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MOSES
Abstract

A pioneering remote sensing experiment is being developed

at MSU: the Multi-Order Solar Extreme Ultraviolet
Spectrograph (MOSES). The MOSES rocket payload is

scheduled for launch from White Sands Missile Range in

August of this year. But the success of the mission hinges

on what happens after the payload parachutes safely back

to Earth: the mathematical and computational challenge of

analyzing a new kind of data.
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MOSES
MOSES: Multi-Order

Solar EUV Spectrograph

• NASA sounding rocket payload.

• Built at MSU, largely by students.

• Launch August 19, 2004 from

WSMR.

• Extreme Ultraviolet (EUV)

observations of the Sun

• Novel “snapshot” imaging

spectrometer.

• Data interpretation: inverse

problem
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MOSES
MOSES Team
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MOSES
Suborbital Rocket

(NASA’s part)

• Terrier booster, Black Brant VC sustainer

• Launch from White Sands Missle Range

• Apogee near 300 km

• 160 km upleg at 100 s; 300 s to obtain data

• Impact 80 km downrange
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MOSES
The Payload

• Guidance, telemetry, solar pointing and recovery (NASA)

• Experiment section (our part!)
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MOSES
MOSES instrument layout

Read-Out Electronics

CCD Housing (1 of 3)

Flat Mirror

Optical Table

Concave Grating
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MOSES
MOSES flight hardware
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Optical Table
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MOSES
MOSES flight hardware

CCD Housing (1 of 3)

Flat Mirror

Optical Table
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MOSES
EUV Solar Transition Region

Network

Active regions

Macro-spicules

Erupting
prominence

The Sun in He II, ∼ 80, 000◦K
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MOSES
Example: Flare Observation
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MOSES
Imager or...

Pretty picture, not very quantitative.
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MOSES
...Spectrometer

Velocities and temperatures (but only along a slit).
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MOSES
...Spectrometer

“Rastering” multiple exposures to build an image.
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MOSES
...Spectrometer

“Rastering” multiple exposures to build an image.
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MOSES
Alternative: MOSES

Spectra over entire field in a single exposure!
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MOSES
Multi-order concept

A
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A

Concave

n = +1

multilayer
grating

Imaging
detectors

n = 0

n = −1
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MOSES
Inversion = Tomography

I−(x− λ) I0(x) I+(x + λ)

Images at n = −1, 0, +1

λ

x

(inferred)
I∞(λ)

Object v(x, λ)
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MOSES
The Big Question: Inversion

Disentangling spatial and spectral information

Can we turn the four projections I+(x+λ), I0(x), I−(x−λ)
and I∞(λ) back into I(x, λ)? And if so, how?

The inversion problem seems poorly constrained: solve for

M ×N parameters from M × 4 pieces of information!

20



MOSES
Reconstruction Algorithms

• Parametric modeling

• Singular value decomposition

• Pixon reconstruction

• Fourier backprojection

• Algebraic reconstruction

Fourier backprojection and Algebraic reconstruction will be

discussed in detail.
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MOSES
Fourier Slice Theorem

F (u, v)

u

v

f(x, y)

y

x
θ θ

Pθ
(t)

t

Fourier transform
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MOSES
Fourier Backprojection

1.
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MOSES
Fourier Backprojection

1. Create a blank image F (u, v) that will hold the FFT of the

reconstructed image I(x, λ).
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MOSES
Fourier Backprojection
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MOSES
Fourier Backprojection

1. Create a blank image F (u, v) that will hold the FFT of the

reconstructed image I(x, λ).
2. Take the Fourier Transform Fn(k) of each of the four

projections I+, I−, I0, I∞.

3. Use the Fn to fill in the appropriate slices of F (u, v).
4. Apply the inverse transform to obtain an initial guess

I(x, λ).
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MOSES
Iterating for non-negativity

Problem: negative counts in the backprojected image.

1.
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Iterating for non-negativity
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1. Zero all negative elements of the backprojection.
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MOSES
Iterating for non-negativity

Problem: negative counts in the backprojected image.

1. Zero all negative elements of the backprojection.

2. Fourier transform the result, use it to fill the wedges of

F (u, v) that are not constrained by the data.

