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Abstract
The Multi-Order Solar EUV Spectrograph (MOSES) ob-
tains images dispersed at three spectral orders from an
objective grating, with the goal of reconstructing EUV
spectra of He II (30.38 nm) and Si XI (30.33 nm) simul-
taneously over a large 2D field of view. We present prelim-
inary results from a new data inversion code, estimating
the spectrum in every pixel. This capability opens a new
window on the solar atmosphere.

2006 Flight

The Multi-Order Solar EUV
Spectrograph (MOSES ) was first
launched on February 8, 2006
from White Sands Missile Range
at 18:44:01UT on a NASA Terrier
Black Brant sounding rocket.

MOSES

Multi-Order Imaging Spectroscopy
A concave reflection grating forms images at several
spectral orders simultaneously. Each spectral order
presents a different combination of spectral and spa-
tial information.
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The configuration we flew in 2006 used a multilayer
coated grating and secondary mirror for He II 303.8Å
and SiXI 303.3Å. Our 2013 flight will be optimized
for NeVII 465Å.

Data (FOV 20′ × 10′)

MOSES 304Å image in spectral order m = −1. Spectral order m = 0. Spectral order m = +1.

Inversion Algorithm
We wish to infer spatially resolved
spectra G(x, y, λ) given images Im at
spectral orders m = −1, 0,+1:

Im(x, y) =

∫
P

G(x+mλ, y, λ) dλ,

I∞(λ) =
x

F

G(x, y, λ) dx dy.

Our assumed mean spectrum, I∞,
is based on SERTS-95 measurements
(Brosius et al., 1998 ApJ 119:255).
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Line Intensities

SiXIHe II

We find little SiXI at solar minumum, but its morphology is distinctly coronal: limb brightening, loops, a coronal
hole, and diffuse quiet sun.

Line Shifts and Widths

Legend: He II line shift
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Legend: He II line shift
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Legend: He II excess line width
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Legend: He II excess line width
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Conclusions
MOSES allows us to obtain spectral information over a
large field of view at high spatial and temporal resolution.

• SiXI is distinguishable from He II.

• Doppler shift and line width in He II are recovered,
revealing dynamics of explosive events and jets.

• We find similar results from exposures of 1.5-24 s.

Next Steps
• The PSF is different in each spectral order, result-

ing in faint, ubiquitous “velocity dipole” artifacts
(red on top, blue on bottom). We have a correc-
tion algorithm under development.

• Our summer 2013 flight will investigate dynamics
of the upper transition region in NeVII.
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