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Abstract

We report results of an in-depth numerical investigation of three-dimensional projection effects that could influence
the observed loop-like structures in an optically thin solar corona. Several archetypal emitting geometries are
tested, including collections of luminous structures with circular cross sections of fixed and random size, and light-
emitting structures with highly anisotropic cross sections, as well as two-dimensional stochastic current density
structures generated by fully developed magnetohydrodynamic turbulence. A comprehensive set of statistical
signatures is used to compare the line-of-sight (LOS) integrated emission signals predicted by the constructed
numerical models with the loop profiles observed by the extreme ultraviolet telescope on board the flight 2.1 of the
High-Resolution Coronal Imager (Hi-C). The results suggest that typical cross-sectional emission envelopes of the
Hi-C loops are unlikely to have high eccentricity, and that the observed loops cannot be attributed to randomly
oriented quasi-two-dimensional emitting structures, some of which would produce anomalously strong optical
signatures due to an accidental LOS alignment, as expected in the ''coronal veil“ scenario proposed recently by
Malanushenko et al. The possibility of apparent loop-like projections of very small (close to the resolution limit) or
very large (comparable with the size of an active region) light-emitting sheets remains open, but the intermediate
range of scales commonly associated with observed loop systems is most likely filled with true quasi-one-
dimensional (roughly axisymmetric) structures embedded into the three-dimensional coronal volume.

Unified Astronomy Thesaurus concepts: Solar coronal loops (1485); Solar coronal heating (1989); Solar extreme
ultraviolet emission (1493); Astronomy image processing (2306)

1. Introduction

Any successful theory of coronal heating must explain how
the heating is distributed in space and time. Because the highly
conducting coronal plasma is constrained to flow along the
magnetic field, and because thermal conduction is highly
anisotropic—being strong along the field and weak across it—
magnetic flux tubes in the coronal volume tend to have a
uniform temperature and density, which can be much different
from the temperature and density of adjacent tubes. It is
variations in the heating that give rise to these thermodynamic
differences. Thus, elongated intensity features in coronal
images, i.e., coronal loops, are a direct consequence of cross-
field spatial variations in heating. By studying the cross
sections of the emitting structures responsible for the loops, we
can gain valuable information about coronal heating and
establish crucial observational tests for heating theories. The
challenge is that we do not observe the three-dimensional
shapes of the emitting structures. Rather, we observe their
projection onto the two-dimensional plane of an image. An
additional complication comes from line-of-sight (LOS) over-
lap. The corona is optically thin, so the intensity observed in an
image pixel is an integration of all the emission along the LOS.

Traditionally, and for no compelling reason, the loops seen in
coronal images have been assumed to correspond to flux tubes
with circular cross sections. This is the shape that comes to mind
with the term “tube.” Attempts to verify or rule out a circular
shape using observations from orthogonal vantage points have
not been definitive due to the difficulty in identifying the same

loop in the two images (West et al. 2014; Kucera et al. 2019;
McCarthy et al. 2021). Potential field models suggest that
coronal flux tubes do not maintain the same transverse geometry
through their length, challenging the circular cross section
assumption (Malanushenko & Schrijver 2013).
Klimchuk & DeForest (2020) used a different scheme to

address the circularity of the cross section. They noted that
there is abundant evidence for twist in the corona and pointed
out that a twisted flux tube with a noncircular cross section
would exhibit an anticorrelation between the intensity and
width along the loop in an image. For some portions of the
loop, the LOS would be aligned with the long dimension of the
cross section and the loop would appear bright and thin, while
for other portions the LOS would be aligned with the short
dimension and the loop would appear faint and fat. Klimchuk
& DeForest (2020) studied 20 long loop segments observed in
the first flight of the High-Resolution Coronal Imager (Hi-C)
rocket experiment (Winebarger et al. 2014) and found no
evidence for an anticorrelation. They concluded that the cross
sections must be roughly circular. The emission can be
nonuniform within the cross section and the envelope can
have an irregular shape, but it cannot have a large aspect ratio.
Williams et al. (2021) performed a similar analysis on data
from the third Hi-C flight and obtained a similar result. Note
that simple shapes, such as ellipses, produce a linear
anticorrelation between intensity and width, while more
complex shapes can produce a nonlinear anticorrelation. In
all cases there is an anticorrelation if the aspect ratio is large.
Magnetohydrodynamic (MHD) simulations make different

predictions about the shapes of loop cross sections. Knizhnik
et al. (2018) simulated what would correspond to a small
portion of an active region and emphasized the multistrand
nature of the corona. The magnetic field is highly
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inhomogeneous in the photosphere and tends to concentrate in
small patches of kilogauss strength. Emanating from each patch
is what can be considered a quasi-distinct magnetic flux tube,
which we refer to as a coronal strand. Observations show that a
single active region contains in excess of 100,000 of these
strands (Klimchuk 2015). The strands become twisted and
tangled by chaotic photospheric convection, and therefore the
boundaries between them are current sheets. Reconnection at
these current sheets gives rise to nanoflare heating events. It is
impossible at present to simulate all the current sheets in an
active region, so Knizhnik et al. (2018) modeled an idealized
subset of an active region in order to include the fundamental
multistrand, multicurrent sheet nature of the field. The pattern
of emission in their simulation suggests loops with approxi-
mately circular cross sections (Klimchuk et al. 2023). Each
loop is a bundle of strands where the nanoflares exhibit a
collective behavior. They are the sites of nanoflare “storms.”
Although the imposed driver flows in the simulation have a
circular nature, they do not have a simple mapping to the
circular emission patches associated with loop cross sections.
The driver cells have a smaller scale, and multiple different
cells are linked to each patch. Furthermore, recent simulations
not yet published indicate that translational driver flows also
produce circular cross sections.

Another recent simulation considers an entire active region
(Malanushenko et al. 2022). Although it does not include the
multitude of small-scale strands and current sheets of a real
active region, it incorporates the large-scale stresses and
currents that are missing from the Knizhnik et al. (2018)
simulation. Malanushenko et al. (2022) find that many of the
loops in the synthetic images based on their model correspond
not to confined emission structures, i.e., tubes, but rather to
large warped two-dimensional structures within the three-
dimensional volume. They call these large structures “veils.”
Bright loops appear in places where the observer is looking
along a veil and the LOS depth is large. Elsewhere the observer
is looking through the thin veil and the intensity is faint. The
effect is very clear. However, the heating that produces the
veils in the simulation has yet to be investigated. It is likely due
to relatively passive ohmic and viscous dissipation of large-
scale current and velocity structures, which can give significant
heating because of the much-smaller-than-solar Reynolds
numbers of the simulation. Whether this is a good proxy for
the explosive energy release that occurs at small-scale current
sheets in the real, multistranded corona has yet to be
established.

In this paper we report on a new study to determine
observationally the cross-sectional properties of emitting
structures in the corona. By analyzing intensity profiles from
cuts across the magnetic field in both artificial and real coronal
images, and by applying a variety of statistical techniques, we
are able to infer the shapes and size distributions of the cross
sections. Our results provide valuable tests for MHD simula-
tions and place important constraints on theories of coronal
heating.

This paper is organized as follows. Section 2 describes the
simulation techniques that we developed for reproducing some
common projection effects influencing loop observations.
Section 3 presents a toolkit of data analysis methods enabling
an empirical classification of the simulated loops systems based
on their transverse profiles. In Section 4, this data analysis
methodology is applied to the systems of loops observed by the

extreme ultraviolet (EUV) telescope on board the Hi-C 2.1
sounding rocket experiment. Section 5 compares the numeri-
cally simulated loops system with the observed loops, which
allows us to infer the cross-sectional shape of the Hi-C loops
and to evaluate the role of projection effects in the optically
thin corona.

2. Simulation Techniques

2.1. The Stochastic Pulse Superposition Framework

The main element of the Stochastic Pulse Superposition
(SPS) simulation framework is a randomly positioned,
randomly oriented elliptical structure representing the cross-
sectional shape of a single luminous loop or a loop strand, as
shown schematically in Figure 1(a). The major axis of the
ellipse L is interpreted as the width of the structure and the
minor axis D defines its thickness. The relationship between L
and D controls a scale-dependent aspect ratio of the structures
as discussed below. The structures are embedded into an (x, y)
coordinate plane assumed to be perpendicular to the overall

Figure 1. The building block of the SPS framework—an elliptical light-
emitting structure representing a cross section of an anisotropic loop strand (a)
producing an LOS-integrated emission pulse P(x); (b). L and D are
correspondingly the major and minor axes of the structure, λ is its projected
size, δ is the maximum LOS depth of the structure, x0, y0, and θ are,
respectively, the coordinates and the orientation angle of the structure. The PSP
models consist of a large number pulses such as the one illustrated here,
generated and positioned randomly according to a set of chosen probabilistic
rules.
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magnetic field direction of the simulated loop system.
(Individual magnetic strands may deviate in orientation.) The
x-coordinate is parallel to the plane of sky (POS) and defines a
virtual slit across the loop, while the y-axis is aligned with the
LOS of the virtual observer. The central coordinates (x0, y0)
and the orientation angle θ of the structures were sampled from
three independent uniform probability distributions, with the
supports [0, Nx− 1], [0, Ny− 1], and [−π, π], correspondingly.