3. Inverse Fourier transform to obtain an improved

backprojection.

4. Repeat until the sum of the negative counts in the

backprojection is small compared to the total uncertainty

in image counts.

5. Zero all negative pixels in the backprojection.
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MOSES
Backprojection Example

self−reversal

Reconstructed

doppler shift line broadening

Original
(test pattern)

A test pattern is projected onto the three spectrograph orders

and then reconstructed by Fourier backprojection with two

added constraints: (1) the slit averaged spectrum and (2)

non-negativity. The doppler shift and line width are preserved

but the self-reversal is suppressed.

25



MOSES
Smooth Multiplicative

Algebraic Reconstruction Technique

1.
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MOSES
Smooth Multiplicative

Algebraic Reconstruction Technique

1. G(x, λ) = I0(x) I∞(λ)/N Initial guess.
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MOSES
Smooth Multiplicative

Algebraic Reconstruction Technique

1. G(x, λ) = I0(x) I∞(λ)/N Initial guess.

2. [I ′0, I
′
+, I ′−, I ′∞] = T G Projection.
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MOSES
Smooth Multiplicative

Algebraic Reconstruction Technique

1. G(x, λ) = I0(x) I∞(λ)/N Initial guess.

2. [I ′0, I
′
+, I ′−, I ′∞] = T G Projection.

3. G = G
[

I0(x)
I′0(x)

]γ

·
[

I+(x+λ)
I′+(x+λ)

]γ

·
[

I−(x−λ)
I′−(x−λ)

]γ

·
[

I∞(λ)
I′∞(λ)

]γ

Correction.
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MOSES
Smooth Multiplicative

Algebraic Reconstruction Technique

1. G(x, λ) = I0(x) I∞(λ)/N Initial guess.

2. [I ′0, I
′
+, I ′−, I ′∞] = T G Projection.
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[

I−(x−λ)
I′−(x−λ)

]γ

·
[

I∞(λ)
I′∞(λ)

]γ

Correction.

4. G = G⊗ 1
1+2a+2b




0 a 0
b 1 b

0 a 0


 Smoothing.
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Smooth Multiplicative
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4. G = G⊗ 1
1+2a+2b


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0 a 0
b 1 b

0 a 0


 Smoothing.

5. [I ′0, I
′
+, I ′−, I ′∞] = T G Projection.
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MOSES
Smooth Multiplicative

Algebraic Reconstruction Technique
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5. [I ′0, I
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+, I ′−, I ′∞] = T G Projection.

6. Evaluate goodness of fit, χ2
0, χ2

+, χ2
−.
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MOSES
Smooth Multiplicative

Algebraic Reconstruction Technique
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MOSES
Smooth Multiplicative

Algebraic Reconstruction Technique

1. G(x, λ) = I0(x) I∞(λ)/N Initial guess.

2. [I ′0, I
′
+, I ′−, I ′∞] = T G Projection.

3. G = G
[

I0(x)
I′0(x)

]γ

·
[

I+(x+λ)
I′+(x+λ)

]γ

·
[

I−(x−λ)
I′−(x−λ)

]γ

·
[

I∞(λ)
I′∞(λ)

]γ

Correction.

4. G = G⊗ 1
1+2a+2b




0 a 0
b 1 b

0 a 0


 Smoothing.

5. [I ′0, I
′
+, I ′−, I ′∞] = T G Projection.

6. Evaluate goodness of fit, χ2
0, χ2

+, χ2
−.

7. Adjust smoothing parameters, a = a/(χ2
+ χ2

−); b = b/χ2
0.

8. Loop to (3).
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MOSES
SMART example
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MOSES
Comparison of Algorithms

Differences between true and reconstructed line profile

parameters. Line center and linewidth errors are in pixels.

For each parameter, a mean offset and RMS error are

given. One MOSES pixel is approximately 20 mÅ (20 km/s

at 304 Å).

center (median) width (quartiles 1-3)
Algorithm mean RMS mean RMS

Fourier -0.01 0.32 -0.19 0.97
SMART 0.04 0.23 0.18 0.34
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MOSES
Doppler Shift Estimation

He II median line center (pixels)
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MOSES
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