
The Applied Optics of MOSES

Lectures for ECE 580

Charles C. Kankelborg

Department of Physics

Montana State University

Bozeman, MT 59717

kankel@mithra.physics.montana.edu

September 24 & 26, 2002

1



Abstract

The Multi-Order Solar EUV Spectrograph (MOSES) is a new type

of slitless imaging spectrograph with detectors at three spectral or-

ders (n = −1,0,1). This presentation summarizes the basic optical

physics behind the instrument and introduces the “ill-posed inversion

problem” as it relates to MOSES data.

The MOSES project is funded by NASA Grant NAG5-10997.
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Outline

1. Propagation in a dissipative medium

2. Reflection at an interface

3. Multilayer coatings (“layered synthetic microstructure”, LSM)

4. Imaging spectroscopy

5. Inverse problem for MOSES
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Dissipative Media and Multilayer Mirrors

We have been studying optics under the following assumptions:

• Propagation without dissipation

• Rayleigh-Sommerfeld diffraction

– propagation strictly from left to right

– thin screen

– structures with length scale L >> λ.

We now lay aside these assumptions to consider propagation in a dis-

sipative medium. In EUV light, all media (other than high vacuum)

are extremely dissipative.
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Electrodynamics in a Conductor ∗
Maxwell’s equations in a linear medium:

∇ · E = ρ/ε, ∇× E = −∂B
∂t ,

∇ ·B = 0, ∇×B = µJ + µε∂E
∂t ,

(1)

In a conductor, J = σE (Ohm’s law). Conservation of charge:

∂ρ

∂t
= −∇ · J
= −σ (∇ · E)

= −σ

ε
ρ

∴ ρ(t) = ρ(0)e−(σ/ε)t

For large times t À σ/ε, ρ → 0.

∗David J. Griffiths, Introduction to Electrodynamics, Prentice-Hall, 1981
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Maxwell’s equations in a conductor are therefore:

∇ · E = 0, ∇× E = −∂B
∂t ,

∇ ·B = 0, ∇×B = µσE + µε∂E
∂t ,

(2)

The wave equation is now

∇2E = µε
∂2E

∂t2
+ µσ

∂E

∂t
. (3)

As in vacuum, the free space solutions are transverse plane waves

such as

E(x, t) = E0 ĵ ei(κx−ωt). (4)

The wavenumber κ is now complex, and is expressed in terms of a

complex index of refraction N :

κ = ±ω

c
N, N ≡ n + ik ∈ C. (5)

The ± indicates waves traveling right or left.
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Exercise 1 Verify the derivation of the wave equation (3) from

Maxwell’s equations (2). Show that it is the same for B(x, t).

Exercise 2 Verify the plane wave solution (4). Show that the same

form is possible for B(x, t). Looking back at Maxwell’s equations

(2), show that only transverse waves are possible. ∗

∗Do not be fooled, however: these waves are more interesting then EM waves
in vacuum. As Griffiths points out, the electric and magnetic fields are out of
phase by an amount that depends on the material properties!
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Dimensionless optical constants n and k apply more generally than

the foregoing derivation, but have the following form in a conductor:

refractive index n(ω) = c

√√√√√εµ

2




√
1 +

(
σ

εω

)2
+ 1


 , (6)

extinction coefficient k(ω) = c

√√√√√εµ

2




√
1 +

(
σ

εω

)2
− 1


 . (7)

N.B.: The conductivity σ(ω), permittivity ε(ω) and permeability µ(ω)

are all functions of frequency!

Equation 4 for a plane-wave may be rewritten for a material j with

optical constants nj, kj:

E(x, t) = E0 e−(ω/c)kjx ei(ω/c)njx e−iωt. (8)
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Reflection and Transmission at an Interface
A transverse plane wave traveling in the +x direction through medium
1 is normally incident on an interface with medium 2 at x = 0.