The projected POS size λ and the maximum LOS depth δ of
the structure corresponding to a given orientation angle are
defined by the following relations:

l q q
d l
= +
=

L D
LD

cos sin ,
. 1

2 2 2 2

( )
The first of these expressions is the standard result for the

projection length of a rotated ellipse, and the second ensures
that the ellipse area is conserved under rotation. Since the focus
of our analysis is on the impact of the geometry of many
superimposed light-emitting structures on their collective
emission pattern, we used a simplistic model for calculating
the optical output of the individual structures. The structures
were considered to be uniformly filled with a luminous plasma,
with each pixel producing a unit dimensionless emission flux.
Under this assumption, a LOS-integrated emission profile (the
SPS “pulse”) of a single elliptical structure such as the one
illustrated in Figure 1(a) is described by the function
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as shown in Figure 1(b). It can be verified by combining
Equations (1) and (2) that the total emission flux of the
structure is equal to its cross-sectional area

p=s L D 4 3i i i ( )

as expected, with the maximum emission level d=P xmax i i{ ( )}
reached at the projected center.

A superposition of Np emission pulses, each described by its
set of L, D, θ, x0, and y0, defines the total LOS-integrated
profile I(x) of the emission model:
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where i= 1, K, Np is the index of the structure. The average
filling factor of the model was calculated using
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To construct a model with a target f value, randomly sampled
structures were added to the simulation domain iteratively until
the desired filling factor was reached. We found that this
method is efficient for the filling factors of up to ∼0.5, after
which the computational cost of the nonoverlapping constraint
shows an explosive growth.

Many previous observations suggest that the morphology
of the thin solar corona involves light-emitting structures
organized across wide ranges of spatial scales (see, e.g.,
Gomez et al. 1993; Uritsky et al. 2013, 2023; Uritsky &
Davila 2014; Aschwanden et al. 2016; Mason & Uritsky 2022
and references therein). In closed-field coronal regions, this

tendency manifests itself in the spatial clustering of small-
scale loops and loop strands into multiscale loop bundles,
possibly due to transient localized magnetic reconnection
events resulting in clusters of hot flux tubes of different sizes
(Knizhnik et al. 2018, 2020; Klimchuk et al. 2023). This
clustering could also be consistent with the “coronal veil”
hypothesis (Malanushenko et al. 2022) according to which an
apparent loop bundle could be produced by a single light-
emitting structure with a complex geometry. In many cases,
the occurrence rate of multiscale coronal structures approxi-
mately follows a power-law probability distribution. The
range of scales demonstrating this behavior is typically
limited from below by the size of the fundamental small-scale
dissipative process heating the system, and from above by the
characteristic length of the system as a whole.
To reflect this tendency on our model, we used a truncated

power-law distribution

= Îa-
p L

c L L L L, ,
0 otherwise.

6min max{( ) [ ] ( )

to sample the width of the SPS structures. Here, α≠ 1 is the
power-law distribution index, Lmin and Lmax are, respectively,
the smallest and largest width of the superimposed structures,
and c is the normalization constant:

a
=

-
-a a- -c

L L

1
. 7

max
1
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1
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The distribution index of luminous coronal structures has
been evaluated in previous observational and numerical
studies, and it usually falls in the range 2–3. It should be
noted that, in addition to generating scale-invariant sets of
structures, the distribution model (Equation (6)) can also be
used to output structures with a fixed size by choosing

»L Lmin max, or to sample the structures from the uniform
distribution with the support L L,min max[ ] by setting α= 0.
The anisotropic shape of the structures was controlled by the

additional power-law relation

= g
gD L

D

L
L 8min

min

( ) ( )

in which γ is the anisotropy index, Dmin is the smallest allowed
thickness of the added structures, and the normalization
ensures =D L Dmin min( ) .
If γ≠ 1, Equation (8) results in a scale-dependent behavior

of the aspect ratio L/D∝ L1− γ, which is consistent with
previous theoretical investigations of multiscale current sheets
in turbulent MHD plasmas (Uritsky et al. 2010). The conditions
γ> 1 (γ< 1) result in the anisotropy occurring predominately
at small (large) spatial scales.3 For γ= 1, the aspect ratio
becomes constant, and it takes the value 1 under the additional
constraint = gD Lmin min , yielding perfectly circular structures
with diameter L=D.
The described set of rules and equations makes it possible to

generate a continuum of mathematical models reproducing a
variety of physical scenarios defining the cross-sectional
morphology and the resulting emission profiles of the coronal
loops. These models could be used to infer the fine geometry of

3 For γ > 1, the aspect ratio decreases monotonically with L under the
condition L/D > 1, which requires < g g g- -L L D ;min

1
min
1 1( ) ( ) for smaller L/D

ratios, the width and the thickness of the structures switch roles leading to an
ambiguity. The γ > 1 regime is not used in the present study.
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the loop emission (which is usually inaccessible to the observer
due to LOS ambiguities in the optically thin corona) based on
the properties of the directly observed LOS-integrated emission
profiles; see Equation (4). In this paper, we study a small set of
narrowly determined SPS models reproducing three archetypal
cross-sectional geometries of a multistranded loop system,
leaving a systematic investigation of a broader class of such
models for future studies.

Model 1 (fixed-scale, isotropic) mimics a simple scenario of
a corona filled with circularly shaped luminous structures of a
constant diameter L= 20, which are randomly spread across
the emitting volume. Since the size of the structures is
dimensionless, they could be associated with various physical
morphologies such as, e.g., single loop strands or thin
multistranded loops embedded into a larger loop system.

Model 2 (multiscale, isotropic) represents a random super-
position of circular emitting structures whose diameter is drawn
from the power-law distribution (Equation (6)) spanning over
two orders of magnitude. The distribution index α is set to 2.5
to match the value of the average power-law exponent
describing the linear size distribution of multiscale emitting
structures in the EUV corona (Uritsky et al. 2013). We note
that, in general, the value of α needed to simulate a specific
loop system will be somewhat different from the one used in
this SPS model, and it may vary in time depending on the local
solar conditions.

Model 3 (multiscale, anisotropic) implements the most
general rules of the three SPS models by allowing the
structures to have random sizes and be also anisotropic and
randomly oriented. The anisotropy index γ= 0.4 used in this
model results in highly elongated loop cross sections whose
aspect ratio L/D increases with size. The distribution index of
this model is chosen to be 2.5 to simplify the comparison with
Model 2.

While the choice of the parameters used in the three SPS
models described above is to some degree justified by solar
observations, we would like to stress that fitting the measure-
ments was not the goal of our runs. Rather, our main objective
is to demonstrate a qualitative relationship between the
geometry of the individual emitting structures and the resulting
LOS-integrated emission signature, in the absence or presence
of the multiscale statistical spread and the anisotropy of the
structures. As shown below, these characteristics have a
significant impact on the predicted emission profiles, allowing
one to narrow-down the scope of cross-sectional geometries
consistent with the observed coronal loop systems.

2.2. The MHD Turbulence Model

MHD turbulence, understood in a broad sense, is often
invoked to explain complex plasma geometries appearing in the
fluid range of scales, including highly fragmented current and
vorticity sheets and/or filaments (Frisch 1995). MHD flows
tend to generate strongly intermittent density structures. In the
presence of strong axial magnetic field, these structures could
naturally produce loop-like signatures such as the ones
investigated by Malanushenko et al. (2022). Model 3 with
γ< 1 can be considered as a toy model of this effect since the
elongated structures oriented along the LOS are expected to
result in strong and narrow emission spikes resembling optical
signatures of LOS-aligned intermittent current sheets. To
further test this scenario, we constructed an additional model,
labeled below as Model 4, predicting optical signatures of an

ensemble of highly intermittent structures produced by
turbulence.
Model 4 (MHD turbulence) is based on the data from an

earlier numerical simulation of a decaying incompressible
resistive three-dimensional MHD turbulence in the absence of
an imposed uniform magnetic field (Mininni et al. 2006;
Uritsky et al. 2010). The magnetic Prandtl number was taken
equal to unity, with the Taylor Reynolds number reaching
1100. The solution was obtained for a periodic 15363 volume
subject to the Arnol’d–Beltrami–Childress initial condition
with a fully helical velocity and magnetic field. Due to the lack
of an ambient magnetic field, the model is not well suited for
studying the three-dimensional configurations of coronal loops;
however, its solutions could be relevant to analyzing the effects
of turbulent intermittency on two-dimensional loop cross
sections.
For computing the LOS-integrated profiles of the MHD

