loop (about 3 km / s). This is consistent

with the theoretical results in Figure 2. 7, because the evolution after the inflection points

shows a very gradual descent.

The overall expansion of the postflare loops shown in Figure 2. 7 indicates that the

rate of expansion is high at first and then gradually decreases, which is consistent with the

time variation of the height of the postflare loops in cusp-type flares presented in Figure 7. 6

of Pneuman (1981).

2. 6. Summary of Chapter 2

Finally, we summarize main results of this chapter as follows:

1. By using a flare model based on the fast magnetic reconnection, we have studied the

physical structure of cusp-type flares in detail. We find that a hot and dense region is formed

and survives by the help of both a fast MHD shock and a pair of slow MHD shocks.

2. Taking into consideration the rate of the magnetic reconnection, we conclude that a

hot and dense region can be formed above the soft X-ray closed loops in the impulsive flares

and inside these loops in the LDE flares. This implies that at least some of non-cusp-type

flares can also be explained by the model developed for cusp-type flares. The validity of this

model is also considered in Aschwanden & Benz (1997) from observational viewpoints.

3. We find that each of the reconnected magnetic-field lines has a tendency of downward

motions, which is consistent with observational results. The downward velocity is quite

small.

4. As for the overall expansion of the postflare loops, we succeed to reproduce it by

using a flare model based on the fast magnetic reconnection. This model suggests that the

expansion is caused by the successive piles of the reconnected magnetic-field lines rather

than the rising motion of every reconnected magnetic-field line.



Chapter 3. Plasmoid Dynamics in Eruptive Flares

Abstract

In this chapter, we investigate the plasmoid dynamics in eruptive flares by performing

the 2.5-dimensional MHD numerical simulation. We start with a linear force-free magnetic

arcade and impose the localized resistive perturbation on the axis of symmetry of the arcade.

Owing to the resistivity, the magnetic field begins to dissipate, producing inflows toward the

region where the resistivity is imposed. These inflows make the magnetic field convex to the

axis of symmetry and hence a X-type neutral point is formed on that axis and a magnetic

island appears. We find that the evolution of the magnetic island consists of three stages. In

the first stage, it is slowly lifted by those upflows produced by the initial resistive perturbation.

Then once the anomalous resistivity sets in, it begins to be accelerated. This acceleration

stops after a fast MHD shock is formed at the bottom of the magnetic island, which implies

that the upflows around the center part of the magnetic island are no longer strong. These

three stages are also confirmed to exist in observational results (Ohyama & Shibata 1997).

Moreover, we find that there is a time-lag between the start time of the acceleration of a

magnetic island and the peak time of the electric field at a neutral point. This fact can be

understood by considering that the component of the magnetic field which is perpendicular to

a current sheet (perpendicular magnetic field) inhibits the efficient magnetic reconnection.

Such time-lag is also found in the observational results which Ohyama & Shibata (1997)

presented. In addition, we compare the initial rise velocity of a magnetic island in our

simulation to the initial rise velocity of a plasmoid in their observational results, whereby we

derive a conclusion that in the actual situations, the initial resistive perturbation proceeds

very weakly and at many positions within a magnetic arcade.

3. 1. Introduction

Solar flares are highly energetic and complicated phenomena in which mass eruptions

occur, energetic particles are generated, and high energy radiations are emitted. In this chapter,

we study the mass eruption in solar flares, which is sometimes called the plasmoid eruption.

Theoretically, these eruptive phenomena have been considered from a viewpoint of

instabilities or a loss of equilibrium of the coronal magnetic field. Since the magnetic force is

much stronger than other forces in the corona, any coronal structure is mainly controlled by

the magnetic field. Therefore, unless magnetically driven events occur, coronal structures

evolve in a series of quasi-static states. However, once such events occur, the coronal structures

no longer stay in a static state but begin to make a dynamical evolution. This scenario has



made it important to study the equilibria and stabilities of the coronal magnetic field. Zweibel

(1981, 1982) investigated the stabilities of 2-dimensional magnetohydrostatic equilibria. Priest

(1988) and Steele et al. (1989) discussed the problem of a loss of equilibrium in terms of

CMEs (coronal mass ejections). Forbes, Priest, & Isenberg (1994) estimated the amount of

energy that is released when a loss of equilibrium occurs. Priest & Forbes (1990), Forbes

(1990) used the method of complex analyses and studied the prominence eruption.

Recently, the rapid development of computers enabled us to trace the temporal evolution

of the coronal magnetic field directly by means of numerical simulations. Such studies are

found in Mikic, Barnes, & Schnack (1988), Biskamp & Welter (1989), Finn, Guzdar, & Chen

(1992), Inhester, Birn, & Hesse (1992), Kusano, Suzuki, & Nishikawa (1995), Choe & Lee

(1996), and so on. These authors investigate how the coronal magnetic field evolves when a

particular photospheric motion is imposed.

Turning to the observation, the satellite Yohkoh has brought us many excellent data of

the corona since its launch in 1991, which have contributed to our understanding of the

coronal phenomena (see Masuda 1994; Sakao 1994; Hara 1996; Shimizu 1997). Owing to

these data, some pre-proposed problems of solar phenomena were solved, such as the reliability

of the magnetic reconnection in solar flares (Tsuneta et al. 1992; Magara et al. 1996b), while

some new predictions have been proposed (Shibata et al. 1994, 1995). As for the plasmoid

eruption, Ohyama & Shibata (1997) analyzed the evolution of plasmoids in detail and show

their dynamical properties. The aim of this chapter is to clarify the basic physical processes

involved in the plasmoid eruption on the basis of those new observational results presented

by Ohyama & Shibata (1997). For this purpose, we perform the 2.5-dimensional MHD

numerical simulation and compare the simulation results with the observational one.

An organization of this chapter is as follows. We show basic formulations in the next

section. Main results are presented in § 3. 3, while § 3. 4 is used to introduce some observational

results relevant to the plasmoid eruption. In § 3. 5, after discussing our results and making

comments on several problems of the present study, we give our conclusion. The final section

is devoted to a summary.

3. 2. Basic Formulations

3. 2. 1. Basic Equations

Basic equations are the same one as are used in Chap. 2; namely, equations (2. 1)–(2.

5). On the basis of these equations, we perform the 2.5-dimensional MHD numerical simulation

in the Cartesian coordinate. All the physical variables are dependent on both the x-coordinate

and the z-coordinate but independent of the y-coordinate, while the y-components of the



velocity and magnetic field are included in our calculations, which means the 2.5-dimensional

numerical simulation.

3. 2. 2. Initial Configuration

Initially we assume a linear force-free field described as

   Bx =– 2 L
π H B0 cos π

2 L x e– z
H , (3. 1)

   
By =– 1 – 2 L

π H
2

B0 cos π
2 L x e– z

H , (3. 2)

   Bz = B0 sin π
2 L x e– z

H , (3. 3)

where L is a horizontal scale length and is used as a normalization length unit (L = 1). H

means a vertical scale height of the magnetic field. For the present study, H ranges from

   2 L / π to ∞, where H =    2 L / π corresponds to the case of the potential field and H = ∞
corresponds to the case of the open field. Usually, a linear force-free field is characterized by

a parameter α, which relates the magnetic field to its rotation in the following way.

    ∇ × B = α B. (3. 4)

In our present formulation, this value is described as 
   

α = π / 2 L
2

– 1 / H
2

1 / 2

. Therefore,

α ranges from zero (potential field) to    π / 2 L  (open field). A linear force-free field is the

lowest energy state for given boundary conditions with a prescribed helicity (see Heyvaerts &

Priest 1984; Biskamp 1993), but the coronal magnetic field does not always lie in this state

(Schmieder et al. 1996). This is because the relaxation time to this state is not so short as the

dynamical evolution time (see Browning & Priest 1986). However, in the present study, we

start with this state for simplicity.

The gas pressure P is uniform (P = P0) and the ratio of this to the magnetic pressure is

defined as    β≡ 8π P0 / B2 (plasma beta). The gas density ρ is uniform (ρ = ρ0) except in the

bottom region where it is 10 times higher than elsewhere. This dense region is modeled on

the massive layers of the solar atmosphere, such as the chromosphere and the photosphere.

Therefore, the gas pressure and density are expressed as

  P = P0, (3. 5)

and

   ρ
ρ0

=4.5 tanh – 50 z – 0.1 + 1 +1 , (3. 6)



respectively. The plasma beta is also expressed as

   β =
P0

B2

8 π
=

P0

B 0
2

8 π e – 2 z
H

= β 0 e
2z
H .

(3. 7)

In the present study, we set β0 = 0.2, γ = 5 / 3, P0 = 1 / γ = 0.6, ρ0 = 1, and   B0 =
   8 π P0 / β 0

1/ 2
 =   8 π / γ β 0

1/ 2
 = 8.68. From now on, all the physical variables presented in

this chapter are normalized by the units in Table 2. 2.

Finally, the temperature is defined as

   T = γ P
ρ . (3. 8)

3. 2. 3. Boundary Conditions

Figure 3. 1 illustrates the domain of the present numerical simulation. This figure also

shows the initial configuration of the magnetic-field lines projected onto the (x, z)-plane. We

set a free boundary condition at the top boundary (at z = 40):

     ∂Bx
∂z

=
∂By

∂z
=

∂vx
∂z

=
∂vy

∂z
=

∂vz

∂ z
=

∂P
∂z

=
∂ρ
∂z

=0, ∇ ⋅ B = 0. (3. 9)

We set antisymmetric boundary conditions both along the z-axis (at x = 0) and along the side

boundary (at x = 8):

   
vx = vy = Bz =

∂vz

∂x
=

∂Bx
∂x

=
∂By

∂x
=

∂P
∂x

=
∂ρ
∂x

=0 . (3. 10)

We set a rigid boundary condition at the bottom boundary (at z = 0):

    
vy = vz =

∂vx
∂z

=
∂Bx
∂z

=
∂By

∂z
=

∂Bz

∂ z
=

∂P
∂z

=
∂ρ
∂z

= 0. (3. 11)

In the actual calculations, we use the modified Lax-Wendroff scheme and solve the equations

only over a half domain (0 ≤ x ≤ 8), assuming a symmetry with respect to the z-axis. The

number of grid points is (Nx × Nz) = (160 × 200), where grid points are distributed uniformly

along both the x-coordinate and the z-coordinate. Accordingly, the mesh size is (∆x, ∆z) =

(0.05, 0.2).



