MOSES Science

Charles C. Kankelborg Department of Physics Montana State University Bozeman, MT 59717 kankel@mithra.physics.montana.edu

MSSL, 2002 November 20

Abstract

The Multi-Order Solar EUV Spectrograph (MOSES) is a rocket borne slitless imaging spectrograph with detectors at three spectral orders (n = -1, 0, 1). I will discuss the utility of this arrangement, the science goals of the MOSES rocket mission, and the parameters for application to Solar Orbiter.

The MOSES project is funded by NASA Grant NAG5-10997.

People and Institutions Involved

Montana State University			
PI	Charles Kankelborg		
Graduate students	J. Lewis Fox		
	Melissa Cirtain		
	Trae Winter		
Engineering	Dustin Cram		
	Michael Chase		
	Emily Armitage		
	Pancastya Agastra		
	Wayne Janssen		
	Hasan Rouf		
Co-Is (Science)	Petrus Martens		
	Dana Longcope		
	Loren Acton		
Goddard Space Flight Center (optics)			
Co-I (Design)	Roger Thomas		
Coatings	Ritva Keski-Kuha		
Mullard Space Sciences Laboratory (detectors)			
Co-I	Len Culhane		
Cameras	Chris McFee		
Lockheed-Martin	Solar and Astrophysics Laboratory (LOTS)		
Co-I	Jean-Pierre Wuelser		
Science	Tom Metcalf		

EUV Imaging Spectroscopy

4

A Multi-Order Slitless Spectrometer

Our detectors are 2-dimensional, but EUV radiation from the Sun lives in a 3-dimensional space: $I(x, y, \lambda)$. This has led to a series of compromises:

Instrument Type	Measures	Comments
ML Imager	I(x,y)	Fixed spectral response
Slit Spectrograph	$I(\lambda,y)$	Scan to build image
Slitless Spectrograph	$I(x + n\lambda, y)$	Spatial-Spectral Overlap
MOSES	$I(x - \lambda, y), I(x, y), I(x + \lambda, y)$	Deconvolution required

MOSES has high information bandwidth compared to other approaches because it has multiple detectors and no slit.

What can we measure with the multi-order technique?

- 1. High dispersion: Line profile parameters for 1-2 isolated lines
- 2. Low dispersion: Several line intensities

The information content of the data depends on the number of orders imaged.

MOSES and He II

The *MOSES* rocket mission will address the over-brightness of He II λ 304 Å.

- He II doppler and linewidth maps will characterize TR turbulence on arcsecond scales at 10 s cadence. If much of the excess linewidth in He II is due to macroscopic turbulence, then the velocity redistribution mechanism can be falsified.
- Simultaneous images of Si XI λ 303.3 Å and He II λ 303.8 Å will allow us to assess the role of PIR (now almost discounted).

Application to Solar Orbiter

The MOSES approach offers several advantages for Solar Orbiter:

- Fast, high resolution imaging
- Truly simultaneous spectral information over the whole image
- Light and simple
 - No moving parts (except shutter)
 - Only 1-2 optics, high throughput

Disadvantages:

• Narrow wavelength range

Questions

If the *MOSES* technique is right for Orbiter,

- What is the physics of interest? *E.g.* Solar wind source regions.
- Are we more interested in line profiles or line ratios?
- What wavelength range?
- Detectors at how many orders?