turbulence model, we used two-dimensional slices of the
square current density, which was found to be a sensitive
marker of spatial clustering in the model (Uritsky et al. 2010).
The slices were intended to statistically mimic cross sections of
a complex loop system populated with multiscale strands and
current sheets. As with the SPS models, the emission signal
from the current density arrays was computed in a simplistic
fashion, while placing the emphasis on the geometry of the
emitting structures rather than the amount of the emission. The
dimensionless emission output from a single pixel was taken
equal to the local square current density, after which the LOS-
integrated emission profile was constructed by summing up
over local emission fluxes along one of the transverse
directions. It should be noted that although the current density
is a close proxy to the ohmic heating in incompressible MHD,
it does not account for several other first principle energy
conversion processes heating the coronal plasma. In addition,
the spatial distribution of coronal emissivity can be quite
different from that of the heating rate for two reasons. First,
coronal heating energy is spread rapidly along field lines.
Second, the emissivity is a complex function of local plasma
conditions. In view of these limitations, we use Model 4 as a
morphological model of possible projection effects caused by
sheet-like luminous structures expected to be ubiquitous in a
high Reynolds number solar corona, leaving an analysis of
more sophisticated physical models for future studies.
The three studied SPS models were defined on a rectangular

grid with Nx= Ny= 1024, with the POS direction described by
the x-coordinate. The runs were repeated 1000 times to produce
Ns= 1000 virtual slits used for performing statistical averaging
described in the next section. The total number Np of
superimposed pulses (Equation (2)) included in each model
was varied between ∼5× 105 and 5× 106 for obtaining
comparable filling factors (Equation (5)), which ranged
between 0.23 and 0.30. The current density slices j(x, y) were
extracted from the three-dimensional 15363 MHD model grid
at a single time step, representing a fully developed state of the
turbulent flow. The slices were separated by 10 grid nodes in
the z-direction and were rebinned to match the dimensions of
the SPS models, resulting in a set of 153 virtual slits, each slit
containing 1024 pixels. The LOS direction used to compute the
optical emission was chosen to be parallel to the x- (y-) axis for
the odd (even) MHD slices to reduce the statistical dependence
between the emission profiles from the adjacent slices.

4
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The width L of the cross section of the current density
structures in the MHD model ranged between 5 and 200 pixel
units of the rebinned grid; the crossover between the dissipative
and inertial ranges was at L∼ 30 according to previous studies.
The inertial-range α and γ indices are, respectively, 2.2 and 0.2
(Uritsky et al. 2010), and the average filling factor estimated
using the structure detection method described in the above-
mentioned paper is about 0.02.

The grid size of all numerical models is arbitrary and is not to
be directly compared to the size of the observed coronal loop
systems described later in the text. The pixel size is assumed to
be larger than the width of the point-spread function characteriz-
ing solar observations. See Table 1 for the summary of grid
configurations and control parameters in each numerical model.

2.3. Visual Comparison

Figure 2 demonstrates characteristic examples of simulated
emission cross sections (upper panels), the resulting LOS-
integrated profiles (middle panels), and mathematically recon-
structed side views of the coronal loop systems corresponding to
each profile (bottom panels). The loop reconstruction was
performed assuming that the shape of the cross-sectional
emission profile is the same at all locations along the loop’s
artificially curved axis, and it is linearly rescaled to mimic the
characteristic convergence of the magnetic field near the coronal
base. To better illustrate the geometry of the SPS models,
including the intensity profiles, their filling factors were reduced
by a factor of 3 compared to the f-values (Table 1) that were used
for the quantitative analysis of the models.

LOS-integrated intensity profiles of Models 1 (fixed-size
circular structures) and 2 (multiscale isotropic structures) plotted
respectively on panels (e) and (f) of Figure 2 represent samples
of a colored stochastic process as discussed in the next section.
The profile of Model 1 contains a well-defined characteristic
scale consistent with the diameter of a single structure, shows
no significant trends at larger scales, and is smooth at the
smaller spatial scales. Model 2 exhibits a more complex profile
containing features on a variety of scales, reflecting the
multiscale nature of the underlying set of luminous structures.

It is important to note that neither Model 1 nor Model 2 shows
narrow isolated peaks characteristic of intermittent signals. These
peaks are, however, clearly present in the LOS profiles of Model
3 (multiscale anisotropic structures; panel (g)), and are even more
prominent in the MHD turbulence model (panel (h)). The

intermittent peaks observed in these models are directly related
with the anisotropy of the structures. A close investigation
reveals strong spatial correlation between the positions of the
intense peaks on the LOS profiles of Model 3 (panel (g)) with
narrow, elongated structures oriented approximately in the LOS
direction (panel (c)). The spikes in the MHD model’s profile
(panel (h)) seem to coincide either with the locations of compact
thin current sheets possessing a relatively simple planar geometry
and oriented along the LOS, or with the locations of sharp folds
on larger current sheets that are also aligned with the integration
direction, producing a strong and narrow emission signal.
The difference in the shape of the LOS profiles of the four

models leads to a predictable difference in the visual
appearance of the reconstructed loop images shown in the
lower row of panels on Figure 2. The Model 1 loop (panel (i))
includes thin bright filaments of a similar width that are
randomly spread over the loop system and are characterized by
approximately the same optical intensity. The loop produced by
Model 2 exhibits a highly nonuniform transverse structure with
no distinct characteristic spatial and intensity scales. The
filaments that can be picked out with the unaided eye have
drastically different thicknesses and are separated by wide dark
regions with no significant filamentation. By contrast, Model 3
generates a multitude of narrow loop filaments with a well-
defined apparent transverse size. This size is expected to be
close to the minimum thickness Dmin of the underlying emitting
structures included in the model. Unlike Model 1 whose loop
filaments have similar sizes and optical intensities, Model 3
produces detectable filaments characterized by a broad range of
luminosities. This tendency is even stronger in the loop system
synthesized based on the MHD turbulence profile (panel (l)). In
that case, the reconstructed loop contains a small number of
very thin, very intense insulated filaments with a varying
brightness appearing against a dim, unstructured background.
An experienced solar observer will likely quickly classify the

loops generated by the fixed-size Model 1 and the MHD
turbulence model as totally unrealistic, giving a chance to the
other two models. Our quantitative analysis leads to the same
general conclusion, ruling out the abovementioned models and
speaking in favor of a weakly anisotropic multiscale scenario
represented by a statistical blend of Models 2 and 3.

3. Data Analysis Methods and Scaling Relations

We employed two groups of statistical analysis methods
characterizing different aspects of the irregular shape of the LOS-
integrated emission profiles produced by the models and
obtained from observations. Spectral analysis techniques were
used to determine relative contributions of different spatial scales
to the profile shape. Since spectral analysis alone is insufficient to
characterize non-Gaussian fluctuations (see, e.g., Klimchuk &
Antiochos 2021), we also employed higher-order statistical
methods focusing on the investigation of profile gradients and
spikes associated with intermittency. As shown below, a
simultaneous analysis of spectral and intermittency measures
enables an unambiguous classification of the studied signals.
The ranges of spatial scales used for evaluating spectral and

structure function exponents were chosen based on the following
criteria. For the fixed-scale Model 1, the lowest analyzed scale
was set at twice the diameter of the loop strands to focus the
analysis on their mutual arrangement and not the shape of a
single strand. The highest scale was chosen to be half the length
of the LOS-integrated profile, which is the largest reliable scale.

Table 1
Parameters of the SPS Models 1–3 and the MHD Turbulence Model 4

(Nx = Ny = 1024)

Parameter Interpretation Model 1 Model 2 Model 3 Model 4
(1) (2) (3) (4) (5) (6)

Np Number of
pulses

4 × 105 2 × 106 6 × 106 ∼105

Ns Number of slits 1000 1000 1000 153
f Filling factor 0.30 0.30 0.30 0.02
Lmin Minimum size 20 3 3 L
Lmax Maximum size 20 300 300 L
Dmin Minimum

thickness
20 3 2 L

α Distribution
index

L 2.5 2.5 2.2

γ Anisotropy
index

1.0 1.0 0.4 0.2
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For the scale-invariant Models 2 and 3, these scales were set,
respectively, at twice the L-size of the smallest strand
( ´ =L2 6min ) and half the size of the largest strand
( =L 2 150max ) in order to obtain a statistically representative
picture of stochastic fluctuations formed by the multiscale pulses.
Model 4 outputs were investigated across the interval of scales
[21, 210] corresponding to current sheet structures generated by
turbulent cascade (see Uritsky et al. 2010 for details). The shorter
(dissipative) scales in real plasmas are controlled by ion-kinetic
effects (Schekochihin et al. 2009; Uritsky et al. 2014), which are
unresolved in solar observations and are therefore irrelevant to
the purpose of this study.