Although many arcades exist in the calculation region (see Figure 3. 1), our attention

is concentrated on the central arcade located within the range of 0 ≤ x ≤ 1. The other arcades

are set in order to make a smooth boundary condition at x = 1, that is, if we set a free

boundary condition at x = 1, the effect of those numerical flows generated in this boundary

could not be negligible. From this point of view, we impose the initial perturbation on the

central arcade alone and investigate its evolution (see below).

3. 2. 4. Initial Perturbation

Initially the electrical resistivity is set to be zero everywhere except in a small region

of 
   

x2 + z – h
2 1 / 2

≤ r, where η = ηinit is assigned for a finite time (0 ≤ t ≤ 2). Here η is a

normalized value and defined as the reciprocal of the magnetic Reynolds number,  Rm

   ≡ C s L / η. Here h and r are those parameters which give the height and radius of the region

where the initial perturbation is imposed. In the present study we take various models, each

of which has different values of ηinit, h, and r. All the models in this study are summarized in

Table 3. 1. As far as r is concerned, this value is always less than 0.9 because we focus our

concentration on the central arcade. Models r1–r4 and models η1–η3 are different in  r and

ηini, respectively. Those models are used in order to investigate the effects of the initial

perturbation on the subsequent evolution (see Section 3. 3. 3). Models H1–H4 are different in

a vertical scale height of the magnetic field, H. In model M, unlike those models described

above, we impose the initial perturbation on four different positions, all of which are distributed

along the z-axis.

Since a finite value of the resistivity is initially assigned, the magnetic field begins to

dissipate, causing the inflows toward the region subject to the initial perturbation . Such

inflows make the magnetic field convex to the axis of symmetry (z-axis) and hence a X-type

neutral point (X-point) is formed on this axis. Then, not only the current density increases but

also the gas density decreases around this point because a lot of gases are ejected away by the

reconnection outflows. In this way, the anomalous resistivity eventually occurs (see § 2. 2. 4

and Appendix A. 3). In the present study, we assume the following form for the anomalous

resistivity:

   

η =
1

150
vd
vc

– 1 for vd ≡
jy
ρ ≥ vc

0 for vd < vc

, (3. 12)

unless η exceeds 1. In that case η is fixed to 1. Here     j = ∇ × B,  vd  and vc are used as the

ion-electron drift velocity and a threshold velocity (see Ugai 1986; Yokoyama 1995). The

values of vc used in the present numerical simulation can be seen in Table 3. 1.



3. 3. Main Results

3. 3. 1.  Overviews

First, we show the typical evolution of eruptive flares by using model r3. In Figures 3.

2a–2c, we display the time variations of the y-component of the magnetic field (hereafter, this

is called the perpendicular magnetic field), temperature, and gas density, respectively. Contour

lines and arrows represent the magnetic field lines and velocity field projected onto the (x,

z)-plane. Only the area of 0 ≤ z ≤ 30 is displayed in these figures, because we take into

account the limitation of neglecting the gravity effect. According to Tsuneta (1996), the

temperature of active regions in the corona is typically 2 ~ 4 MK for the background

component of the corona. If we assume 3 MK, the pressure scale height is given by about 1.5

× 108 m (see Priest 1982), which is 30 times longer than a half length between the footpoins

of a coronal loop in the present study (5000 km, see Table 2. 2). Therefore, a reasonable

vertical extent of a coronal loop is at most 0 ≤ z ≤ 30 in the present study. In addition, we can

avoid the problem of the numerical flows generated at the top free boundary (at z = 40) by

setting a tentative boundary far from this free boundary.

From these figures, we can find that a magnetic island is formed and rising upward

with time. By looking at the panel of t = 12 in Figure 3. 2b, it is found that there is a very hot

region both at the bottom of the magnetic island and at the top of the closed loops formed in

the lower part of the panel. The gas density map (Figure 3. 2c) shows that a high density

region of V shape appears in the lower part of the magnetic island at t = 12.

Figure 3. 3 shows the time variations of the y-component of the electric field at a

neutral point (hereafter, this is called the neutral-point electric field) and the height of a

magnetic island of model r3, each of which is represented by a thin solid line and crosses (+),

respectively. The height of the magnetic island is determined by measuring the position of the

O-point within the magnetic island, where the x-component of the magnetic field changes its

sign. Two thick solid lines represent the result of the line-fittings applied to the time variation

of the height of the magnetic island. The time ranges of such line-fittings are 0 ≤ t ≤ 5 for the

first one and 15 ≤ t ≤ 17 for the second one, both of which are determined on the basis of the

temporal behavior of the neutral-point electric field, that is, the time-range in the first case

corresponds to the phase when the electric field does not arise and in the second case

corresponds to the phase when it rapidly decreases.

This figure indicates that after the initial perturbation phase (0 ≤ t ≤ 2) the anomalous

resistivity is turned on at t = 5, which gives rise to the neutral-point electric field. This is

because that field is proportional to the rate of the magnetic reconnection at a neutral point

(see Forbes & Priest 1983). It reaches its maximum at t = 14 when the anomalous resistivity



is quite large, and then it rapidly decreases, because the amount of magnetic fields inflowing

toward the neutral point becomes small.

Turning to the dynamics of a magnetic island, we find that the magnetic island is at

first slowly going upward (0 ≤ t ≤ 5), then it is accelerated (5 ≤ t ≤ 12),  and finally it rises at

a constant rate (12 ≤ t). In order to clarify what kinds of mechanism play an important role in

such three stages, we pick up three different times (t = 3, 6, and 12) and investigate the

physical situations at such three times, each of which corresponds to the time when the

magnetic island is slowly rising, when it is accelerated, and when it rises at a constant rate,

respectively. Figures 3. 4a–4c show the spacial distributions along the z-axis of the perpendicular

magnetic field (By, dotted line), vertical velocity (vz, solid line), and neutral-point electric

field (Ey, broken line) at t = 3, 6, and 12, respectively. The position of an O-point is also

represented by a vertical thick solid line in these figures.

At t = 3 (see Figure 3. 4a), the neutral-point electric field is zero because the anomalous

resistivity does not arise yet. By looking at the position of the O-point, we find that the

magnetic island rises upward slowly, moving with the upflows produced by the initial resistive

perturbation. As this process proceeds, the matter around the neutral point is ejected away

and hence the gas density around this point decreases, leading to the occurrence of the

anomalous resistivity (at t = 5). Owing to the anomalous resistivity, the reconnection outflows

become so strong that the magnetic island begins to be accelerated effectively. At t = 6 (see

Figure 3. 4b), we can find that the upward velocity around the O-point is about 1.5 times

higher than that at t = 3 (see Figure 3. 4a). Although the start time of the acceleration of the

magnetic island corresponds to the occurrence time of the anomalous resistivity, the electric

field at the neutral point does not take its maximum value at that time, as long as a sufficient

amount of perpendicular magnetic fields exists around this point (see Figure 3. 4b). According

to some experimental researches in the magnetic reconnection, the rate of the magnetic

reconnection coupled with the perpendicular magnetic field is lower than that without it

(Ono, Morita, & Katsurai 1993). When this field is completely lost around the neutral point,

then the rate of the magnetic reconnection becomes so high that the neutral-point electric

field also takes a large value. This process can be confirmed in Figure 3. 4c (at t = 12.0). In

this stage, the upward velocity of the reconnection outflows becomes very large (reconnection

jets) because of the efficient magnetic reconnection so that they form a fast MHD shock at

the bottom of the magnetic island. (The position of this shock is shown in Figure 3. 4c by a

vertical thick broken line.) It is found that the O-point is now behind this shock and therefore

the magnetic island is no longer accelerated effectively, rising at a constant rate. (The behavior

of the perpendicular magnetic field described above is also recognized in Figure 3. 2a.

Looking at the panel of t = 12, the region around the neutral point (at z ~ 5) is colored in

white, which means that little perpendicular magnetic fields exists around this point.)

3. 3. 2. Parameter Dependences



Following the results of § 3. 3. 1 where we show some basic features of the plasmoid

eruption, we then ask whether such features are generally acceptable or not, that is, how the

change of the initial resistive perturbation affects the dynamics of plasmoids. To answer this

question, we use those models in which we vary the radius of the region where the initial

perturbation is imposed (models r1–r4) or the strength of the initially assigned resistivity

(models η1–η3) as well as we assign the initial resistive perturbation at four different positions

(model M) instead of only one position. Then, we make the figures similar to Figure 3. 3 for

these models and compare such figures with Figure 3. 3. As a consequence, we find that there

are some similarities among them, such as the existence of three stages in the evolution of a

magnetic island and a time-lag between the start time of the acceleration of a magnetic island

and the peak time of the neutral-point electric field. However, we find that two things are

significantly changed, one of which is the upward velocity of a magnetic island and the other

is the occurrence of the coalescence process between several magnetic islands.

Figures 3. 5a–5b indicate the variation of the upward velocity of a magnetic island

when r and ηinit are changed. Here the upward velocity is derived from the inclination of lines

obtained by means of the line-fittings similar to that in Figure 3. 3. In both figures asterisks

(*) and crosses (+) represent the upward velocity in the first stage (before the acceleration)

and in the third stage (after the acceleration), respectively. Thick curves are the result of such

curve-fittings as   vupward = a r b and    c ηinit
d , where a, b, c, and d are all constant values. In the

case of r = 0 or ηinit = 0,  we obtain   vupward =0 , which means that no initial perturbation is

imposed.

These figures tell us that the upward velocity in both the first stage and the third stage

decreases as the initial resistive perturbation becomes weak (in a sense that r and η init become

0). However, there is a difference between these two stages in a manner of such decreasing.

By looking at the power term in the formula of curve-fittings, it is found that the variation in

the third stage is gentler than that in the first stage. We consider that this difference reflects

the sensitivity of both stages to the initial resistive perturbation, that is, the upward velocity in

the first stage is directly connected with the initial perturbation, while that in the third stage is

measured under the situation where the anomalous resistivity already arises so that the effect

of the initial perturbation on the third stage is relatively weak.

