Figure 1: False color image representing the difference in speeds between various areas on and inside the Sun measured by MDI. Red-yellow is faster than average and blue slower. The light orange bands on the left side are zones that are moving slightly faster than their surroundings and extend down approximately 12,000 miles. The cutaway on the right side reveals speed variations in the outer 30 percent of the interior of Sun. The red ovals at the poles are the polar plasma jet streams. They move approximately ten percent faster than their surroundings, and each is about 17,000 miles across.

Figure 2: A composite image taken by UVCS for the outer region and EIT for the inner region. The dark areas at the poles and across the disk are coronal holes. The bright active regions and the ray-like structures originating in the coronal holes are controlled by the Sun’s magnetic field.

Figure 3: EIT image in resonance lines of Fe IX and X at 171 Å in the extreme ultraviolet showing the solar corona at a temperature of about 1.3 million K. Note two large active region systems, composed of numerous magnetic loops.

Figure 4: Bright coronal mass ejection with an enormous erupting prominence recorded by the LASCO C2 coronagraph. The bright lines outline magnetic field lines inside the erupting prominence.