3.1. Spectral Analysis

The slit-averaged Fourier power spectrum of a set of Ns

LOS-integrated emission profiles was defined as

å=
=

S k
N

S k
1

, 9
s j

N

j
1

s

( ) ( ) ( )

where Sj(k) is the spectrum of the integrated profile, j is the slit
(profile) index, and k is the transverse wavenumber in the
direction across the loop system. As a simple approach for
quantifying the hierarchy of spectral components over a range
of k covered by the signal, we used the power-law fit

µ b-S k k 10( ) ( )

in which the spectral index β was evaluated over a range of
spatial frequencies consistent with the size distribution of the
underlying emitting structures, as discussed above.
The top row of panels in Figure 3 shows the spectra

computed for the studied stochastic loop models. The Model 1
spectrum shown with the black line on panel (a) is a
combination of the oscillatory behavior

lµE k ksinc 2 112
0( ) ( ) ( )

owing to the discrete localization of the superimposed pulses of
constant projected size λ0= L0= 20 and a power-law decay for
k> 2π/λ0 reflecting the shape of the pulse. The oscillatory

Figure 2. Visual comparison of typical cross-sectional geometries of the four stochastic models of coronal loops studied in this paper: Model 1 composed of loop
strands with the circular cross section of a constant diameter (L = D = 20), Model 2 containing power-law-distributed circular strands (α = 2.5, γ = 1.0), Model 3
with power-law-distributed, randomly oriented strands with elliptical cross sections (α = 2.5, γ = 0.4), and Model 4—the MHD turbulence model based on a high-
resolution decaying three-dimensional MHD turbulent simulation with the Arnol’d–Beltrami–Childress initial condition. Panels (a)–(d): graphic representation of the
cross-sectional pattern in each model. The shapes plotted on panels (a)–(c) are the synthetic loop strands in the three SPS models; the image on panel (d) is a two-
dimensional slice of the square current density in the MHD model, plotted on the logarithmic scale, with the white color corresponding to the most intense current.
Panels (e)–(h): the LOS-integrated emission profiles obtained by integrating the simulated loop cross section (a)–(d) along the y-axis. Panels (i)–(l): simulated POS
images of synthetic loop systems rendered using the obtained LOS emission profiles (e)–(h). The intensity scale of the synthetic loops is adjusted to the dynamic range
of the corresponding profile signal, with the black (white) color representing the lowest (highest) LOS-integrated value.
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component becomes undetectable when the size of the
structures is subject to a small statistical spread, as demon-
strated by the second spectrum on the same panel (orange line)
computed for a slightly modified version of Model 1, where L
was drawn from a narrow normal distribution with a standard
deviation equal to 5. The low-frequency part of the spectrum at

k< 2π/λ0 is approximately constant for either version of the
model and is characterized by a near-zero average spectral
index β. At larger wavenumbers, the spectral power decays
approximately as S(k)∝ k−2.5, as shown in the figure.
The spectra of the other three models shown in Figures 3(b)–(d)

demonstrate a power-law decay with β> 0 apparently resulting

Figure 3. Statistical analysis of LOS-integrated profiles in SPS Models 1, 2, and 3, as well as Model 4 based on decaying MHD turbulence. Panels (a)–(d): energy
Fourier spectra of the studied signals plotted as a function of the linear spatial frequency k/2π. Black dashed lines show the range of frequencies used to evaluate the
power-law exponent β; red dashed lines represent the log–log slope given by the provided β value. The orange curve added to panel (a) shows the spectrum of a
randomized version of Model 1; the curve is shifted downward for easier comparison. Panels (e)–(h): probability histograms of the normalized three-step increments of
the LOS signals; σn and σs are, respectively, the normal and the sample-averaged standard deviations. Panels (i)–(l): normalized structure functions of order p = 1
(red), 2 (green), 3 (blue), and 4 (gray) vs. the spatial scale r. The insets show the dependence of the SF exponent ζ computed over the range of scales shown by vertical
dashed lines on the main plot on the SF order p, with R being the Pearson correlation coefficient characterizing the linearity of the ζ(p) dependence. The provided
values of the fourth-order Frisch intermittency index κ are evaluated using the extended self-similarity transformation as explained in the text. Panels (m)–(p):
probability distributions of the peak width w. The solid black curves are the empirical histograms, and dashed red lines are the exponential models described by the
characteristic width wc. Note the distinct peak at w ≈ 20 on panel (m) matching the diameter L of constant-size loop strands used in Model 1.
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from the power-law distribution (Equation (6)) of the
structure sizes. To understand this connection, we extended
the formalism developed earlier for a superposition of one-
dimensional exponential pulses (Schottky 1926; Jensen et al.
1989; Kertesz & Kiss 1990; Milotti 2002) to describe two-
dimensional anisotropic structures with a POS footprint of an
arbitrary form.

The spectrum of random pulses of characteristic size λ
representing POS projections of two-dimensional structures of
a cross-sectional area s (see Equation (3)) can be approximated
by a generalized Lorentzian form

l
l

=
+

E k
s

k
,

1
, 12

b

2
( )

( )
( )

combining a power-law decay ∼k− b at k> λ with a horizontal
plateau at lower frequencies. This fit is consistent with the
spectrum of the randomized version of Model 1, for which
λ= 20 and b≈ 2.5; see Figure 3(a). The low-frequency plateau
represents the asymptotic solution for small k under the
normalization condition E(k= 0)= s2. The high-frequency
power-law index b≈ 2.5 for circular structures as stated earlier
(see Figure 3(a)), and it could take other values depending on
the shape of the pulse after the LOS integration. The power
spectral density of the emission profile (Equation (4)) is then
given by the weighted sum of the individual contributions
(Equation (12)):
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Here, smin and smax are, respectively, the smallest and the
largest emitting area in the superimposed set of structures, p(s)
is the density distribution of structures over area s, and λ(s) is
the characteristic pulse size corresponding to this area. Both
functions need to be clarified before the integral given by
Equation (13) can be evaluated. Since s∼ LD and D∼ L γ

(Equations (6) and (8)), the width of the structure should scale
with its area as L∼ sχ, in which

c
g

=
+
1

1
. 14( )

Combined with Equation (6), this scaling requires that the area
distribution p(s) also takes on a power-law form:

~ t-p s s . 15( ) ( )

The power-law index τ of the area distribution can be calculated
using the probability conservation condition p(s)ds∼ p(L)dL
by substituting p(s)∼ s− τ∼ L− τ/χ, ds∼ L(1−χ)/χdL, and
p(L)∝ L−α (Equation (6)). Solving the obtained scaling relation
for τ and applying Equation (14), we find that

t c g a
g a
g

= + =
+
+ 1

. 16( ) ( )

In its turn, the dependence λ(s) takes different forms
depending on whether the anisotropic structures have a
constant or random orientation angle θ. In the former case,

λ∼ sχ and the expression (13) becomes

ò

ò

=
+

µ
+

t

c

t c l

l c t c

-

-

- -

S k
s

ks
ds

k

u

u
du

1

1

1
, 17

s

s

b

k

k

b

2

3

3
min

max

min

max

( )
( )

( )( )

( )

where we used the substitution s= (u/k)1/χ. In the low-
frequency limit, only the large-scale cutoff of the integral in
Equation (17) is important (Kertesz & Kiss 1990); the
integrated function reduces to ≈u(3−χ− τ)/χ− b, and the integral
is convergent when the exponent is less than −1:

c t
c

- -
- < -b

3
1. 18( )

Taking into account Equations (14) and (16), this convergence
condition requires that α exceeds a critical threshold αc:

a a g> º + - b2 3 . 19c ( )

If the inequality (19) is fulfilled, the scaling of the power
spectrum is governed by the expression in front of the second
integral in Equation (17):

µ
t c-

S k
k

1
, 20

3
( ) ( )( )

and therefore the spectral power-law index, after substituting
expressions (14) and (16) one more time, can be expressed as

b
t

c
g a=

-
= - +

3
2 3. 21( )

This theoretical relation predicts that the spectral index should
increase, yielding a steeper spectral decay, when the structures
are more anisotropic (larger γ) and/or when their size
distribution has a heavier tail (smaller α).
If the inequality (19) is violated, the upper cutoff contributes

to the dependence since the weight of the λ? 1/k pulses
becomes important:

µ =
t c

t c c
-

- - - +S k
k

k
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1 1
, 22b

b3
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and so the low-frequency behavior is always described by

b = b 23( )