Figure 3. 6a shows the evolution of model M. Top and bottom panels are the temperature

and gas density maps, respectively. Contour lines and arrows represent the magnetic field

lines and the velocity field projected onto the (x, z)-plane. At t = 5.0 we can find four neutral

points (at z = 5, 10, 15, and 20), each of which corresponds to the position of the initial

perturbation. Figure 3. 6b is a similar figure to Figure 3. 3 except for model M instead of

model r3, showing the time variations of the heights of four magnetic islands and the neutral-point

electric field at the lowest neutral point (at z = 5) which always has a larger value than at any

other neutral points (at z = 10, 15, or 20). Crosses, asterisks, dots, and diamonds represent the



heights of four magnetic islands, while a thin solid line shows the time variation of the

neutral-point electric field at the lowest neutral point. A line-fitting is carried out only for the

lowest magnetic island, represented by two thick solid lines.

From Figure 3. 6a, it can be seen that the lowest magnetic island continues to be

merged with other magnetic islands with time, except for the highest one. At t = 20, there

appears a well-developed magnetic island between z = 10 and z = 20, at the bottom of which

a hot and dense region is formed. This configuration is quite similar to that at t = 12 in

Figures 3. 2b–2c. Referring to Figure 3. 6b, we can again find that the coalescence among

magnetic islands proceeds and there are some features similar to the case of model r3: the

existence of three stages in the evolution of the magnetic island and a time-lag between the

start time of the acceleration of the magnetic island and the peak time of the neutral-point

electric field.

On the basis of these results, we consider that those two features–the existence of

three stages in the evolution of the magnetic island and a time-lag between the start time of

the acceleration of the magnetic island and the peak time of the neutral-point electric field–are

important factors in understanding the dynamics of plasmoids. In § 3. 5 we discuss such

features in detail, but before doing that, several important observational results related to the

present study are introduced briefly in the next section.

3. 4. Observational Results

In this section, we show some observational data brought by Yohkoh, which help us to

understand the mass eruption in solar flares. In addition, we exhibit some interesting results

of the plasmoid eruption which is originally analyzed by Ohyama & Shibata (1997), and then

make some comments on them.

Figure 3. 7a shows the eruptive process running in a typical LDE (long duration

event) flare observed by Yohkoh (Tsuneta et al. 1992; Hudson 1994). White arrows indicate

the position of an ejected mass (plasmoid). Figure 3. 7b shows a GOES X-ray plot of this

event. These figures clearly tell us how the mass eruption proceeds from the preflare phase to

the rise phase of solar flares. By looking at the bottom-right panel in Figure 3. 7a, we can find

that a mass of  V shape is ejected upward. This shape is quite similar to a hot and dense

region formed at the bottom of a magnetic island shown in Figures 3. 2b–2c, and Figure 3.

6a.

Figure 3. 8 (from Ohyama & Shibata 1997) indicates the time variations of the height

of a plasmoid and the hard X-ray intensity. “Core” and “top” represent the positions of the

highest and its 1/e-fold values of the soft X-ray intensity within the plasmoid. This figure



tells us two important facts. One of them is that the plasmoid evolves through several

different stages, that is, it rises slowly from 11:04 to 11:15, then it is accelerated in a

relatively short time (from 11:15 to 11:18), and finally it rises almost at a constant rate (after

11:18). Moreover, the start time of the acceleration of the plasmoid (11:15) is certainly before

the peak time of the hard X-ray intensity (11:18). These features are consistent with the

results derived from our numerical simulation. (In this comparison, we assume that the time

variation of the neutral-point electric field in our simulation has a direct connection to that of

the hard X-ray intensity. That assumption stands on the ground that the observed hard X-ray

radiation is produced by the high energy electrons accelerated by the neutral-point electric

field, although the precise acceleration mechanism is still not understood completely.)

3. 5. Discussion & Conclusion

In this section we compare the simulation results with the observational one, considering

several problems related to the present study and giving our conclusion.

3. 5. 1. Comparison between the Simulation Results and The Observational One

By comparing the simulation results with the observational one, it is found that the

evolution of a magnetic island in the former is quite similar to the evolution of a plasmoid in

the latter. Comparing Figure 3. 3 to 3. 8, we find that both the magnetic island and the

plasmoid have three different stages in their evolutions, that is, the first stage of rising slowly,

the second stage of acceleration, and the third stage of rising at a constant rate. Having a

constant upward velocity in the third stage is also consistent with the result of Steele & Priest

(1989) who studied the prominence eruption. Precisely speaking, Figure 3. 8 indicates that

the plasmoid rises very slowly in the first stage, the velocity of which is 20 times smaller than

that in the third stage. On the other hand, Figure 3. 3 shows that the initial upward velocity of

the magnetic island is only a half smaller than the final one. We explain this discrepancy by

considering the effect of the initial resistive perturbation on the flare evolution. From Figures

3. 5a and 3. 5b, as long as the anomalous resistivity occurs, weak initial resistive perturbations

reduce the initial upward velocity of the magnetic island, while it does not change the final

upward velocity so much. Therefore, one possibility is that the initial resistive perturbation

proceeds very weakly in the real circumstances. Another possibility is derived from Figure 3.

6b. In this figure there are four magnetic islands, but we think that the lowest one corresponds

to the observed plasmoid because a hot and dense region is formed only inside the lowest

magnetic island (see Figure 3. 6a). Model r3 in Figure 3. 3 and model M in Figure 3. 6 have

the common parameters characterizing the initial resistive perturbation (r = 0.7, ηinit = 1 / 15)

except for the number of the regions where the initial perturbation is imposed. However the

initial upward velocity in Figure 3. 3 is 60 % of that in Figure 3. 6. This is explained by the

fact that the lowest magnetic island of model M is prevented from rising freely by other



upper magnetic islands. This implies that the initial resistive perturbation probably occurs at

many positions within a magnetic arcade.

Next, when it comes to the final upward velocity of the magnetic island, it is about 0.4

vA0, where    vA 0 ≡ B0 / 4 πρ 0
1 / 2

 and in the present study this value is given by
   vA0 / cS 0 = 2 / γ β0

1/ 2
 ~ 2.45. In Magara et al. (1996b), we discussed that the observed

ejection velocity of a plasmoid was always quite smaller than vA0, and hence the present result

is along this tendency.

3. 5. 2. Does the Anomalous Resistivity Really Arise?

In § 3. 5. 1 we consider the evolution of eruptive flares, but there is one crucial point

in that consideration. The question is whether the anomalous resistivity always sets in or not.

In order to answer this question, we perform those numerical simulations in which we do not

assign the anomalous resistivity after the initial resistive perturbation finishes, and investigate

the time variation of  vd  (the ion-electron drift velocity). These simulations are represented by

models H1–H4, each of which has a different vertical scale height (see Table 3. 1). Figure 3.

9 shows the time variation of  vd  at the neutral point (   vd, neutral) of model H1. Here   vd, neutral  is

always the maximum value of  vd  within the range of (0, 0) < (x, z) < (1, 30).

Figure 3. 9 indicates that   vd, neutral  is initially increasing with time, then rapidly de-

creasing. We think that this abrupt decreasing is due to the effect of finite mesh size in our

numerical simulation. In the actual situations in the corona, we expect that   vd, neutral  continues

to increase with time, which probably leads to the occurrence of the anomalous resistivity.

Moreover, according to Schumacher & Kliem (1996), the current density at a neutral point

takes a larger maximum value as the Lundquist number is getting larger, which is suitable to

the real circumstances of the corona. Hence their result also supports the idea that the rapid

increase of vd  occurs in the corona and the anomalous resistivity eventually sets in. From this

point of view, we do such a curve-fitting as   vd0 ek t  within the range of 0 < t < 8, where   vd0

and k are constant values. The result of this fitting is represented by a thick solid curve in

Figure 3. 9.

Next, we do the same curve-fittings as in Figure 3. 9 for other models (models

H2–H4). In this way the (k, H)-relation is obtained, displayed in Figure 3. 10a. This relation

is characterized by   H = 5.53 e6.05k , which means that (k, H) = (0, 5.5) is the limiting case

where it takes an infinite time for   vd, neutral  to reach its rapid increase phase. In Figure 3. 10b,

we make a similar plot to that in Figure 3. 10a for other models, all of which have a different

height (h = 3) of the region where the initial perturbation is imposed, compared to models

H1–H4. As for these models, the (k, H)-relation is given by   H = 4.55 e6.79k , which shows

that (k, H) = (0, 4.55) is the limiting case. Therefore, in order to cause the anomalous

resistivity, we need those magnetic arcades whose vertical scale height is several times larger



than its horizontal extent, which is consistent with the conclusion of Kusano et al. (1995).

3. 5. 3. Boundary Effects

As we mention in § 3. 1, a lot of investigations of the evolution of eruptive flares by

means of numerical simulations has been made recently. This paper belongs to this kind of

work, where there has been a controversy about the effect of boundary conditions. Mikic et

al. (1988) set a symmetric boundary condition at the side boundary, which was reconsidered

to have an artificial effect on the evolution of a magnetic arcade by Biskamp & Welter

(1989), who suggested that the effect of the neighboring arcades could cause eruptive phe-

nomena. Instead of the effect of the neighboring arcades, van Ballegooijen & Martens (1989)

and Inhester et al. (1992) considered the effect of a photospheric converging flow toward the

neutral line of a magnetic arcade. Finn et al. (1992) discussed the effect of the time-varying

flow pattern imposed on a double arcade system. As for our present study, we set an antisym-

metric boundary at x = 8, which is far from a central arcade (0 ≤ x ≤ 1), so that we can safely

neglect the effect of this boundary. However, taking a periodic arcade system as our model is

not suitable for studying the evolution of a single arcade system in the sun. This weak point

becomes crucial in the third stage of the evolution, when a lot of magnetic fields in the

neighboring arcades begins to flow into the region of the central arcade.

3. 5. 4. Limitation of The Present Study

As mentioned above, we start with a periodic linear force-free magnetic field in order

to study the evolution of a single arcade system. This means that we assume the distribution

of the photospheric magnetic field to be too simple, compared to its more complicated

distribution in the real circumstances. That simplification brings several limitations to our

present study. First, since we take only one mode of the solution of equation (3. 4), we must

use a very tall arcade which has a tremendous amount of magnetic energy in order to

construct a current sheet within a magnetic arcade. Thanks to this, we cannot make a quantitative

estimate about the released energy during the flare evolution. Second, as we mention in § 3.