N2 = n2 + ik2

x = 0

EI ET

ER

N1 = n1 + ik1

We assume a solution that includes complex amplitudes for the in-
cident wave EI, a reflected wave ER, and a transmitted wave ET .
Dividing out the time harmonic factor e−iωt, the total field is

E(x) =

{
EI ei(ω/c)N1x + ER e−i(ω/c)N1x, x ≤ 0,

ET ei(ω/c)N2x, x > 0.
(9)
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The boundary conditions at x = 0 are continuity of E(x) and of

E′(x). From this, we may derive the Fresnel coefficients for the

reflected and transmitted waves,

FR ≡
ER

EI
=

N1 −N2

N1 + N2
∈ C, FT ≡

ET

EI
=

2N1

N1 + N2
∈ C. (10)

Then, the power reflection and transmission coefficients are

R =
E∗RER

E∗IEI
= F∗RFR, T =

E∗RER

E∗IEI
= F∗TFT . (11)

The most reflective substances in EUV are elements with high atomic

number Z. For example, the reflection coefficient of Iridium (Z =

77) is about 3% at λ304 Å(41 eV), the operating wavelength for

MOSES.
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Exercise 3 Consider the solution (eq. 9) in light of Maxwell’s equa-

tions. What would be the consequences of a discontinuity at the

interface x = 0 in (a) the transverse electric field E(x)? (b) in

E′(x)?

Exercise 4 Verify that the Fresnel coefficients (eq. 10) satisfy the

boundary conditions.
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Multilayer Coatings ∗

x0 = 0 . . . xj−1 xj xj+1 . . . xM x →∞
N0 = 1 N1 . . . Nj−1 Nj . . . NM−1 NM

substratevacuum

EI
0 EI

1 . . . EI
j−1 EI

j . . . EI
M−1 EI

M

ER
j . . . ER

M−1 ER
M = 0ER

j−1. . .ER
1ER

0

Now assume ER
M = 0 (substrate doesn’t backscatter photons into

the multilayer). Seek recursion relations that will allow us to work

right to left.

∗J.H.Underwood and T.W.Barbee, Jr. Appl.Opt. 20, 3027
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Continuity of E(x) at x = xj:

EI
j−1ei(ω/c)Nj−1xj + ER

j−1 e−i(ω/c)Nj−1xj

= EI
j ei(ω/c)Njxj + ER

j e−i(ω/c)Njxj (12)

Continuity of E′(x) at x = xj:

Nj−1EI
j−1ei(ω/c)Nj−1xj −Nj−1ER

j−1 e−i(ω/c)Nj−1xj

= NjE
I
j ei(ω/c)Njxj −NjE

R
j e−i(ω/c)Njxj (13)
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Take (eq. 12)+ 1
Nj−1

(eq. 13) and solve for EI
j−1:

EI
j−1 =

1

2

(
1 +

Nj

Nj−1

)
EI

j ei(ω/c)(Nj−Nj−1)xj

+
1

2

(
1− Nj

Nj−1

)
ER

j e−i(ω/c)(Nj+Nj−1)xj (14)

Take (eq. 12)− 1
Nj−1

(eq. 13) and solve for ER
j−1:

ER
j−1 =

1

2

(
1− Nj

Nj−1

)
EI

j ei(ω/c)(Nj+Nj−1)xj

+
1

2

(
1 +

Nj

Nj−1

)
ER

j e−i(ω/c)(Nj−Nj−1)xj (15)
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For every frequency ω of interest, we follow this solution procedure

to obtain reflectivity and phase shift:

1. Let ER
M = 0 and EI

M = 1.

2. Use the recursion relations (eqs. 14,15) to calculate ER
0 and EI

0.

3. The Fresnel coefficient for the multilayer mirror is

FR =
ER

0

EI
0

. (16)

4. The reflectivity is

R = |FR|2 . (17)
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Our solution procedure will work for an arbitrarily complex LSM.

It can be modified to treat non-normal incidence and polarization.