(with logarithmic correction for the special case α= αc).
The analytical results (Equations (21) and (23)) are based on

an asymptotic approximation that in practice requires that the
size of the structures is distributed over many orders of
magnitude. If the range of sizes is relatively narrow, and/or if
the convergence condition is under question, Equation (17)
should be integrated numerically.
Figure 4 shows the predicted β(α, γ) dependence obtained

using the numerical approach, with the integration limits
representing the L range used in the constructed models. The
square symbols mark the spectral indices expected theoretically
for each model; the green triangles show the measured values,
according to Figure 3.
The power spectrum of Model 2 shown in Figure 3(b)

exhibits a well-defined power-law form described by a single
log–log slope β≈ 2.3, which matches the predicted value
(Figure 4) almost precisely. The spectrum of Model 3 has a
more complex structure. The provided β index is an average
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log–log slope obtained for the whole studied range of scales.
However, strictly speaking, this spectrum cannot be fully
described by a single β value, as its local log–log slope varies
between 1.0 and 2.3 depending on scale. This behavior results
from the random rotation of the anisotropic structures
constituting this model and is not accounted for by the
conducted theoretical analysis. Due to the rotations, the
characteristic length scale (Equation (1)) of the projected
pulses becomes a function of two random variables, L and θ,
and the maximum λ consistent with the conducted scaling
analysis becomes substantially smaller than Lmax, which shifts
the lower boundary of the wavenumbers relevant to the
theoretical results of this section toward higher values. The
average index β≈ 1.7 of Model 3 is in a rough approximate
agreement with the theoretical prediction (β= 1.57); the much
smaller index observed at lower spatial frequencies is heavily
affected by the rotational statistics, which is beyond the scope
of our current analysis. A more sophisticated treatment should
include averaging over the two-dimensional probability density
p(s, θ) when calculating the weighted sum (13); we leave this
task for future research.

The spectrum of the loop profiles produced by MHD
turbulence (Model 4) can be reasonably approximated by a
single power-law fit, with the spectral index β≈ 1.3 consistent
with the prediction (β= 1.35) obtained for this model using
previously published estimates of the inertial-range indices α
and γ (Uritsky et al. 2010).

3.2. Intermittency Analysis

For a reliable classification of stochastic processes, spectral
analysis should be complemented by additional methods
addressing probabilistic aspects of the process. The tendency
of the rotated structures to produce sharp spikes in the LOS-
integrated emission profile can be measured using data analysis
methods focused on intermittency.

The simplest way to characterize the intermittency of the
profile I(x) is by studying the probability distribution of its two-
point increments

D = + -I x r I x r I x, , 24( ) ( ) ( ) ( )

where r is the distance between the points. For nonintermittent
Gaussian fluctuations, such as the Wiener stochastic process,
fractional Brownian process, or fully developed homogeneous
turbulence, the increments obey the normal distribution model
for all values of r. A non-Gaussian probability density is
typically associated with heavy tails of theΔI distribution (e.g.,
log–normal or power-law tails), which result in a nonvanishing
occurrence rate of abrupt high-amplitude changes in I(x)
producing intermittent spikes. Departures from Gaussianity can
be conveniently visualized by plotting the distribution of ΔI in
semi-logarithmic coordinates transforming the normal distribu-
tion with zero mean and standard deviation σn into an inverted
parabola

s
D µ - Dp I Iln

1

2
, 25

n
2

2( ) ( ) ( )

in which we made a simplifying assumption that the increments
are centered around 0. The standard deviation was evaluated by
measuring the width of the parabola at the p(0)/e level, where e
is the base of the natural logarithm. It is expected to be lower
than the sample-averaged standard deviation σs in the presence
of heavy non-Gaussian tails.
The second row of panels in Figure 3 shows probability

histograms of the three-point increments ΔI(x, 3) for the
models. It is evident that the histograms of Models 1 and 2
(panels (e) and (f), correspondingly) are very close to the
Gaussian prediction, as confirmed by the parabolic shape of the
curves and a close agreement between σn and σs. The ΔI
statistic of the isotropic multiscale Model 2 is similar to that of
the single-scale Model 1 despite the drastically different power
spectra and cross-sectional geometries of the models.
By contrast, the anisotropic Model 3 (panel (g)) demon-

strates a statistically significant departure from the normality
expressed in heavy distribution tails and a larger discrepancy
between the sample and normal standard deviation estimates
compared to isotropic models. These signatures are consistent
with the presence of intermittent spikes in the emission profiles
produced by Model 3 (see Figure 2(g)). Model 4 based on
MHD turbulence exhibits an even more substantial departure
from normality, with both the wings and the core of the
histogram dominated by non-Gaussian effects, and the sample
standard deviation σs exceeding σn by more than a factor of 5.
The highly non-Gaussian statistics of increments in this model
reflects its strongly intermittent behavior (Figure 2(h)) and is
caused by thin current sheets self-consistently produced by
decaying nonlinear turbulence (Mininni et al. 2006; Uritsky
et al. 2010). Since thin multiscale dissipative structures are
inherent to any fully developed turbulent flow, one can expect
the strongly non-Gaussian behavior of increments in Model 4
to be characteristic of turbulence in general.
Due to non-Gaussian effects, second-order statistics such as

the Fourier power spectrum analysis are insufficient to quantify
the intermittent signals. A more complete probabilistic testing
is based on scale-dependent higher-order structure functions
(SF) defined as the average increment (Equation (24)) raised to

Figure 4. Theoretically predicted dependence of the spectral index β of the
emission profile on the distribution index α of the superimposed emitting
structures, computed for a set of anisotropy indices γ. Expected and measured
index values of the studied models are shown respectively with black squares
and green triangles.
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Here, we use the unsigned definition of Fq(r); the SF order
q ä {1, 2, 3, 4}. For a multiscale intermittent process, the
structure functions are approximated by a power law, with the
power-law exponent ζ depending on the order q:

µ zF r r . 27q
q( ) ( )( )

To gain an intuitive understanding of this scaling ansatz, one
can imagine a smooth analytical profile for which á D ñI x r, q∣ ( )∣
should be approximately proportional to r q for small enough r
at which the function can be linearized, and therefore ζ(q)≈ q.
A noisy signal with uncorrelated increments should produce the
same Fq on all scales independently on q, so ζ≡ 0. Other
stochastic signals lie between these two extremes and are
described by a set of ζ exponents that would generally increase
with q in either a linear or a nonlinear fashion (see, e.g.,
Abramenko et al. 2008; Uritsky et al. 2017 and references
therein).

The nonlinearity of the ζ(q) is considered to be a sensitive
marker of intermittency. In many applications, it can be
adequately described by a single parameter characterizing the r
dependence of the ratio of the structure function of the highest-
studied-order qmax to the lowest-order (qmin) function raised to
q qmax min (Frisch 1995). In our analysis, =q 1min , =q 4max ,
and the described ratio reads

µ k-F r

F r
r , 284

1
4

( )
[ ( )]

( )

where κ is the Frisch intermittency index. Using Equation (27),
it is easy to see that κ= ζ(4)− 4 ζ(1). For nonintermittent
stochastic signals ζ∝ q, and so κ= 0. For intermittent signals,
the relationship between ζ and q is nonlinear resulting in κ> 0,
with the value of the index increasing as the intermittent spikes
become higher and steeper.

The third row of panels in Figure 3 shows the results of the
structure function analysis of the four stochastic models. The
structure functions of different orders are normalized to the
maximum values and are color coded for easier comparison.
The insets show the estimated dependence ζ(q) and the results
of its linear fitting characterized by the Pearson coefficient R,
with the intermittency index κ provided in each case.

The structure functions of Model 1 (panel (i)) show a power-
law dependence on r for the short scales below the deterministic
structure size L0= 20, and reach a plateau at larger scales since
the profiles contain no large-scale trends. The linear hierarchy of
ζ exponents in the small-scale regime reveals a clear-cut
nonintermittent behavior described by R= 1 and a near-zero
intermittency index κ. Model 2 (panel (j)) exhibits a substantially
broader range of the Fq(r) scaling, reflecting the multiscale nature
of the model. Nevertheless, its intermittency index and the
Pearson coefficient indicate a complete lack of intermittent
spikes in the LOS-integrated profiles.