5. 2, since the effect of the neighboring arcades cannot be neglected in the third stage of the

flare evolution, we do not discuss the feature of this stage in detail, that is, although it is

found that a magnetic island rises at a constant rate in this stage, it is still an open question

whether such motion continues all through this stage. As a matter of fact, taking a careful

look at Figure 3. 3 tells us that the upward velocity is gradually decreasing after t = 20, unlike

the results of our previous study (Magara et al. 1996b). In Magara et al. (1996b), we studied

the magnetic reconnection by assuming the initial magnetic field to be antiparallel, where a

magnetic island continues to rise at a constant rate. In our present study, on the other hand,

the closed structure of the overlying magnetic field exerts the downward force to the magnetic

island, which contributes to the reduction of its upward velocity. In addition, we cannot

neglect other important effects, such as the viscosity, the radiative cooling, and crossing other



magnetic fields (S. Koutchmy 1996, private communication; C. Delannee 1996, private com-

munication). The researches including these effects should be done in the future.

Another uncertainty is the origin of the localization of the initial resistive perturbation.

Biskamp & Welter (1989) mentioned the possibility that some resistive structures develop

inside a magnetic arcade. Priest (1988) suggested that the rise of the overlying magnetic

arcade induced the resistive processes beneath it. Wiechen, Büchner, & Otto (1996) studied

the features of the resistive instability developing within a magnetic arcade. They emphasized

the importance of the localization of the resistivity. Schumacher & Kliem (1996) showed the

dynamical features of a current sheet subject to the anomalous kinetic instability.

3. 5. 5. Conclusion

Considering the results of our present simulation, now we describe how those flares

associated with mass eruptions evolve from the preflare phase to the gradual phase. We find

three different stages in the mass eruption, corresponding to the preflare phase, the impulsive

or rise phase, and the gradual phase of solar flares, and then we investigate the dynamical

features of each stage in detail. Figure 3. 11 shows a schematic illustration of the evolution of

eruptive flares. Crosses (+) and a thick curve represent the time variations of the height of a

plasmoid and the hard X-ray intensity, respectively. In this figure the initial resistive instability

starts inside a magnetic arcade at t = t1, forming several small plasmoids. The lowest plasmoid

is lifted slowly by the outflows from a neutral point, which is produced by the initial resistive

perturbation. As the plasmoid rises, the gas density decreases and the spacial gradient of the

magnetic field increases around the neutral point, which means that the ion-electron drift

velocity increases, leading to the occurrence of the anomalous resistivity (at t = t2). Then

those reconnection outflows from the neutral point are rapidly enhanced, beginning to accelerate

the plasmoid (from t2 to t3). At the same time when the anomalous resistivity sets in, the

neutral-point electric field arises, but it does not reach its maximum value as long as a

sufficient amount of perpendicular magnetic fields exists around the neutral point, because

that field inhibits the efficient magnetic reconnection. At t = t3, the neutral-point electric field

reaches its maximum, which implies that the high energy electrons can be generated and

hence the high-energy electromagnetic wave such as hard X-ray can be emitted. At this time,

the magnetic reconnection becomes so lively that it produces the reconnection jets, which

form a fast MHD shock at the bottom of the plasmoid. After that, since an O-point (center

part of the plasmoid) is located behind this shock, the strong acceleration ends and the

plasmoid rises almost at a constant rate.

Since the role that the perpendicular magnetic field plays in this scenario of the flare

evolution is very important, we make a detailed study about this topic in the future. This kind

of study is also seen in Birn & Hesse (1991), where they discussed the magnetic reconnection

in the Earth’s magnetotail and found the concentration of the electric field around a X-type



neutral point.

3. 6. Summary of Chapter 3

Finally, we summarize main results of this chapter as follows:

1. We investigate the dynamics of plasmoids in eruptive flares. There are three different

stages in the mass eruption. In the first stage, a magnetic island is slowly lifted by the

upflows produced by the initial resistive perturbation, and then begins to be accelerated when

the anomalous resistivity sets in. This acceleration stops after a fast MHD shock is formed at

the bottom of the magnetic island, which implies that the upflows around the center part of it

are no longer strong. However, it is still an open question whether it continues to rise at a

constant rate after that.

2. We find that a time-lag between the start time of the acceleration of a magnetic island

and the peak time of the neutral-point electric field exists. This is explained by considering

the inhibition of the efficient magnetic reconnection by the perpendicular magnetic field. We

think that this time-lag reflects the observed time-lag between the start time of the acceleration

of a plasmoid and the peak time of the hard X-ray intensity, reported by Ohyama & Shibata

(1997).

3. Comparing the simulation results with the observational one, we find that the observed

initial upward velocity of a plasmoid is quite slower than that in our simulation. By studying

the effects of the initial perturbation, we conjecture that the initial resistive perturbation

occurs very weakly and at many positions within a coronal magnetic arcade.

4. The case where the vertical extent of a magnetic arcade is several times larger than its

horizontal extent is expected to lead to the occurrence of the anomalous resistivity. This is

consistent with the conclusion of Kusano et al. (1995).

5. We do not investigate how the initial localization of the resistivity proceeds, which is

discussed in our future study.



Chapter 4. 3-Dimensionality of Solar Phenomena

Abstract

In this chapter, we discuss those 3-dimensional solar phenomena which are enumerated

as follows:

1. Emergence of twisted magnetic-flux tubes and the magnetic reconnection between

the emerging magnetic field and the overlying magnetic field,

2. Interchange instability and the generation of turbulences in the loop-top region of the

postflare loops,

and

3. Eruption of twisted magnetic ropes (plasmoids in a 3-dimensional viewpoint).

In addition, we explain a numerical code developed for the 3-dimensional MHD

numerical simulation and show some interesting results obtained by using this code.

4. 1. Emergence of Twisted Magnetic-Flux Tubes

So far, many workers have made a theoretical consideration to the problem of the

emerging subphotospheric magnetic field mainly from a 2-dimensional viewpoint. The concept

of this is shown in Figure 4. 1. The subphotospheric magnetic field begins to rise because of

the buoyancy effect (or Parker instability) and eventually emerges on the surface. Then,

owing to the rapid decrease of the surrounding gas pressure, it begins to expand outward and

finally interacts with the overlying coronal magnetic field. This interaction has been believed

to cause various activities observed in the corona. For example, Heyvaerts, Priest, & Rust

(1977) presented a loop flare model based on that interaction. Shibata et al. (1989, 1992)

performed the 2-dimensional MHD numerical simulation and investigated the emergence and

expansion of the emerging magnetic field. Yokoyama & Shibata (1996) also studied the

interaction between the emerging magnetic field and the overlying coronal field by means of

the 2-dimensional MHD numerical simulation. These studies fairly contributed to our under-

standing of the basic processes running in the emerging flux region (EFR) of the sun and

clarified many aspects of those active phenomena observed in these regions.

However, the real image of the emergence of magnetic fields cannot be understood



completely as long as we stand on a 2-dimensional viewpoint. This will be easily acceptable

if we look at Figure 4. 2, which shows how the emergence really proceeds in the sun (see

Kurokawa 1989). The left panels are observed in white light and the right one are in Hα.

From this figure, it is found that as the emergence proceeds, the direction of the emerging

magnetic field does not remain constant but rotates, that is, the direction of the successive

emerging magnetic field (f2 – p2, f3 – p3) is diverted from the initial direction (f1 – p1).

Precisely speaking, as we goes to the later phase, we find that the magnetic field tends to

emerge along the neutral line of the EFR. This observational fact strongly suggests that the

emerging magnetic field has not only the poloidal component but also the toroidal one, the

latter of which causes the rotation of the direction of the emerging magnetic field. The

existence of the toroidal magnetic field causes the twisted structure of the emerging magnetic

field and the formation of a sheared magnetic arcade on the solar surface (see Figure 4. 3).

Figure 4. 3 represents the emergence of the cylinder-like flux tube having the toroidal

magnetic field as its axial component. This is an example of the emergence of twisted

magnetic-flux tubes. Supposing that such flux tube emerges from the subphotosphere, we can

expect that there appears the sheared EFR seen in Figure 4. 2. The relation between a

2-dimensional viewpoint and a 3-dimensional viewpoint is also indicated in this figure.

It is worth saying that when we try to do detailed researches on this kind of 3-dimensional

phenomena, we need to know the information about the photospheric motion. Recently, some

workers reported those interesting results where a small but significant flow pattern on the

photosphere are clearly recognized (see November & Simon 1988; Kitai et al. 1997).

4. 2. Interchange Instability in The Loop-Top Region

In Chap. 2, we discuss a hot and dense region formed at the top of the postflare loops.

This region is maintained by the magnetic pressure walls, which prevents a plasma from

draining sidewise (see Figure 2. 5c and 2. 9). However, real flares have a 3-dimensional

structure so that the consideration of the third direction is needed for the full comprehension

of the loop-top region. We show the 3-dimensional structure around this region in Figure 4.

4. From a 3-dimensional viewpoint, the loop-top source is no longer regarded as a circle-like

source but a cylindrical one. Since such configuration is similar to that of a magnetically

confined plasma in laboratories, we expect that the interchange instability can occur in the

loop-top region in the same way as in the laboratory case. This instability causes the bulk

motion in the loop-top region, which is maybe detected as the turbulent component of line

broadening when we observe a particular spectral line of this region.



4. 3. Eruption of Twisted Magnetic Ropes

In Chap. 3, we make a detailed investigation on the plasmoid eruption and derive

several dynamical properties of this phenomenon. Through that study, a plasmoid is identified

with a magnetic island, or the region of a bundle of closed magnetic field lines. However, this

image fails when we stand on a 3-dimensional viewpoint, in which a plasmoid is not regarded

as such a disk-like thing but as a helical rope whose footpoints are possibly fixed on the

surface of the sun. This situation is shown in Figure 4. 5, which also shows other typical

aspects of eruptive phenomena in the sun. At first, a sheared magnetic arcade having the

spacial variation along its neutral line appears on the surface, which is probably formed by

the emergence of a twisted magnetic-flux tube described in § 4. 1. Then, a current sheet is

formed within the arcade probably through some ideal MHD processes. Later the resistive

process begins to run in the sheet, which eventually leads to the fast-magnetic-reconnection

stage, in which the violent energy release occurs. This corresponds to  the impulsive phase of

solar flares (or rise phase of the LDE flares). Finally, there are formed the postflare loops on

the surface of the sun, while a plasmoid of helical structure is ejected upward with its

footpoints fixed on the surface.

