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Assignment 5: due October 1

Problems to be submitted:

17. (a) The position of a particle in the 3D space is ~r = 2x̂+ 3ŷ−1ẑ. Rewrite the vector as ~r = rr̂,

where r is the distance, and r̂ is the unit vector whose magnitude is 1.

(b) The position of a particle in the 3D space is ~r = xx̂ + yŷ + zẑ. Rewrite the vector as ~r = rr̂,

where r is the distance, and r̂ is the unit vector whose magnitude is 1. Express your solution as

function(s) of x, y, z.

(c) In Problem-14, write the unit vectors x̂′ and ŷ′ indicating the direction of the rotated frame

(X ′Y ′ frame) in terms of their coordinates in the XY frame, and prove that the magnitude of x̂′

and ŷ′ is 1. [hint: here you will rotate the two unit vectors x̂ and then ŷ, respectively, by 30◦ to

get x̂′ and ŷ′, respectively.]

18. In the class, we have stated that we can daignolize the coefficient matrix and solve algebra

equations MR = K by the following (slow!) approach: first, define R ≡ CR′, and recast the

equations to DR′ = C−1K. Here C is the matrix made by normalized eigen vectors, and D is the

diagnol matrix D = C−1MC. We then solve for R′, and then find R = CR′. Practise this (slow!)

method to find (x, y) for the following equation set following the steps.

5x− 2y = 1

−2x+ 2y = 4

(a) Find the eigen values (which are elements of the diagonal matrix D) of the coefficient matrix.

(b) Find normalized eigen vectors and construct C.

(c) Solve for (x′, y′) from DR′ = C−1K.

(d) Solve for (x, y) from R = CR′.

(e) Also show that detM = detD = λ1λ2.

19. Boas Chapter 3, Section 11, Problems 27, 32.

20. A system of masses and springs are set up like in Boas’ Figure 12.1, but the spring constant of

the middle spring is 2k instead of k. Find the eigen frequencies and eigen vectors of the setup, and

explain what is the physical picture of each normal mode.

21. Two particles of masses m and M is attached at the two ends of a spring with spring constant

k. The particles can move in only one direction (along the direction of the spring). Find the eigen

frequencies and eigen vectors of the system, and explain what is the physical picture of each mode.



– 2 –

Solution:

17. [2+2+4] (a) The magnitude of a unit vector is 1, so we should normalize the vector by its

magnitude to get the unit vector. In this case, the magnitude of the position vector is |~r| =√
22 + 32 + 12 =

√
14, so

r̂ =
~r

|~r|
=

1√
14

(2x̂+ 3ŷ − ẑ), ~r = rr̂ =
√

14
2x̂+ 3ŷ − ẑ√

14
.

(b) In the same way, we can find

r̂ =
~r

|~r|
=

xx̂+ yŷ + zẑ√
x2 + y2 + z2

, ~r =
√
x2 + y2 + z2

xx̂+ yŷ + zẑ√
x2 + y2 + z2

.

(c) Here we can use the rotation matrix to find x̂′ and ŷ′ by rotating x̂ and ŷ.

x̂′ =

[
cos 30◦ sin 30◦

− sin 30◦ cos 30◦

][
1

0

]
=

[√
3/2

1/2

]
,

ŷ′ =

[
cos 30◦ sin 30◦

− sin 30◦ cos 30◦

][
0

1

]
=

[
−1/2√

3/2

]
.

So x̂′ =
√
3
2 x̂ + 1

2 ŷ, ŷ
′ = −1

2 x̂ +
√
3
2 ŷ. It is seen that |x̂′| = 1, |x̂′| = 1, so both are unit vectors. Of

course, the rotation transformation is an orthogonal transformation, so the rotated vectors should

keep the same magnitude.

18. [2+3+3+2+1] (a) We find the eigen values by

det

[
5− λ −2

−2 2− λ

]
= (5− λ)(2− λ)− 4 = 0.

Solving the quadratic equation, we find two eigen values λ1 = 1, λ2 = 6.

(b) For λ1 = 1, we find the eigen vector r1 by[
5− 1 −2

−2 2− 1

][
x1
y1

]
= 0,

leading to

r1 = 1√
5

[
1

2

]
.

For λ2 = 6, we find the eigen vector r2 by[
5− 6 −2

−2 2− 6

][
x2
y2

]
= 0,
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leading to

r2 = 1√
5

[
−2

1

]
.

Both eigen vectors are normalized. The conversion matrix is therefore

C = 1√
5

[
1 −2

2 1

]
.

(c) Now we can solve for R′ = (x′, y′) by DR′ = C−1K. First the inverse of C is found to be

C−1 = CT

|C| = 1√
5

[
1 2

−2 1

]
.

Then,

DR′ =

[
1 0

0 6

][
x′

y′

]
= 1√

5

[
1 2

−2 1

][
−1

4

]
= 1√

5

[
7

6

]
.

This can be easily solved to find

R′ = 1√
5

[
7

1

]
.

(d) Finally we find R by

R = CR′ = 1√
5

[
1 −2

2 1

]
1√
5

[
7

1

]
=

[
1

3

]
.

So x = 1, y = 3, which satisfy the algebra equation.

(e) Also we can find the determinant of M as

|M | = (10− 4) = 6 = |D| = λ1λ2.