Structure functions of Model 3 (Figure 3(k)), as expected
from its spiky LOS profiles and the non-Gaussian p(ΔI)
distribution, exhibits unambiguous signatures of intermittency
that include a statistically significant nonlinearity of the ζ(q)

dependence and an elevated intermittency index κ≈ 0.5. A
faster than a power law decline of the structure functions of
Model 3 at the smallest scales is presumably caused by the
scale-dependent aspect ratio L/D∼ L(1− γ) of the superimposed
structures. As in the case with the increment analysis, Model 4
demonstrates the most pronounced signs of intermittency
characterized by a high κ≈ 1.7 and a significant departure of
ζ(q) from the linear prediction.
The last method included in our intermittent analysis toolkit

is based on the width statistics of the intermittent spikes. The
width wj of the local emission peak labeled with index j= 1,
K, M, where M is the number of the detected peaks, was
estimated by applying a constant detection threshold set to the
mean value of the signal and computing the distances
x2j− x1j= wj between the footpoints of each peak at the
threshold level, as illustrated by Figure 5. To reduce the
contamination of the peak statistics by long-range correlations
characterizing system-level geometry of the loop system, the
profiles were detrended by subtracting a second-order poly-
nomial trend before identifying the peaks. Similar methods,
typically employing more sophisticated edge detection algo-
rithms, are used for measuring the width of the loop filaments
and strands in the observed coronal loop systems (see, e.g.,
Klimchuk 2015; Klimchuk & DeForest 2020). We invoke this
approach to quantify the multiscale statistics of the peaks. If the
superposition is dominated by spikes of a predefined size
(which is to be expected if the underlying structures have a
narrowly distributed projected λ), the probability distribution of
spike width should exhibit an exponential decay for w>wc:

µ -p w w wexp , 29c( ) ( ) ( )

in which wc is the characteristic width of the spikes.
Equation (29) is a classical result for the asymptotic statistics
of level-crossing intervals of short-range correlated Gaussian
processes including those described by Lorentzian spectra
(Equation (12)); see, e.g., Horsthemke & Lefever (2006) and
references therein. The wc value obtained from the exponential
model should be close to the sample-averaged width á ñw . For a
broadband p(λ) distribution, the exponential fit will be only
approximately correct at the largest scales, revealing the
presence of the large-scale cutoff Lmax, and the sample mean
width should be substantially larger than wc.
The histogram for the p(w) distributions of the four

stochastic models are presented in the bottom row of panels in
Figure 3. It can be seen that spike width distribution of Model 1
is reasonably close to the exponential fit, resulting in » á ñw wc .

Figure 5. Example of the threshold-based identification of local emission peaks
in a detrended LOS emission profile obtained from a loop model or from a
virtual solar image slit. Ith is the detection threshold, red and blue dots mark,
respectively, the starting (x1j) and ending (x2j) positions of each detected peak,
and the peak width wj = x2j − x1j.
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It is also easy to notice that the characteristic size of the
structures constituting the model has penetrated into the peak
width statistics, producing a sharp local maximum at w= L0.
This suggests that a real-life loop system mimicked by this
monoscale model would also exhibit a distribution maximum at
the spatial scale corresponding to the characteristic width of the
superimposed loop filaments, enabling an evaluation of this
important parameter based on the analysis of LOS-integrated
profiles. This possibility is clearly off the table for the
multiscale emission patterns represented by Models 2–4 whose
p(w) histogram, predictably, contains no statistically significant
humps or peaks and shows a drastic departure from the
exponential fit, with the á ñw wc ratio being substantially greater
than 1 and roughly the same for the three multiscale models.

4. Solar Data Analysis

We studied the images obtained by EUV telescope on board
the Hi-C sounding rocket mission during its second successful
flight, which was performed on 2018 May 29 (flight Hi-C 2.1;
Rachmeler et al. 2019). The target of the observation was
NOAA Active Region (AR) 12712. About 80 images with the
time cadence of 4.4 s were recorded during the five and a half
minute observing time. The EUV telescope has an unprece-
dented plate scale of 0 129 pixel−1 and the time cadence of
4.4 s for targeting small-scale transient coronal features. The
quality of the final image product was affected by a motion blur
from rocket jitter, reducing the effective spatial resolution. The
low-blur images contain resolved coronal features of a linear

Figure 6. Two studied loop systems observed by Hi-C in the active region AR 12712. Top panel: the entire Hi-C field of view showing the loop systems, bounded by
the dotted lines. Bottom left: the loop system of Region 1 with approximately parallel strands. Bottom right: the loop system of Region 2 exhibiting a significant
expansion with height. White solid lines show the positions of the studied transverse slits. Radial and circular slit geometries were used to match the large-scale shape
of the Region 1 and Region 2 loop systems, correspondingly. The slit positions displayed here were used for automatically processing all available stable images with
relatively small motion blur obtained during the Hi-C 2.1 flight (Rachmeler et al. 2019), resulting in 3600 slits for the Region 1 and 1800 slits for the Region 2 loops.
Logarithmic intensities are plotted on all three panels to emphasize low-intensity features.
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size of at least 0 47 and provide rich information about the
cross-sectional shape of the observed coronal loops (Williams
et al. 2020a, 2020b, 2021).

For characterizing the spectral and intermittency statistics of
the loop cross sections, we selected 36 high-quality Level 1.5
Hi-C 2.1 images labeled as “low jitter” frames in the Hi-C
database.4 The top panel of Figure 6 provides an example of
such an image. To compare cross-sectional structures in the
absence and presence of significant geometric expansion, two
separate loop systems contained in the regions of interest
shown in the figure were investigated. The loop system of
Region 1 is composed of closed strands with approximately the
same radius of curvature and height. The second loop system
featured in Region 2 quickly expands with distance from the
footpoints. These fanning loops also belong to a closed flux
system as evidenced by the contextual whole-disk images
(Rachmeler et al. 2019).

To collect sufficient statistics comparable to that obtained
from the stochastic model, extended sets of virtual slits were
constructed for each loop system as shown in the bottom panels
of Figure 6, with the geometry of the spatial slit domains
approximating the large-scale geometry of each loop. The
Region 1 loop system was sampled using 100 radially
diverging straight-line slits arranged into a toroidal configura-
tion, each slit containing 255 pixels. The Region 2 loops were
sampled using 50 arc-shaped, 500 pixel long slits creating an
expanding wedge near the loop footpoints. In either region,
slits were approximately perpendicular to the respective loop
system. To reduce the influence of the large-scale geometry of
the loop system on the statistics of spikes (Equation (29))
representing fine loop filaments, the image profiles extracted
using each virtual slit were detrended by subtracting a second-
order polynomial fit from the originally measured profile
(Figure 7). As mentioned earlier, the same detrending
procedure was applied for identifying spikes in the model
data. The described procedure was repeated for all 36 image
frames, resulting in Ns= 3600 and Ns= 1800 detrended cross-
sectional profiles for Region 1 and Region 2 loops,
correspondingly. The average distance between the pixels
along the slits was about 93 km. The spectral and structure
function analyses of the Hi-C profiles were performed over the
entire range of spatial scales covered by the loop profiles,
excluding the smallest scales contaminated by pixel noise and
rocket jitter, and the largest scales not properly represented in
the statistics.

Figure 8 shows the results of the analysis of the two Hi-C
regions defined above. It can be seen that the Fourier energy
spectrum of both loop systems follows an approximate power
law over a wide range of spatial frequencies. In addition to this
stochastic background, the Region 2 spectrum (panel (b))
contains a set of harmonic components that could reflect the
quasi-periodically arranged loop bundles seen in that region
(Figure 6). The spectral indices describing the two regions are
substantially different, with the higher β of Region 2
representing the more structured large-scale loop morphology
near the loop footpoints. For either region, β� 2.

The distribution of signal increments in Region 1 plotted on
Figure 8(c) is close to an inverse parabolic shape expected from
a Gaussian distribution in semi-logarithmic coordinates. The
Region 2 distribution (panel (d)) is somewhat asymmetric,

possibly due to the clustering effects inside the loop system in
that region that were mentioned above, and on average is also
not far from the normal distribution as evidenced by the sample
standard deviation, which is reasonably close to the normal
prediction.
The scaling of the higher-order structure functions, presented

in panels (e) and (f) of Figure 8, is roughly consistent with the
power-law model (Equation (26)), with the structure function
exponents growing linearly with order q (R= 1.0) as predicted
for nonintermittent stochastic models. The Frisch index, κ,
is statistically significantly greater than zero but is low
compared to Models 3 and 4, leaving a possibility of a weak
intermittency. This interpretation is also confirmed by a small
departure of the peak width distributions from the exponential
predictions at the small spatial scales, contributing to a small
but measurable discrepancy between the observed and
predicted characteristic width (Figures 8(g), (h)).

5. Conclusions

We have conducted an in-depth numerical investigation of
three-dimensional projection effects that could influence the
observed loop-like structures in an optically thin solar corona.
Several archetypal emitting geometries have been tested,
including collections of luminous structures with circular
cross sections of fixed and random size, light-emitting
structures with highly anisotropic cross sections, and
stochastic current sheets generated by MHD turbulence. A

Figure 7. Examples of polynomial detrending of the Hi-C emission profiles
intended to reduce the large-scale distortions caused by limited cross-sectional
sizes of the studied loop systems. The peak width statistics reported in
Figures 8(g), (h) were obtained from the detrended emission profiles (shown
with red lines in the above examples).

4 The Hi-C 2.1 images and the low-jitter image flags were downloaded from
https://msfc.virtualsolar.org/Hi-C2.1.
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comprehensive set of statistical signatures has been employed
to quantitatively compare the LOS-integrated emission
signals predicted by these numerical models with the
transverse loop profiles observed by the Hi-C instrument.