4. 4. Numerical Code for The 3-Dimensional MHD Numerical Simulation

In this section, we explain a numerical code for the 3-dimensional MHD numerical

simulation based on the modified Lax-Wendroff scheme. First, we write the basic MHD

equations in the conservational form:
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η
Rm

jx

, (4. 5)

and

    

S w =

0
ρ1 gx
ρ1 g z

0
0
Q
0

ρ1 gy

0

, (4. 6)

where gi  ( i = x, y, z) and Q mean the rate of gravitational acceleration and the energy source

such as the radiative cooling. In this formula, X1 = X – X0, where X0 is the initial value of

physical variables.

Next, we transform equation (4. 1) into a set of difference equations which can be

solved by means of the 2-step modified Lax-Wendroff scheme. From now on we pick up one

component from a vector equation (4. 1) as a representative and write this with plain characters.

<1st step>
   1

∆ t w
i + 1

2
, j + 1

2
, k + 1

2

n + 1 – w
i + 1

2
, j + 1

2
, k + 1

2

n = – 1
∆ x E i +1, j + 1

2
, k + 1

2

n – E i, j + 1
2

, k + 1
2

n

– 1
∆ y F i + 1

2
, j +1, k + 1

2

n
– F i + 1

2
, j, k + 1

2

n

– 1
∆ z

G
i + 1

2
, j + 1

2
, k +1

n – G
i + 1

2
, j + 1

2
, k

n

– S
i + 1

2
, j + 1

2
, k + 1

2

n .

(4. 7)

Here ∆ t is the time spacing and ∆ x, ∆ y, and ∆ z are the mesh sizes along the x-coordinate,



y-coordinate, and z-coordinate, respectively, while n is the time-step number and i, j, and k

mean the position number of a grid point measured along the x-coordinate, y-coordinate, and

z-coordinate, respectively. Other characters are defined as follows.

  w
i + 1

2
, j + 1

2
, k + 1

2

n  ... the value of wn at a virtual mid-mesh point,   x i + 1
2
, y j + 1

2
, zk + 1

2
,

  E
i +1, j + 1

2
, k + 1

2

n  ... the value of En  at a virtual mid-mesh point,   x i +1 , y j + 1
2
, zk + 1

2
,

  F
i + 1

2
, j +1, k + 1

2

n  ... the value of Fn  at a virtual mid-mesh point,   x i + 1
2
, y j + 1, z k + 1

2
,

  G
i + 1

2
, j + 1

2
, k + 1

n  ... the value of Gn  at a virtual mid-mesh point,   x i + 1
2
, y j + 1

2
, zk + 1 ,

  S
i + 1

2
, j + 1

2
, k + 1

2

n  ... the value of Sn at a virtual mid-mesh point,   x i + 1
2
, y j + 1

2
, zk + 1

2
,

and so on.

<2nd step>

Owing to the 1st-step calculation described above, we obtain the next time-step values

at every virtual mid-mesh point. Then we try to obtain the values at every real grid point.

   w
i, j, k
n + 1 = w

i, j, k
n

–
∆ t
∆ x

1
4 E i +1, j, k

n – E i –1, j, k
n + 1

8 E
n + 1

–
∆ t
∆ y

1
4 F i, j +1, k

n – E i, j –1, k
n + 1

8 F
n + 1

–
∆ t
∆ z

1
4

G i, j, k +1
n – G i, j, k –1

n + 1
8

Gn + 1

– 1
2 S i, j, k

n + 1
16 S

n + 1
.

(4. 8)

Here

  E
n + 1

= E
i + 1

2
, j + 1

2
, k + 1

2

n + 1 – E
i – 1

2
, j + 1

2
, k + 1

2

n + 1

+ E
i + 1

2
, j – 1

2
, k + 1

2

n + 1 – E
i – 1

2
, j – 1

2
, k + 1

2

n + 1

+ E
i + 1

2
, j + 1

2
, k – 1

2

n + 1 – E
i – 1

2
, j + 1

2
, k – 1

2

n + 1

+ E
i + 1

2
, j – 1

2
, k – 1

2

n + 1 – E
i – 1

2
, j – 1

2
, k – 1

2

n + 1 ,



  F
n + 1

= F
i + 1

2
, j + 1

2
, k + 1

2

n + 1 – F
i + 1

2
, j – 1

2
, k + 1

2

n + 1

+ F
i – 1

2
, j + 1

2
, k + 1

2

n + 1 – F
i – 1

2
, j – 1

2
, k + 1

2

n + 1

+ F
i + 1

2
, j + 1

2
, k – 1

2

n + 1 – F
i + 1

2
, j – 1

2
, k – 1

2

n + 1

+ F
i – 1

2
, j + 1

2
, k – 1

2

n + 1 – F
i – 1

2
, j – 1

2
, k – 1

2

n + 1 ,

  G
n + 1

= G
i + 1

2
, j + 1

2
, k + 1

2

n + 1 – G
i + 1

2
, j + 1

2
, k – 1

2

n + 1

+ G
i – 1

2
, j + 1

2
, k + 1

2

n + 1 – G
i – 1

2
, j + 1

2
, k – 1

2

n + 1

+ G
i + 1

2
, j – 1

2
, k + 1

2

n + 1 – G
i + 1

2
, j – 1

2
, k – 1

2

n + 1

+ G
i – 1

2
, j – 1

2
, k + 1

2

n + 1 – G
i – 1

2
, j – 1

2
, k – 1

2

n + 1 ,

and

  S
n + 1

= S i + 1
2

, j + 1
2

, k + 1
2

n + 1 + Si + 1
2

, j – 1
2

, k + 1
2

n + 1 + S i + 1
2

, j + 1
2

, k – 1
2

n + 1 + S i + 1
2

, j – 1
2

, k – 1
2

n + 1

+ S i – 1
2

, j + 1
2

, k + 1
2

n + 1 + S i – 1
2

, j – 1
2

, k + 1
2

n + 1 + Si – 1
2

, j + 1
2

, k – 1
2

n + 1 + Si – 1
2

, j – 1
2

, k – 1
2

n + 1 .

The code shown above is based on the case of uniformly distributed grid points. The

case of non-uniformly distributed grid points is explained in Appendix B in this thesis.

By using this code, we investigate the maximum linear growth rate of the tearing

instability and compare it to the analytically predicted value. The result is that the discrepancy

between both values is quite small. For example, we assume such an antiparallel force-free

configuration as is described in the following way:

  Bx =0 , (4. 9)

   By = B0 cosh– 1 4 π x , (4. 10)

   Bz = – B0 tanh 4 π x , (4. 11)

  P = P0, (4. 12)

  ρ = ρ0, (4. 13)

and

   T = T0, (4. 14)

where    P0 = 1 / γ ,    B0 = 8 π P0 / β
1/ 2

,    T0 = γ P0 / ρ0. When γ = 5 / 3, β = 0.15, and Rm = 1000,



we obtain the growth rate of 1.56 from the numerical simulation, while the predicted one is

1.49; consequently, the discrepancy is (1.56 – 1.49) / 1.49 ~ 0.047.

4. 5. Results of The 3-Dimensional MHD Numerical Simulation

We then show some interesting results of the 3-dimensional MHD numerical simulation

and make some comments on them. First of all, we explain the calculation configuration.

Figure 4. 6 shows the calculation region and the initial configuration of the present numerical

simulation. Initially, physical variables are set to be in the same force-free state as is given in

the previous section. Grid points are distributed uniformly along the y-coordinate (∆ y = 1.0)

but non-uniformly along the x-coordinate (from 0.02 to 0.1, toward the side boundary) and

z-coordinate (from 0.4 to 2.0, toward the top boundary). Although the actual calculation

region is within the range of (0, 0, 0) ≤ (x, y, z) ≤ (5, 25, 50), we show the region of (– 5, 0, 0)

≤ (x, y, z) ≤ (5, 25, 50) in this figure, by assuming a symmetry with respect to the (y, z)-plane.

As the initial perturbation, we impose the locally enhanced resistivity constantly, that is, we

set Rm = 1000 within the range of x2 + (z – 5)2 ≤ 0.4 and 11 ≤ y ≤ 14, while setting Rm = 0

elsewhere. The region of the enhanced resistivity lies in the center part of the calculation

region, displayed as a shaded area in Figure 4. 6.

Next, we refer to some results of the present numerical simulation. Figure 4. 7 is a

3-dimensional viewgraph displaying how the magnetic field evolves under the locally enhanced

resistivity described above. Red, blue, light blue, green, and yellow lines represent the magnetic

field lines at different positions; red line initially lies far from the neutral line (y-axis) so that

its tilt against the vertical direction is weak, while light blue, green, and yellow lines initially

lie near the neutral line so that their tilts are strong. Blue line is initially set to be just above

the neutral line so that its direction is completely horizontal. It should be mentioned that we

draw these field lines on the basis of the Euler description. Hence, although the colors of field

lines are common at different times, such field lines have no relation with each other. A color

map displayed at the base represents the temperature. Elapsed times are t = 0 (top-left), 4

(top-right), 8 (bottom-left), and 12 (bottom-right). Figure 4. 8 is a picture similar to Figure 4.

7, apart from a different viewing angle.

Both of Figure 4. 7 and 4. 8 clearly indicate some prominent features of this simulation.

First, as a result of the magnetic reconnection, a sheared arcade is formed near the base.

Moreover, by looking at the temperature map at the base, we find that there are formed two

hot sources near the footpoints of the arcade, which are produced by the hot plasma flows

originating from the region where the resistivity is imposed (see the panels at t = 8, and 12 in

both figures). Such two sources develop along the neutral line with time, which may correspond

to Hα ribbons observed in solar flares. (Actually, the thermal conduction probably plays a

more dominant role in the formation of Hα ribbons rather than the hot plasma flows.) Casting



our eyes to the upper part of the panel, we find that a twisted magnetic-field line appears

(blue line), which corresponds to a helical rope, or an extended image of the magnetic island

seen in many 2-dimensional MHD numerical simulations. (In the present study, an open-field

configuration is assumed as the initial state so that the complete helical structure is not

reproduced.)