There is a web site with optical constants, as well as a cgi script for

modeling simple (periodic) multilayers. An example:

http://www-cxro.lbl.gov/optical constants/
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Spectrometers

Diffraction Grating
Consider a plane wave incident at angle α on a screen of parallel

slits with regular spacing d. The transmitted intensity is maximized

in the far field for angles β that satisfy the grating equation:

mλ = d(sinα + sinβ), m ∈ I (18)

Exercise 5 What is the Fourier transform of a square wave with

period d? What does this have to do with a diffraction grating?
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Result: intensity I(x + nDλ, y).
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Slit Spectrograph

• Telescope produces light in focal plane f

• Slit at f picks off a narrow range in x

• Concave grating re-images slit onto detector with dispersion.

Result: intensity I(λ, y).
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A 3-Order Slitless Spectrograph

A

A

B

B
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B

A

Concave

n = +1

multilayer
grating

Imaging
detectors

n = 0

n = −1

Result: I(x + Dλ), I(x), (x−Dλ).
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Projection through (x, λ) space

I−(x− λ) I0(x) I+(x + λ)

Images at n = −1,0,+1

λ

x

Object v(x, λ)
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The Big Question: Inversion

Can we turn I+(x + λ), I0(x), I−(x − λ) back into I(x, λ)? And if

so, how?

The inversion problem seems poorly constrained: solve for M × N

parameters from M × 3 data points!

Exercise 6 Solve the inverse problem for MOSES. (Just kidding!)
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The Radon Transform ∗

y

f(x, y)

x

t

R
ay:

x
co

s
θ
+

y
sin

θ
=

t
1

Pθ (
t1)

θ

t1

∗Material in the next several slides relies heavily on Chapter 3 of A.C. Kak and
Malcolm Slaney, Principles of Computerized Tomographic Imaging, IEEE Press,
1988. Available free: http://www.slaney.org/pct/
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The Radon transform is defined by

Pθ(t) =
∫ ∞
−∞

∫ ∞
−∞

f(x, y) δ(x cos θ + y sin θ − t) dx dy

=
∫ ∞
−∞

f(t cos θ − s sin θ, t sin θ + s cos θ) ds. (19)

The Fourier transform Sθ(w) of Pθ(t) corresponds to a slice of

F (u, v), the 2D Fourier transform of f(x, y):

Sθ(w) = F (w cos θ, w sin θ). (20)

Exercise 7 Verify equation 20. You may wish to use the fact that

the 2D Fourier transform merely rotates if the function is rotated.

That is,

if F {f(r, θ)} = F (ω, φ)
then F {f(r, θ + α)} = F (ω, φ + α).

(21)
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The Fourier Slice Theorem (eq. 20) is the fundamental theorem

of tomography.

F (u, v)

f(x, y)

v

ux

y
t

θ

Fourier transform

θ

Pθ (
t)
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MOSES Backprojection Algorithm

1. Create a blank image F (u, v) that will hold the FFT of the
reconstructed image I(x, λ).

2. Take the Fourier Transform Sn(k) of each of the three projec-
tions I+, I−, I0.

3. Use the Fn to fill in the appropriate slices of F (u, v).

4. Apply the inverse transform to obtain an initial guess I(x, λ).

In practice, it helps to know (or be able to guess) the projection
along x,

∫∞−∞ I(x, λ) dx.

Problem: lots of negative counts in the backprojected image.
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We may use an iterative approach to enforce non-negativity:

1. Zero all negative elements of the backprojection.

2. Fourier transform the result, use it to fill the wedges of F (u, v)

that are not constrained by the data.

3. Inverse Fourier transform to obtain an improved backprojection.

4. Repeat until the sum of the negative counts in the backprojection

is small compared to the total uncertainty in image counts.

5. Zero all negative pixels in the backprojection.
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Data Inversion Example

self−reversal

Reconstructed

doppler shift line broadening

Original
(test pattern)

A test pattern is projected onto the three spectrograph orders and
then reconstructed by Fourier backprojection with two added con-
straints: (1) the slit averaged spectrum and (2) non-negativity. The
doppler shift and line width are preserved but the self-reversal is sup-
pressed.
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