The two overarching questions of this investigation are (a)
what kind of three-dimensional emitting geometry is most
likely to result in the observed coronal loop profiles, and (b)

whether or not the observed one-dimensional loops can in fact
be projections of higher-dimensional structures such as current
sheets and/or current sheet folds oriented along the LOS
(Malanushenko et al. 2022). The results obtained enable us to
address both questions.
As shown in Section 4, the Hi-C loop profiles exhibit a

pattern of parameters suggesting an underlying emission

Figure 8. Statistical analysis of LOS-integrated profiles extracted from the Hi-C images using the two systems of virtual slits shown in Figure 6. The statistical
methods and notations are the same as in Figure 3 and are described in Section 3.
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geometry characterized by power-law scaling with a fairly
small amount of intermittency. To place this conclusion in the
context of the constructed loop models (Section 3), Table 2
summarizes the predicted and observed values of the β and κ
indices, as well as several derived indices (1− R, σs/σn− 1,
and á ñ -w w 1c ), providing quantitative measures of inter-
mittency and non-Gaussianity. The cross-comparison between
the six sets of values shown in the table indicates that the SPS
Model 1 is drastically inconsistent with the Hi-C profile shapes
since it predicts a near-zero spectral index, while the real loops
are characterized by β> 2.

The spectral indices of Model 3 and the MHD turbulence
Model 4 are greater than zero but are still significantly lower
than the β values of the observed loops across most of the
studied scales. Even more importantly, these highly anisotropic
models demonstrate unrealistically high levels of intermittency
and non-Gaussianity compared to the corresponding levels
observed for the Region 1 and 2 loop systems. Based on the
values listed in the table, Model 2 is the closest of the four
studied models to the coronal loops imaged by Hi-C. Its most
important difference from the real loops is captured by the
intermittency index κ that is, by definition, close to zero in the
model and is distinct from zero in the Hi-C data.

Provided that the studied coronal loops are statistically
representative, the results of our analysis strongly suggest that
fine transverse structure of the corona cannot result from an
LOS overlap of fully isotropic, fixed-size emitting substruc-
tures, since they predict a near-zero spectral exponent that
contradicts the observations. Neither can it result from a
superposition of multiscale, strongly anisotropic structures such
as turbulence-generated thin current sheets, since such
structures would cause an unrealistically strong intermittency
in the LOS emission profiles unsupported by the observations.
We note that the first of these conclusions, when extrapolated
to subresolution scales, rules out a possibility that the loop can
be composed of fine strands of approximately the same width.
The second conclusion questions the scenario in which the
observed loops are typically caused by kinks and folds in a thin
corrugated quasi-two-dimensional emitting structure (the
coronal “veil”; see Malanushenko et al. 2022) since such folds
would, on average, produce a much higher level of inter-
mittency in the cross-sectional loop profiles than the one seen
in the data.

The best candidate to fitting the data is a scale-invariant SPS
model, such as Model 2, with a small amount of added
anisotropy. One possible physical scenario consistent with this
mathematical model is a driven multistranded corona heated by
clusters of nanoflare events of various sizes, as demonstrated in

recent MHD simulations (Knizhnik et al. 2018, 2020; Klim-
chuk et al. 2023). The aspect ratio of these clusters could be
different from 1 because of anisotropic driving conditions
imposed by the photospheric flow. Alternatively, if the
nanoflare “storm” responsible for the cluster takes the form
of an avalanche, where one event triggers another, which
triggers another, etc., then the spreading out of the avalanche
might not be perfectly axisymmetric.
Figure 9 shows a conceptual illustration of the described

scenario by showing side-by-side images of a modified Model
2 with α= 1.7 and γ= 0.8 and a synthetic EUV image
produced by the abovementioned MHD simulation. The
parameters of the modified SPS model (see the column “Model
2a” in Table 2) are roughly consistent with those obtained for
the Hi-C loops. It is worth noting that even though our SPS
models do not directly address the clustering effects present in
the nanoflare simulation, their larger structures can be
interpreted as bundles of smaller light-emitting structures
associated with spatially correlated nanoflare events. A more
direct representation of spatial clustering will be included in the
next implementation of the SPS framework. Also, for a more
accurate reconstruction of a specific loop geometry, the SPS
parameters can be fine-tuned to match the observational data
using a rigorous optimization scheme. This methodology will
be tested in a follow-up paper.
Irrespective of these upcoming improvements, the results

reported here cast doubt on the possibility that a majority of the
observed coronal loops are projections of large veils or MHD
turbulence. Furthermore, if clusters of nanoflares do exist, our
numerical tests unambiguously indicate that their envelopes
cannot be highly noncircular. This being said, the possibility of
small (perhaps subresolution) sheets is still open, as is the
possibility of very large two-dimensional structures, such as
structures of the size of the entire loop system, not addressed by
our study. However, the intermediate range of scales associated
with the majority of the observed loop systems is most likely
dominated by true, and not apparent, quasi-one-dimensional
light-emitting structures.
To answer the question posed in the title, our results suggest

that most EUV coronal loops could be influenced, but
definitely not caused, by three-dimensional projection effects.
These effects can be isolated by properly chosen data analysis
techniques, and what remains as the most likely underlying
emitting geometry is a collection of quasi-one-dimensional
luminous structures that we intuitively infer when observing
coronal loops.

Table 2
Summary of Scaling Ranges and Measured Statistical Parameters of the Simulated and Observed Coronal Loops

Parameter Interpretation Model 1 Model 2 Model 2a Model 3 Model 4 Hi-C, Region 1 Hi-C, Region 2
(1) (2) (3) (4) (5) (6) (7) (8) (9)

β Spectral index 0.22 2.34 2.60 1.68a 1.32 2.16 2.48
κ Intermittency 0.03 0.00 0.10 0.51 1.71 0.19 0.17
1 − R Nonlinearity 0.00 0.00 0.00 0.02 0.25 0.00 0.00
σs/σn − 1 Non-Gaussianity 0.05 0.10 0.37 0.45 4.32 0.12 0.26

á ñ -w w 1c Multiscaling −0.12 0.70 0.18 1.07 1.00 0.45 0.08

Note.
a The local spectral index of Model 3 varies between 1.0 and 2.3 depending on scale; see Section 3.1 for details.

14

The Astrophysical Journal, 961:222 (15pp), 2024 February 1 Uritsky & Klimchuk



Acknowledgments

We thank the members of the Coronal Heating Team at
NASA GSFC for stimulating discussions, N. Arge for helpful
comments on the SPS method, and A. Pouquet, P. Mininni, and
D. Rosenberg for the high-resolution turbulence data. We
acknowledge the High-resolution Coronal Imager (Hi-C 2.1)
instrument team for making the second re-flight data available.
This work was supported by the GSFC Heliophysics Internal
Scientist Funding Model competitive work package program.
V.M.U. was also partly supported through the Partnership for
Heliophysics and Space Environment Research (NASA grant
No. 80NSSC21M0180).

ORCID iDs

Vadim M. Uritsky https://orcid.org/0000-0002-5871-6605
James A. Klimchuk https://orcid.org/0000-0003-2255-0305

References

Abramenko, V., Yurchyshyn, V., & Wang, H. 2008, ApJ, 681, 1669
Aschwanden, M. J., Crosby, N. B., Dimitropoulou, M., et al. 2016, SSRv,

198, 47
Frisch, U. 1995, Turbulence. The Legacy of A.N. Kolmogorov (Cambridge:

Cambridge Univ. Press)
Gomez, D. O., Martens, P. C. H., & Golub, L. 1993, ApJ, 405, 767
Horsthemke, W., & Lefever, R. 2006, Noise-Induced Transitions (Berlin:

Springer)
Jensen, H. J., Christensen, K., & Fogedby, H. C. 1989, PhRvB, 40, 7425
Kertesz, J., & Kiss, L. B. 1990, JPhA, 23, L433
Klimchuk, J. A. 2015, RSPTA, 373, 20140256

Klimchuk, J. A., & Antiochos, S. K. 2021, FrASS, 8, 83
Klimchuk, J. A., & DeForest, C. E. 2020, ApJ, 900, 167
Klimchuk, J. A., Knizhnik, K. J., & Uritsky, V. M. 2023, ApJ, 942, 10
Knizhnik, K. J., Barnes, W. T., Reep, J. W., & Uritsky, V. M. 2020, ApJ,

899, 156
Knizhnik, K. J., Uritsky, V. M., Klimchuk, J. A., & DeVore, C. R. 2018, ApJ,

853, 82
Kucera, T. A., Young, P. R., Klimchuk, J. A., & DeForest, C. E. 2019, ApJ,

885, 7
Malanushenko, A., Cheung, M. C. M., DeForest, C. E., Klimchuk, J. A., &

Rempel, M. 2022, ApJ, 927, 1
Malanushenko, A., & Schrijver, C. J. 2013, ApJ, 775, 120
Mason, E. I., & Uritsky, V. M. 2022, ApJL, 937, L19
McCarthy, M. I., Longcope, D. W., & Malanushenko, A. 2021, ApJ, 913, 56
Milotti, E. 2002, arXiv:physics/0204033
Mininni, P. D., Alexakis, A., & Pouquet, A. 2006, PhRvE, 74, 016303
Rachmeler, L. A., Winebarger, A. R., Savage, S. L., et al. 2019, SoPh, 294,

174
Schekochihin, A. A., Cowley, S. C., Dorland, W., et al. 2009, ApJS, 182, 310
Schottky, W. 1926, PhRv, 28, 74
Uritsky, V. M., & Davila, J. M. 2014, ApJ, 795, 15
Uritsky, V. M., Davila, J. M., Ofman, L., & Coyner, A. J. 2013, ApJ, 769, 62
Uritsky, V. M., Karpen, J. T., Raouafi, N. E., et al. 2023, ApJL, 955, L38
Uritsky, V. M., Pouquet, A., Rosenberg, D., Mininni, P. D., & Donovan, E. F.