Figure 4. 9 is a figure similar to Figure 4. 7 except that another plane parallel to the (x,

z)-plane is added to Figure 4. 7. This plane lies at y = 12 and has a color map which

represents the temperature.  The color map on that plane at t = 12 gives similar features that

are already seen in the 2-dimensional MHD numerical simulation in this thesis, that is, there

is formed a superhot region around both the reconnection region (neutral-point region) and

the loop-top region (see Figure 2. 5a).



Appendix A. Summary of The Important Physical Processes in Solar
Flares

In this appendix, we make a brief explanation on some important physical processes

in solar active phenomena. These are the magnetic reconnection, the resistive tearing process,

and the anomalous resistivity, all of which have a close relationship with our studies in this

thesis.

A. 1. Magnetic Reconnection

Solar flares are those phenomena that produce a huge amount of thermal, non-thermal,

and kinetic energies, the resource of which is now believed to be the magnetic energy stored

in the quasi-static coronal magnetic field. Since the corona is a good conductive medium but

still has a finite resistivity, the magnetic energy can be released in the diffusion process. The

region where the energy release works efficiently is known as a current sheet, in which a

certain component of the magnetic field is abruptly changed across the sheet. Hence the

current density in that region is so high that the Ohmic dissipation becomes very effective.

The formation of current sheets in the coronal environment is studied in many works (e.g.

Parker 1994; Karpen, Antiochos, & DeVore 1996).

The most fundamental time scale of such diffusion process in a current sheet is the

so-called diffusion time τd, defined as

   τd ≡ l2

η , (A. 1. 1)

where l is a typical thickness of the sheet. A typical velocity of the diffusion process is

expressed as

   vd ≈ l
τd

=
η
l
. (A. 1. 2)

The quickness of this process is defined as the ratio of vd to another dynamical velocity, such

as the Alfvén velocity vA,

   vd
vA

≈ η
vA l

= Rm
– 1 L

l
, (A. 1. 3)

where L is a typical length of the sheet and    Rm = vA L / η is the magnetic Reynolds number.

Since the coronal value of the magnetic Reynolds number is so large that the diffusion

process runs very slowly, which cannot explain the violent energy release observed in real

flares typically proceeding at the rate of the Alfvén velocity.



The above simple estimation is followed by a more detailed consideration in which

the coupling between the velocity field and the magnetic field is taken into account, that is,

the behavior of the magnetic field under a particularly prescribed velocity field is studied.

This approach is classified into the kinematic treatment and Parker (1979) did that study

where he investigated the behavior of the magnetic field around a stagnation point (X-point),

finding out the necessity of the localization of the resistivity around this point.

The dynamical treatment of a current sheet in which the equation of motion is taken

into account has been also done in many works. The first model based on this treatment is the

so-called Sweet-Parker model (Sweet 1958; Parker 1963), which has a relatively long diffusion

region. In this model the energy release process is regarded as the magnetic annihilation, and

the rate of it is given by

   vinflow

vA
≈ Rm

– 1 / 2 , (A. 1. 4)

where vinflow represents the inflow velocity to the sheet. This rate is less dependent on the

magnetic Reynolds number than the simple diffusion rate (see equation (A. 1. 3)), though it is

still too small to satisfy the time scale of real flares.

After the Sweet-Parker model was found to be insufficient to explain the quickness of

the flare evolution, Petschek (1964) proposed a more efficient model where the rate of the

magnetic reconnection is almost independent of the magnetic Reynolds number. The feature

of this model lies in the existence of a small diffusion region and a pair of slow MHD shocks,

which enables the fast magnetic reconnection. The rate of this process is given by

   vinflow

vA
≈ 1

ln Rm
. (A. 1. 5)

Moreover, Sonnerup added another discontinuity to the Petschek model  and found out

that the magnetic reconnection could proceed at the rate of the Alfvén velocity (Sonnerup

1970). Later, Priest & Forbes (1986) tried to unite several different models for the magnetic

reconnection and came to the conclusion that the reconnection model was dependent on the

flow pattern appearing in the system. According to their results, the Petschek model  and the

Sonnerup-like model have a connection with the converging flow pattern and the diverging

flow pattern, respectively.

Those models described above are based on the assumption of steady state. The next

problem is to investigate how the system evolves to that steady state naturally, that is, what is

a crucial factor to form that particular steady state. In order to answer this question, we have

to trace the temporal evolution of the system, which needs the help of numerical simulations.



According to Biskamp (1986, 1993), it is found that the Petschek’s configuration does not

occur but the Sweet-Parker’s does under a small uniformly distributed resistivity. On the

contrary, Ugai & Tsuda (1977) and Sato & Hayashi (1979) used a locally enhanced resistivity

model and confirmed the occurrence of the Petschek’s configuration. Their results suggest

that the fast magnetic reconnection with the Petschek’s configuration should have a close

relationship to the local enhancement of the resistivity. The problem of how the localization

of the resistivity arises in the flare evolution is fairly important so that this will be studied in

our future study.

A 3-dimensional magnetic reconnection has been an important topic recently, especially

because we must study the magnetic reconnection in such a complicated region as an active

region of the sun, where the structure of the magnetic field is purely 3-dimensional. The

fundamental researches in this field is briefly introduced in Priest (1991), Biskamp (1993),

Ugai & Shimizu (1996), and so on. Démoulin et al. (1996) applied the concept of the

3-dimensional magnetic reconnection to the coronal magnetic field and discussed the concen-

tration of currents on quasi-separatrix layers created by smooth photospheric motions.

A. 2. Resistive Tearing Process in A Current Sheet

Resistive tearing process is one of the most fundamental processes occurring spontane-

ously in a current sheet. If the length of the sheet is about ten times larger than its thickness,

such sheet becomes unstable to the tearing instability and a lot of modes begin to develop at

their own linear growth rates. Theoretical considerations of this subject began with the work

of Furth, Killen, & Rosenbluth (1963) (FKR theory), who divided the region subject to that

instability into two areas, that is, the external ideal MHD area and the internal resistive MHD

area, with matching conditions imposed on the interface of these areas. Then they derived the

dispersion relation in the linear stage. The maximum growth rate has a Rm
– 1 / 2-dependence

and this is the same dependence on the magnetic Reynolds number as that of the Sweet-Parker

model for the magnetic reconnection (apart from the length scale), so that the resistive tearing

process develops slowly at the linear stage when the magnetic Reynolds number is quite

large.

Although the tearing instability shows an exponential-like growth in the linear stage,

such growth gradually slows down as the evolution enters on the nonlinear stage. This is one

of the important features in the nonlinear tearing process, that is, an exponential growth in the

linear stage is reduced and even replaced by an algebraic one in some cases (Rutherford

1973; Steinolfson & van Hoven 1984). As a theory of this stage, we know the Rutherford

regime, which indicates that the width of a magnetic island increases with time at a constant

rate (Rutherford 1973, Biskamp 1993). The saturation level of this width is also considered

by White (1977). For example, the saturation width becomes about twice larger than the



initial thickness of the current sheet when the wavelength of the tearing mode is about 10

times larger than the initial thickness of the sheet (see Fig. 5. 12 in Biskamp 1993).

A coalescence process also plays a dominant role in the nonlinear stage. Through the

coalescence process between magnetic islands, a sufficient amount of thermal energy is

produced by the Joule heating, leading to the formation of a large magnetic island. Those

studies of this topic are seen in Finn & Kaw (1977), Hayashi (1981), Biskamp (1982),

Bhattacharjee, Brunel, & Tajima (1983), Steinolfson & van Hoven (1983, 1984), Schumacher

& Kliem (1996), and so on. Turbulent effects in that process are also considered in Matthaeus

and Montgomery (1981) and  Matthaeus & Lamkin (1985).

A. 3. Anomalous Resistivity

Normally, the diffusive effect is based on the interaction among particles and such

effect plays an important role in a collision-dominated plasma. However, in a very hot and

dilute plasma, collisions rarely occur so that the resistivity based on the particle interaction

becomes quite small. In that case, the behavior of a plasma is usually described in the ideal

MHD regime and the solar corona belongs to this case, where any structure in the corona

makes an ideal MHD evolution. Accordingly, those transient activities observed in the corona

are considered to be caused by another type of the resistivity, which is based on the interaction

between particles and various kinds of wave. This is the origin of the anomalous resistivity.

Since the anomalous resistivity is caused by the interaction between particles and

waves, the occurrence of this needs the existence of fluctuations in a plasma. Such fluctuations

are mainly generated by various plasma instabilities. Usually, the anomalous resistivity is

characterized by the effective collision frequency, defined as the ratio of fluctuation energy

density to thermal energy density. For example, the effective collision frequency caused by

the ion-acoustic instability is given by

   ν i, an ≈ω p e

Wi

n0 k B Te

, (A. 3. 1)

where ωp e, n0, kB, Te, and Wi mean the plasma frequency, plasma density, Boltzmann constant,

electron temperature, and ion-acoustic fluctuation energy density, respectively. This is called

the Sagdeev formula  for the ion-acoustic anomalous collision frequency (Treumann & Baum-

johann 1997). By estimating Wi under the assumption of very large electron temperature (Te »

Ti), we get the following expression for that anomalous collision frequency:

   ν i, an ≈ 0.01 ωp i

vd
vs

Te

T i
θ– 2 . (A. 3. 2)

Here ωp i, vd, vs, Ti, and θ mean the ion plasma frequency, ion-electron drift velocity, plasma



sound velocity (ion-acoustic velocity), ion temperature, and wave scattering angle, respectively.

