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Abstract

The Multi-Order Solar EUV Spectrograph (MOSES) is a rocket

borne slitless imaging spectrograph with detectors at three spectral

orders (n = −1,0,1). The algorithms to decode the MOSES data—

to recover spectral information from the images—are still being de-

voloped. This presentation begins by describing mathematicdally

the information content of the MOSES images. Several methods of

image reconstruction are discussed. I’ll also touch on related work

by other investigators.

The MOSES project is funded by NASA Grant NAG5-10997.
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A Multi-Order Slitless Spectrometer
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Projection Through (x, λ) Space

I−(x− λ) I0(x) I+(x + λ)

Images at n = −1,0,+1

λ

x

Object v(x, λ)
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The Big Question: Inversion

Can we turn I+(x + λ), I0(x), I−(x − λ) back into I(x, λ)? And if

so, how?

The inversion problem seems poorly constrained: solve for M × N

parameters from M × 3 data points!
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The projection from object v(x, λ) to data I =
[
I−, I0, I+

]
is a linear

transform U ,

Uv = I.

Given an observation I, we would like to invert U to obtain v. How-

ever, the data space is smaller than the object space. This leads to

non-uniqueness: I = Uv = Uv′.

Let f = v′ − v.

∴ Uf = 0. (1)

The nullspace is the set of objects f satisfying eq. 1. The bet-

ter we understand the nullspace, the better we will understand the

ambiguity introduced by non-uniqueness.
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The Generating Function

For a nullspace element f , we define a “generating function”

g(x, λ) ≡
∫ ∫ ∫

f(x, λ) dλ d(λ + x) d(λ− x). (2)

Conversely, any function g that has zero first and second partial

derivatives at the upper and lower boudaries will give rise to a null

function f :

f(x, λ) =
(

∂

∂λ

) (
∂

∂(λ + x)

) (
∂

∂(λ− x)

)
g(x, λ). (3)
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Discrete Representation

Differential operators in continuous space may be represented as

convolution kernels in discrete space:

∂

∂λ
←→

(
1

−1

)
,

∂

∂(λ + x)
←→

(
0 1

−1 0

)
,

∂

∂(λ− x)
←→

(
1 0
0 −1

)
. (4)

∴
(

∂

∂λ

) (
∂

∂(λ + x)

) (
∂

∂(λ− x)

)
↔ κ ≡




0 1 0
−1 −1 −1
1 1 1
0 −1 0


 . (5)
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So What?

The nullspace consists of superpositions of κ:

f = κ⊗ g. (6)

The nth moment of κ is given by
∑

x,λ

(λ− λ0)
n κx,λ.

n Moment Physical Interpretation
0 0 line intensity
1 0 doppler shift
2 0 line width
3 6 asymmetry

Since the n = 0,1,2 moments of κ are zero, no combination of
nullspace elements can alter the line intensity, doppler shift, or line
width. Imaging at three orders therefore constrains exactly these
three pieces of information. Strictly speaking, this applies only to
the average in x.
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The Fourier Slice Theorem is the fundamental theorem of tomog-

raphy.∗

F (u, v)

f(x, y)

v

ux

y
t

θ

Fourier transform

θ

Pθ (
t)

∗See A.C. Kak and Malcolm Slaney, Principles of Computerized Tomographic
Imaging, IEEE Press, 1988. Available free: http://www.slaney.org/pct/
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Reconstruction Algorithms

Algorithms of several types are being studied:

• Parametric modeling (Fox and Kankelborg)

• Singular value decomposition (Fox and Vogel)

• Pixon reconstruction (Fox and Metcalf)

• Fourier backprojection (Kankelborg)

A quick-and-dirty Fourier backprojection algorithm will be discussed

in detail.
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MOSES Backprojection Algorithm

1. Create a blank image F (u, v) that will hold the FFT of the
reconstructed image I(x, λ).

2. Take the Fourier Transform Sn(k) of each of the three projec-
tions I+, I−, I0.

3. Use the Fn to fill in the appropriate slices of F (u, v).

4. Apply the inverse transform to obtain an initial guess I(x, λ).

In practice, it helps to know (or be able to guess) the projection
along x,

∫∞−∞ I(x, λ) dx.

Problem: lots of negative counts in the backprojected image.
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We may use an iterative approach to enforce non-negativity:

1. Zero all negative elements of the backprojection.

2. Fourier transform the result, use it to fill the wedges of F (u, v)

that are not constrained by the data.

3. Inverse Fourier transform to obtain an improved backprojection.

4. Repeat until the sum of the negative counts in the backprojection

is small compared to the total uncertainty in image counts.

5. Zero all negative pixels in the backprojection.
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Data Inversion Example

self−reversal

Reconstructed

doppler shift line broadening

Original
(test pattern)

A test pattern is projected onto the three spectrograph orders and
then reconstructed by Fourier backprojection with two added con-
straints: (1) the slit averaged spectrum and (2) non-negativity. The
doppler shift and line width are preserved but the self-reversal is sup-
pressed.
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Limitations of
Fourier

Backprojection

An example with two spectral lines.

This time, photon noise is included.

The bright line is reconstructed

well, but the faint line is gibber-

ish. We would do better with an

algorithm that uses fewer degrees

of freedom in the representation

of faint objects.

True Image

Reconstruction
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Related Work

Several investigators are pursuing similar exciting ideas:

• Descour, M.R., et al. 1997: “Demonstration of a Computed-

Tomography Imaging Spectrometer Using a Computer-generated

Hologram Disperser”, Appl. Opt. 36: 16, 3694.

• Wilson, D.W., Maker, P.D., & Muller, R.E. 1997: “Reconstruc-

tions of Computed-Tomography Imaging Spectrometer Image

Cubes”, Proc. SPIE 3118, 184.

• DeForest, C.E. 2002: “Stereoscopic Spectroscopy: A New Tech-

nique for Rapid Magnetography”, Proc. ASP, Solar and Stellar

Magnetism III, in press]
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Conclusions

• A 3-order slitless spectrograph such as MOSES is sensitive to 3

line profile parameters: intensity, doppler shift and width.

• Much of the ambiguity due to non-uniqueness of the inverse

problem will be eliminated by thinking in terms of moments of

the line profile.

• Preliminary results with a simple Fourier backprojection algo-

rithm look promising.

• MOSES is part of a broader trend toward computed tomographic

imaging spectroscopy.
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