19. [3+3] Problem 27: To find the eigen values, we solve

det

[
2− λ −1

−1 2− λ

]
= (λ− 1)(λ− 3) = 0,

leading to λ1 = 1, λ2 = 3. For λ1 = 1, we find the eigen vector by[
2− 1 −1

−1 2− 1

][
x1
y1

]
= 0.
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So the normalized eigen vector is

r1 =
1√
2

[
1

1

]
.

For λ2 = 3, [
2− 3 −1

−1 2− 3

][
x2
y2

]
= 0.

So the normalized eigen vector is

r2 =
1√
2

[
−1

1

]
.

The matrix used to diagolize M is constructed using eigen vectors,

C =
1√
2

[
1 −1

1 1

]
.

And the matrix M is diagnolized by

D = C−1MC =

[
1 0

0 3

]
.

So along the direction of the new axis r1 and r2, the amount of deformation is 1 and 3, respectively.

Problem 32: To find the eigen values, we solve

det

[
6− λ −2

−2 3− λ

]
= (λ− 2)(λ− 7) = 0,

leading to λ1 = 2, λ2 = 7. For λ1 = 2, we find the eigen vector by[
6− 2 −2

−2 3− 2

][
x1
y1

]
= 0.

So the normalized eigen vector is

r1 =
1√
5

[
1

2

]
.

For λ2 = 7, [
6− 7 −2

−2 3− 7

][
x2
y2

]
= 0.
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So the normalized eigen vector is

r2 =
1√
5

[
−2

1

]
.

The matrix used to diagolize M is constructed using eigen vectors,

C =
1√
5

[
1 −2

2 1

]
.

And the matrix M is diagnolized by

D = C−1MC =

[
2 0

0 7

]
.

So along the direction of the new axis r1 and r2, the amount of deformation is 2 and 7, respectively.

20. [4 points] Let the displacements of the two masses from their equilibrium positions be noted

by x and y, we can write down the equations of motion for the two masses separately,

mẍ = −kx+ 2k(y − x),

mÿ = −ky − 2k(y − x).

For homogeneous linear differential equations, we use the solution x = x0e
iωt, y = y0e

iωt, and the

equations of motion become coupled algebra equations,

(−mω2 + 3k)x− 2ky = 0,

−2kx+ (−mω2 + 3k)y = 0.

For x and y to have non-trivial solutions, the determinant of the coefficient matrix has to be zero,

or (mω2 − 3k)2 − 4k2 = (mω2 − 5k)(mω2 − k) = 0, which yields two eigen frequencies, ω2
1 = k/m

and ω2
2 = 5k/m. For the first mode, ω2

1 = k/m, we find the normalized eigen vector by[
2k −2k

−2k 2k

][
x1
y1

]
= 0.

So the normalized eigen vector is

r1 =

[
x1
y1

]
=

1√
2

[
1

1

]
.

This is the mode when both masses move in the same direction by the same amount, in which case,

the middle spring is not stretched or compressed; then each particle only receives a restoring force
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of −kx or −ky, so the frequency of the oscillation is
√
k/m, same as by a single spring.

For the second mode, ω2
2 = 5k/m, we find the normalized eigen vector by[

−2k −2k

−2k −2k

][
x2
y2

]
= 0.

So the normalized eigen vector is

r2 =

[
x2
y2

]
=

1√
2

[
−1

1

]
.

This is the mode when two masses move in opposite directions by the same amount, in which case,

the middle spring is stretched or compressed by twice of x or y; then each particle receives the total

restoring force of −5kx or −5ky, so the frequency of the oscillation is
√

5k/m.

21. [4 points] Let the displacements of the two masses from their equilibrium positions be noted

by x and y, we can write down the equations of motion for the two masses separately,

mẍ = −k(x− y),

Mÿ = −k(y − x).

For homogeneous linear differential equations, we use the solution x = x0e
iωt, y = y0e

iωt, and the

equations of motion become coupled algebra equations,

(−mω2 + k)x− ky = 0,

−kx+ (−Mω2 + k)y = 0.

For x and y to have non-trivial solutions, the determinant of the coefficient matrix has to be zero,

or (mω2 − k)(Mω2 − k) − k2 = mMω4 − k(M + m)ω2 = 0, which yields two eigen frequencies,

ω2
1 = 0 and ω2

2 = k/µ, where µ = Mm/(M +m) is the reduced mass. For the first mode, ω2
1 = 0,

we find the normalized eigen vector by[
k −k
−k k

][
x1
y1

]
= 0.

So the normalized eigen vector is

r1 =

[
x1
y1

]
=

1√
2

[
1

1

]
.

This is the mode when both masses move in the same direction by the same amount, in which case,

the spring is not stretched or compressed; then particles do not receive any force. So this is the
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motion of the whole system (or center of mass) at a constant speed; it is not an oscillation.

For the second mode, ω2
2 = k/µ, we find the normalized eigen vector by[

−m
M k −k
−k −m

M k

][
x2
y2

]
= 0.

So the normalized eigen vector is

r2 =

[
x2
y2

]
=

1√
1 + (m/M)2

[
−1
m
M

]
.

This is the mode when two masses move in opposite directions but by different amount. Since

mx2 +My2 = 0, it is seen that the center of mass of the system is still, so x2 and y2 are oscillation

motions relative to the center of mass. The motion of each particle is a linear combination of two

motions: the constant velocity motion of the center of the mass, and oscillation relative to the

center of mass.