Since the ion-acoustic instability arises in the case of vd ≥ vs, the ion-acoustic anomalous

collision frequency can become of the order of the ion plasma frequency assuming a very

large drift velocity (vd » vs) and a narrow wave scattering angle (θ « 1). On the other hand, the

ion-electron collisional frequency is expressed as

   ν e i ≈
ωp e

n0 λD
3

~ 4 ×10– 6 n0

T e
3 / 2

ln Λ, (A. 3. 3)

where λD and ln Λ mean the Debye length and the Coulomb logarithm (Spitzer formula). In

the coronal environment, this collisional frequency is about 10 s– 1 (Te = 106 K and n0 = 109

cm– 3), while the ion-acoustic anomalous collision frequency is given by the ion plasma

frequency, which is about 106 s– 1. Consequently, the effectiveness of the resistivity is enhanced

about 105 times.

Another important instability relevant to the anomalous resistivity is the lower-hybrid

drift instability, which plays an important role in a current sheet. According to Treumann &

Baumjohann (1997), the anomalous collision frequency caused by this instability also becomes

of the order of the ion plasma frequency, supposing a strong magnetic field with a steep

density gradient of the order of the ion gyroradius.



Appendix B. Specification of A Numerical Code

In this appendix, we explain a numerical code for the 2.5-dimensional MHD numerical

simulation used in this thesis. We start with such the basic MHD equations as are expressed

in the conservational form:

     ∂
∂t

w +
∂

∂x
E w +

∂
∂z

G w + S w = 0, (B. 1)

where w, E (w), G (w), and S (w) are the 8-dimensional vectors given by (4. 2), (4. 3), (4. 5),

and (4. 6), respectively. Then all the physical variables are discretised in terms of both space

and time coordinates. In the following part, We pick up one component from vector equation

(B. 1) and express it in discretised forms with plain characters.

  w i, j
n = w tn, x i, z j (B. 2)

and

  E i, j
n = E w i, j

n ,   Gi, j
n = G w i, j

n ,   S i, j
n = S wi, j

n . (B. 3)

Here tn means the n-th time step and x i and zj mean the i-th and j-th grid points along the

x-coordinate and the z-coordinate, respectively. These values are defined as

   tn + 1 ≡ tn + ∆ t, (B. 4)

   x i + 1 = xi + ∆ x
i + 1

2
, (B. 5)

and

   z j + 1 = z j + ∆ z
j + 1

2
, (B. 6)

where   ∆ t is determined by the CFL (Courant-Friedrichs-Lewy) condition:

   
∆ t ≤ ∆ t CFL ≡ min

min ∆ x i, ∆ z j

vsi , j
   for all (i, j), (B. 7)

where vs = (v2 + cs
2 + vA

2)1 / 2. Here v, cs, and vA are the fluid velocity, adiabatic sound velocity,

and Alfvén velocity, and we set ∆ t = 0.4 ∆ tCFL all through this thesis (see also Fletcher

1991). As for the spacial interval, we set



   ∆ x
i + 1

2
= const ., ∆ z

j + 1
2

= const. , (B. 8)

in the uniformly distributed grid-point case, while in the non-uniformly distributed grid-point

case, we set

   ∆ x
i + 1

2
= α x ∆ x

i – 1
2
, ∆ z

j + 1
2

= α z ∆ z
j – 1

2
, (B. 9)

where  αx  and  αz  are constant values. All through this thesis, we set    αx = α z = 1.05.

Next, we solve the basic equations on the basis of the 2-step modified Lax-Wendroff

scheme.

<1st step>

   w
i + 1

2
, j + 1

2

n + 1 = 1
4

w
i +1, j +1
n + w

i +1, j
n + w

i, j + 1
n + w

i , j
n

– ∆ t
2 ∆ x i + 1

2

E i +1, j +1
n – E i, j + 1

n + E i +1, j
n – E i, j

n

– ∆ t
2 ∆ z j + 1

2

Gi +1, j +1
n – G i +1, j

n + G i, j +1
n – Gi, j

n

– ∆ t
4 S i +1, j +1

n + Si +1, j
n + S i, j +1

n + S i , j
n ,

(B. 10)

where   w
i + 1

2
, j + 1

2

n + 1  is the physical variable at a virtual mid-mesh point   x i + 1
2
, z j + 1

2
. Then we

evaluate the values of flux and source at this point:

  E
i + 1

2
, j + 1

2

n + 1 = E w
i + 1

2
, j + 1

2

n + 1 , (B. 11)

  G
i + 1

2
, j + 1

2

n + 1 = G w
i + 1

2
, j + 1

2

n + 1 , (B. 12)

and

   S
i + 1

2
, j + 1

2

n + 1 = S w
i + 1

2
, j + 1

2

n + 1  . (B. 13)

Using these values, we determine the values at the interface of each grid point as follows.

   
E i + 1

2
, j

n +1
=

∆ z
j – 1

2

2 ∆ z j
E

i + 1
2

, j + 1
2

n + 1 +
∆ z

j + 1
2

2 ∆ z j
E

i + 1
2

, j – 1
2

n + 1 , (B. 14)

   
Gi, j + 1

2

n + 1
=

∆ x
i – 1

2

2 ∆ xi
G

i + 1
2

, j + 1
2

n + 1 +
∆ x

i + 1
2

2 ∆ xi
G

i – 1
2

, j + 1
2

n + 1 , (B. 15)

and



   

S i, j
n + 1 =

∆ z
j – 1

2

2 ∆ z j

∆ x
i – 1

2

2 ∆ xi

S
i + 1

2
, j + 1

2

n + 1 +
∆ x

i + 1
2

2 ∆ xi

S
i – 1

2
, j + 1

2
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where

   ∆ xi = 1
2 ∆ xi + 1

2
+ ∆ x i – 1

2
,    ∆ z j = 1

2 ∆ z j + 1
2

+ ∆ z j – 1
2

. (B. 17)

<2nd step>

On the basis of the 1st-step calculation, we then try to obtain the next time-step

physical variables at real grid points. This is given by

   w i, j
n + 1 = w i, j

n

– ∆ t
4 ∆ x i

E i +1, j
n – E i –1, j

n +2 Ei + 1
2

, j

n +1
– E i – 1

2
, j

n +1

– ∆ t
4 ∆ z j

G i, j + 1
n – Gi, j – 1

n +2 Gi, j + 1
2

n + 1
– Gi, j – 1

2

n + 1

– ∆ t
2

S i, j
n + S i, j

n + 1 .

(B. 18)

Now we obtain the next time-step physical variables at real grid points. However in

order to suppress the numerical overshoot behind those regions where the spacial gradient of

physical variables are quite large (e.g. shock waves), we introduce the effect of the artificial

viscosity. This effect is imposed on the results obtained after the 2nd-step calculation:

  wi, j
n +1* = w i, j

n + 1 + qi, j
n +1 (B. 19)

Here   wi, j
n +1*  is the physical value subject to the effect of the artificial viscosity and   q i, j

n + 1  is the

artificial viscous term. This viscous term is calculated by

   
q i, j

n + 1 = ∆ t
∆ xi

q x i + 1
2

, j

n wi +1, j
n – wi, j

n

∆ x
i + 1

2

– q x i – 1
2

, j

n w i, j
n – wi –1, j

n

∆ x
i – 1

2

+ ∆ t
∆ z j

q zi, j + 1
2

n w i , j + 1
n – w i, j

n

∆ z
j + 1

2

– q zi, j – 1
2

n w i , j
n – w i, j –1

n

∆ z
j – 1

2

,

(B. 20)

where



  qx i + 1
2

, j

n = 1
2 qxi +1, j

n + qxi, j
n ,   qz i, j + 1

2

n = 1
2 q zi, j +1

n + q zi, j
n . (B. 21)

Here   qx i, j
n  and   qzi , j

n  are defined as

   
qx i, j

n = αν ∆ x i max 1
2 vxi +1, j

n – vxi –1, j
n , ∆ vmin – ∆vmin , (B. 22)

and

   
qzi , j

n = α ν ∆ z j max 1
2 vzi , j + 1

n – vzi , j –1
n , ∆ vmin – ∆vmin . (B. 23)

In the above formulation for the artificial viscosity, the term αν is a scale factor and the term

∆ vmin is a critical velocity difference between the neighboring grid points, over which the

artificial viscosity is set up. All through this thesis, we set αν = 3 and ∆ vmin = 0.01.

By using this code, we investigate the maximum linear growth rate of the tearing

instability. The comparison between the simulation result and analytically predicted one

always gives a small discrepancy. For example, using the same force-free model as in § 4. 4,

we obtain the simulation result of γm = 1.43 in the case of β = 0.15, Rm = 1000, while the

analytical treatment gives γm = 1.49.



References

Alfvén, H., & Carlqvist, P. 1967, Sol. Phys., 1, 220

Aly, J. J. 1995, ApJ, 439, L63

Amari, T., Luciani, J. F., Aly, J. J., & Tagger, M. 1996, A&A, 306, 913

Aschwanden, M. J., & Benz, A. O. 1997, ApJ. 480, 825

Barnes, C. W., & Sturrock, P. A. 1972, ApJ, 174, 659

Bhattacharjee, A., Brunel, F., & Tajima, T. 1983, Phys. Fluids, 26 (11), 3332

Birn, J. & Hesse, M. 1991, JGR, 96, 23

Biskamp, D. 1982, Physics Letters, 87A-7, 357

Biskamp, D. 1986, Phys. Fluids, 29, 1520

Biskamp, D. & Welter, H. 1989, Sol. Phys., 120, 49

Biskamp, D. 1993, Nonlinear Magnetohydrodynamics (Cambridge: Cambridge Univ. Press)

Bogaert, E. & Goossens, M. 1991, Sol. Phys., 133, 281

Borovsky, J. E. 1986, ApJ, 306, 451

Browning, P. K. & Priest, E. R. 1986, A&A, 159, 129

Cargill, P. J. , Hood, A. W., & Migliuolo, S. 1986, ApJ, 309, 437

Carmichael, H. 1964, in AAS-NASA Symposium on Solar Flares, ed. W. N. Hess (NASA

SP-50), 451

Choe, G. S. & Lee, L. C. 1996 ApJ, 472, 360

Démoulin, P, Hénoux, Priest, E. R., & Mandrini, C. H. 1996, A&A, 308, 643

Finn, J. M. & Kaw, P. K. 1977, Phys. Fluids, 20 (1), 72

Finn, J. M., Guzdar, P. N., & Chen, J. 1992, ApJ, 393, 800

Fletcher, C. A. J. 1991, Computational Techniques for Fluid Dynamics 1, and 2 (Berlin:

Springer-Verlag)

Forbes, T. G. & Priest, E. R. 1983, Sol. Phys., 84, 169

Forbes, T. G., & Malherbe, J. M. 1985, ApJ, 302, L67

Forbes, T. G., Malherbe, J. M., & Priest, E. R. 1989, Sol. Phys., 120, 285

Forbes, T. G. 1990, JGR, 95, A8, 11919

Forbes, T. G. & Malherbe, J. M. 1991, Sol. Phys., 135, 361

Forbes, T. G., Priest, E. R., & Isenberg, P. A. 1994, Sol. Phys., 150, 245

Forbes, T. G., & Acton, L. W. 1996, ApJ, 459, 330

Furth, H. P., Killeen, J., & Rosenbluth, M. N. 1963, Phys. Fluids, 6, 459

Hara, H. 1996, Ph. D. Thesis, Univ. Tokyo

Hayashi, T. 1981, Journal of the Physical Society of Japan, 50 (9), 3124

Heinzel, P. 1994, in Proc. of the Third SOHO Workshop, on Solar Dynamic Phenomena and

Solar Wind Consequences, (ESA SP-373)

Heyvaerts, J., Priest, E. R., & Rust, D. M. 1977, ApJ, 216, 123

Heyvaerts, J. & Priest, E. R. 1984, A&A, 137, 63



Hiei, E., & Hundhausen, A. J. 1996, in Proc. IAU Collq. 153, on Magnetodynamic Phenomena

in the Solar Atmosphere, ed. Y. Uchida, T. Kosugi, & H. S. Hudson (Tokyo: Kluwer),

125

Hirayama, T. 1974, Sol. Phys., 34, 323

Hood, A. W. & Anzer, U. 1987, Sol. Phys., 111, 333

Hudson, H. S. 1994, in Proc. Kofu Symp., ed. Enome, S., & Hirayama, T. (Nagano: NRO), 1

Inhester, B., Birn, J., & Hesse, M. 1992, Sol. Phys., 138, 257

Jockers, K. 1978, Sol. Phys., 56, 37

Karpen, J. T.,  Antiochos, S. K., & DeVore, C. R. 1996, ApJ, 460, L73

Kitai, R., Funakoshi, Y., Ueno, S., Sano, S., & Ichimoto, K. 1997, PASJ, 49, 513

Klimchuk, J. A., & Sturrock, P. A. 1989, ApJ, 345, 1034

Kopp, R. A., & Pneuman, G. W. 1976, Sol. Phys., 50, 85

Kurokawa, H. 1987, Sol. Phys., 113, 259

Kurokawa, H. 1989, Space Sci. Rev., 51, 49

Kusano, K., Suzuki, Y., & Nishikawa, K. 1995, ApJ, 441, 942

Low, B. C. 1977, ApJ, 212, 234

Magara, T., Mineshige, S., Yokoyama, T., & Shibata, K. 1996a, in Proc. IAU Collq. 153, on

Magnetodynamic Phenomena in the Solar Atmosphere, ed. Uchida, Y., Kosugi, T.,

& Hudson, H. S. (Tokyo: Kluwer), 585

Magara, T., Mineshige, S., Yokoyama, T., & Shibata, K. 1996b, ApJ, 466, 1054

Magara, T., & Shibata, K. 1997, Adv. Space Res. 19, 1903

Magara, T., Shibata, K., & Yokoyama, T. 1997, ApJ, 487, 437

Matthaeus, W. H., & Montgomery, D. 1981, J. Plasma Physics, 25, 11

Matthaeus, W. H., & Lamkin, S. L. 1985, Phys. Fluids, 28, 303

Masuda, S., Kosugi, T., Hara, H., Tsuneta, S., & Ogawara, Y. 1994, Nature, 371, 495

Masuda, S. 1994, Ph. D. Thesis, Univ. Tokyo

Melville, J. P., Hood, A. W., & Priest, E. R. 1984, Sol. Phys., 92, 15

Mikic, Z., Barnes, D. C., & Schnack, D. D. 1988, ApJ, 328, 830

Neukirch, T. 1997, A&A, 325, 847

November, L. J. & Simon, G. W. 1988, ApJ, 333, 427

Ogawara, Y. et al. 1991, Sol. Phys. 136, 1

Ohyama, M., & Shibata, K. 1997, PASJ, 49, 249

Ono, Y., Morita, A., & Katsurai, M. 1993, Phys. Fluids,  B5 (10), 3691

Parker, E. N. 1963, ApJ Suppl. Ser. 8, 177

Parker, E. N. 1979, Cosmical Magnetic Fields (Oxford: Oxford Univ. Press)

Parker, E. N. 1994, Spontaneous Current Sheets in Magnetic Fields (Oxford: Oxford Univ.

Press)

Petschek, H. E. 1964, in AAS-NASA Symposium on Solar Flares, ed. W. N. Hess (NASA

SP-50), 425

Platt, U. & Neukirch, T. 1994, Sol. Phys., 153, 287

Pneuman, G. W. 1981, in Solar Flare Magnetohydrodynamics, ed. Priest, E. R. (New York:



Gordon & Breach), 379

Priest, E. R. 1982, Solar Magnetohydrodynamics (Dordrecht: Reidel)

Priest, E. R., & Forbes, T. G. 1986, J. Geophys. Res. 91, 5579

Priest, E. R. 1988, ApJ, 328, 848

Priest, E. R. & Forbes, T. G. 1990, Sol. Phys., 126, 319

Priest, E. R. 1991, Phil. Trans. R. Soc. Lond. A, 336, 363

Rutherford, P. H. 1973, Phys. Fluid, 16, 1903

Sakao, T. 1994, Ph. D. Thesis, Univ. Tokyo

Sakurai, T. 1985, Sol. Phys. 95, 311

Sato, T., & Hayashi, T. 1979, Phys. Fluids, 22, 1189

Schmieder, B. et al. 1995, Sol. Phys., 156, 337

Schmieder, B., Démoulin, P., Aulanier, G., & Golub, L. 1996, ApJ, 467, 881

Schmieder, B., Heinzel, P., van Driel-Gesztelyi, L., & Lemen, J. R. 1996, Sol. Phys. 165, 303

Schumacher, J. & Kliem, B. 1996, Phys. Plasma, 3,  4703

Shibata, K., Tajima, T., Steinolfson, R. S., & Matsumoto, R. 1989, ApJ, 345, 584

Shibata, K., Nozawa, S., & Matsumoto, R. 1992, PASJ, 44, 265

Shibata, K. et al. 1994, ApJ, 431, L51

Shibata, K. 1995, Adv. Space Res., 17, 415, 9

Shibata, K. et al. 1995, ApJ, 451, L83

Shibata, K. 1997,  in Workshop on Solar Flares and Related Disturbances, ed. Sakurai, T.,

Sagawa, E., & Akioka, M. (Hiraiso/CRL), in press

Shimizu, T. 1977, Ph. D. Thesis, Univ. Tokyo

Sonnerup, B. U. Ö, 1970, J. Plasma Phys., 4, 161

Spicer, D. 1977, Sol. Phys., 53, 305

Steele, C. D. C. & Priest, E. R. 1989, Sol. Phys., 119, 157

Steele, C. D. C., Hood, A. W., Priest, E. R., & Amari, T. 1989, Sol. Phys., 123, 127

Steinolfson, R. S. & Van Hoven, G. 1983, Phys. Fluids, 26 (1), 117

Steinolfson, R. S. & Van Hoven, G. 1984, Phys. Fluids, 27 (5), 1207

Sturrock, P. A. 1966, Nature, 211, 695

Sturrock, P. A. 1994, Plasma Physics (Cambridge: Cambridge Univ. Press)

Su, Q. R. 1985, Sol. Phys., 102, 159

Su, Q. R. 1990, Sol. Phys., 127, 139

Sweet, P. A. 1958, IAU Symp. 6, 123

Tanaka, K. 1991, Sol. Phys., 136, 133

Treumann, R. A., & Baumjohann, W. 1997, Advanced Space Plasma Physics (London:

Imperial College Press)

Tsuneta, S. et al. 1992, PASJ, 44, L63

Tsuneta, S. 1996, in Solar and Astrophysical Magnetohydrodynamic Flows, ed. Tsinganos,

K. C. (Netherlands, Kluwer), 85

Uchida, Y., & Shibata, K. 1988, Sol. Phys. 116, 291

Ugai, M., & Tsuda, T. 1977, J. Plasma Phys., 17, 337



Ugai, M. 1986, Phys. Fluids, 29, 3659

Ugai, M. 1996, Phys. Plasmas, 3, 4172

Ugai, M., & Shimizu, T. 1996, Phys. Plasmas, 3, 853

van Ballegooijen, A. A. & Martens, P. C. H. 1989, ApJ, 343, 971

van der Linden, R., Goossens, M., & Hood, A. W. 1988, Sol. Phys., 115, 235

van Driel-Gesztelyi, L. et al. Sol. Phys., 174, 151

Velli, M. & Hood, A. W. 1986, Sol. Phys., 106, 353

White, R. B., Monticelli, D. A., Rosenbluth, M. N., & Waddell, B. V. 1977, Phys. Fluids, 20,

800

Wiechen, H., Büchner, J., & Otto, A. 1996, JGG, 48, 845

Wiik, J. E., Schmieder, B., Heinzel, P., & Roudier, T. 1996, Sol. Phys., 166, 89

Yokoyama, T., & Shibata, K. 1994, ApJ, 436, L197

Yokoyama, T. 1995, Ph. D. Thesis, Graduate Univ. for Advanced Studies (National

Astronomical Observatory)

Yokoyama, T., & Shibata, K. 1996, PASJ, 48, 353

Yoshimura, K., Kurokawa, H., & Sano, S. 1996, in Proc. IAU Collq. 153, on Magnetodynamic

Phenomena in the Solar Atmosphere, ed. Y. Uchida, T. Kosugi, & H. S. Hudson

(Tokyo: Kluwer), 457

Zweibel, E. G. 1981, ApJ, 249, 731

Zweibel, E. G. 1982, ApJ, 258, L53

Zweibel, E. G., & Hundhausen, A. J. 1982, Sol. Phys., 76, 261

Zwingmann, W. 1987, Sol. Phys., 111, 309