2010, PhRvE, 82, 056326
Uritsky, V. M., Roberts, M. A., DeVore, C. R., & Karpen, J. T. 2017, ApJ,

837, 123
Uritsky, V. M., Slavin, J. A., Boardsen, S. A., et al. 2014, JGRA, 119, 853
West, M., Zhukov, A., & Klimchuk, J. 2014, in 40th COSPAR Scientific

Assembly (Paris: COSPAR), E2.2-60-4
Williams, T., Walsh, R. W., & Morgan, H. 2021, ApJ, 919, 47
Williams, T., Walsh, R. W., Peter, H., & Winebarger, A. R. 2020a, ApJ,

902, 90
Williams, T., Walsh, R. W., Winebarger, A. R., et al. 2020b, ApJ, 892, 134
Winebarger, A. R., Cirtain, J., Golub, L., et al. 2014, ApJL, 787, L10

Figure 9. Qualitative comparison of the cross-sectional loop geometry of the tuned-up SPS Model 2a (left) and a 193 Å synthetic emissivity map (right) produced by
the MHD nanoflare model (Knizhnik et al. 2018; Klimchuk et al. 2023). The parameters of the SPS model (α = 1.7, γ = 0.8) produce LOS profile statistics that are
roughly consistent with the Hi-C 2.1 observations.

15

The Astrophysical Journal, 961:222 (15pp), 2024 February 1 Uritsky & Klimchuk

https://orcid.org/0000-0002-5871-6605
https://orcid.org/0000-0002-5871-6605
https://orcid.org/0000-0002-5871-6605
https://orcid.org/0000-0002-5871-6605
https://orcid.org/0000-0002-5871-6605
https://orcid.org/0000-0002-5871-6605
https://orcid.org/0000-0002-5871-6605
https://orcid.org/0000-0002-5871-6605
https://orcid.org/0000-0003-2255-0305
https://orcid.org/0000-0003-2255-0305
https://orcid.org/0000-0003-2255-0305
https://orcid.org/0000-0003-2255-0305
https://orcid.org/0000-0003-2255-0305
https://orcid.org/0000-0003-2255-0305
https://orcid.org/0000-0003-2255-0305
https://orcid.org/0000-0003-2255-0305
https://doi.org/10.1086/588426
https://ui.adsabs.harvard.edu/abs/2008ApJ...681.1669A/abstract
https://doi.org/10.1007/s11214-014-0054-6
https://ui.adsabs.harvard.edu/abs/2016SSRv..198...47A/abstract
https://ui.adsabs.harvard.edu/abs/2016SSRv..198...47A/abstract
https://doi.org/10.1086/172405
https://ui.adsabs.harvard.edu/abs/1993ApJ...405..767G/abstract
https://doi.org/10.1103/PhysRevB.40.7425
https://ui.adsabs.harvard.edu/abs/1989PhRvB..40.7425J/abstract
https://doi.org/10.1088/0305-4470/23/9/006
https://ui.adsabs.harvard.edu/abs/1990JPhA...23L.433K/abstract
https://doi.org/10.1098/rsta.2014.0256
https://ui.adsabs.harvard.edu/abs/2015RSPTA.37340256K/abstract
https://doi.org/10.3389/fspas.2021.662861
https://ui.adsabs.harvard.edu/abs/2021FrASS...8...83K/abstract
https://doi.org/10.3847/1538-4357/abab09
https://ui.adsabs.harvard.edu/abs/2020ApJ...900..167K/abstract
https://doi.org/10.3847/1538-4357/ac9f41
https://ui.adsabs.harvard.edu/abs/2023ApJ...942...10K/abstract
https://doi.org/10.3847/1538-4357/aba959
https://ui.adsabs.harvard.edu/abs/2020ApJ...899..156K/abstract
https://ui.adsabs.harvard.edu/abs/2020ApJ...899..156K/abstract
https://doi.org/10.3847/1538-4357/aaa0d9
https://ui.adsabs.harvard.edu/abs/2018ApJ...853...82K/abstract
https://ui.adsabs.harvard.edu/abs/2018ApJ...853...82K/abstract
https://doi.org/10.3847/1538-4357/ab449e
https://ui.adsabs.harvard.edu/abs/2019ApJ...885....7K/abstract
https://ui.adsabs.harvard.edu/abs/2019ApJ...885....7K/abstract
https://doi.org/10.3847/1538-4357/ac3df9
https://ui.adsabs.harvard.edu/abs/2022ApJ...927....1M/abstract
https://doi.org/10.1088/0004-637X/775/2/120
https://ui.adsabs.harvard.edu/abs/2013ApJ...775..120M/abstract
https://doi.org/10.3847/2041-8213/ac9124
https://ui.adsabs.harvard.edu/abs/2022ApJ...937L..19M/abstract
https://doi.org/10.3847/1538-4357/abf4d5
https://ui.adsabs.harvard.edu/abs/2021ApJ...913...56M/abstract
http://arxiv.org/abs/physics/0204033
https://doi.org/10.1103/PhysRevE.74.016303
https://ui.adsabs.harvard.edu/abs/2006PhRvE..74a6303M/abstract
https://doi.org/10.1007/s11207-019-1551-2
https://ui.adsabs.harvard.edu/abs/2019SoPh..294..174R/abstract
https://ui.adsabs.harvard.edu/abs/2019SoPh..294..174R/abstract
https://doi.org/10.1088/0067-0049/182/1/310
https://ui.adsabs.harvard.edu/abs/2009ApJS..182..310S/abstract
https://doi.org/10.1103/PhysRev.28.74
https://ui.adsabs.harvard.edu/abs/1926PhRv...28...74S/abstract
https://doi.org/10.1088/0004-637X/795/1/15
https://ui.adsabs.harvard.edu/abs/2014ApJ...795...15U/abstract
https://doi.org/10.1088/0004-637X/769/1/62
https://ui.adsabs.harvard.edu/abs/2013ApJ...769...62U/abstract
https://doi.org/10.3847/2041-8213/acf85c
https://ui.adsabs.harvard.edu/abs/2023ApJ...955L..38U/abstract
https://doi.org/10.1103/PhysRevE.82.056326
https://ui.adsabs.harvard.edu/abs/2010PhRvE..82e6326U/abstract
https://doi.org/10.3847/1538-4357/aa5cb9
https://ui.adsabs.harvard.edu/abs/2017ApJ...837..123U/abstract
https://ui.adsabs.harvard.edu/abs/2017ApJ...837..123U/abstract
https://doi.org/10.1002/2013JA019052
https://ui.adsabs.harvard.edu/abs/2014JGRA..119..853U/abstract
https://ui.adsabs.harvard.edu/abs/2014cosp...40E3620W/abstract
https://doi.org/10.3847/1538-4357/ac0f76
https://ui.adsabs.harvard.edu/abs/2021ApJ...919...47W/abstract
https://doi.org/10.3847/1538-4357/abb60a
https://ui.adsabs.harvard.edu/abs/2020ApJ...902...90W/abstract
https://ui.adsabs.harvard.edu/abs/2020ApJ...902...90W/abstract
https://doi.org/10.3847/1538-4357/ab6dcf
https://ui.adsabs.harvard.edu/abs/2020ApJ...892..134W/abstract
https://doi.org/10.1088/2041-8205/787/1/L10
https://ui.adsabs.harvard.edu/abs/2014ApJ...787L..10W/abstract

	1. Introduction
	2. Simulation Techniques
	2.1. The Stochastic Pulse Superposition Framework
	2.2. The MHD Turbulence Model
	2.3. Visual Comparison

	3. Data Analysis Methods and Scaling Relations
	3.1. Spectral Analysis
	3.2. Intermittency Analysis

	4. Solar Data Analysis
	5. Conclusions
	References



