Assignment 6: due October 8
Problems to be submitted:

22. The figure shows a mass particle m; between two identical springs with spring constant k,
and another mass particle mo is attached to m; by a massless inextensible string of length [. The
gravitational acceleration is a constant g. m; can only move along the direction of the springs,
and me is a pendulum that can swing back and forth about m;. The coordinate system is such
that origin is at where mg is in equilibrium, as shown in Figure a. When the system is perturbed,
the displacement of m; is x, and displacement of my is 2, y2 in this coordinate system (Figure b).
The displacement of ms can be also expressed by the angle 6 of the pendulum with the vertical, as
shown in Figure b.
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(a) Find x5 and y9, respectively, as function of xz, f, which are the two independent variables in
this coupled system.

(b) Find the total potential energy of the system U(z, 6) as a function of x, § — please consider ALL
potential energies in this system.

(c) Find the two components of the velocity of mg, 9 = ddif and g = %, respectively, as functions
of x,0,,0, using chain rules.

(d) Find the total kinetic energy of the two masses T' = T} + T», again as function of z, 0, , 0.

(e) Can I write the velocity of my as vy = 10, and find Ty = (1/2)m2126%? Is the kinetic energy Th
derived this way same or different from your solution in (d)? If different, which way is the correct
way? Explain.

(f) In your (correct) solution of the potential and kinetic energy functions, there must be cosé
or sinf terms. Now we consider small perturbation, i.e., § < 1, expand the cos# or sinf term as
power functions of 6 about zero, and keep the number of expansion terms so that your potential and
kinetic energy functions are only quadratic functions of z, 0, &, 6. For example, 22,02, 2, 62, 20, &0
are all quadratic functions.

Note that there should be cross-term in one of your energy functions, otherwise your
solution must be wrong!
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23. Two particles of masses m; and ms is attached at the two ends of a spring with spring constant
k. The particles can move in only one direction (along the direction of the spring), and their dis-
placements from their equilibrium position are noted as x; and x9, respectively. Earlier, we have
solved the problem with the standard normal modes method. Now we will rewrite the equations of
motion with another set of variables defined in the following way:

mix1 + Moo

X:T, Y:LUQ—IZfl.

(a) Show that the kinetic energy and the potential energy of this system can be rewritten as
1 . 1 . 1
T=-MX*+_pY? U=_kY?
2 + 2” ) 2 b

namely, there is no cross-term in the energy functions. Here M = mj 4+ mo is the total mass, and
p = =472 is the reduced mass.
(b) Then find the equations of motion with respect to the new variables (X,Y) by

oUu . ou

Mx=-2 gy 2
ox’ M oY

Show that these two differential equations are no longer coupled.
(c) Explain what is the physical picture of the motion indicated by X and Y — you do not have to
solve the differential equations. How is this result related to your solution to HW5-Problem 217

24. Boas Chapter 4 Section 5, Problem 1.
25. Boas Chapter 4 Section 6, Problem 7.

26. A second-order ordinary differential equation is written as

1 d (. ,dy B
T <sm0d0> +Il(l+1)y=0.,

where [ is a constant positive integer. Now introduce variable x = cosf, rewrite the differential
equation with respect to the independent variable x — this is called the Legendre equation.



Solution

22, [24242+2+242](a) 2 = x +1sinfh, y2 =1(1 —cosh).
(b) The total potential energy includes the spring energy and gravitational protential energy,

1 1
U = 5]{:1‘2 + 5/{:3:2 + Mmogys
= ka? 4 magl(1 — cosh).

(c) &g = &+ lcosB8, gy = Isinff.
(d) The total kenetic energy is
1 1 1
T = §m1$2 + §m2i:§ + §m2y§

1 1 o1 .
= §m15b2 + 5ma(d + L cos 660)? + gma(lsin 66)?

1 1 . .
= —(m1 +m9)i? + =mal?0? + mol cos Oi6.
2 2

(e) We cannot write the velocity of mqo as 10, because ms also moves together with mq. So the
kinetic energy Ts = %mglzéﬁ is incorrect — this is the most common, and fatal, mistake in
problems of this kind!

(f) Both energy functions have cosf term. We expand this term as

2 94

0=1— — 4+ — + ...
CcoS 2+4!—|-

We will keep up to the second term for the potential energy and up to the first term for the kinetic
energy, so that both energy functions are quadratic functions of the independent variables,

T = %(ml + mg)d? + %m2l292 +mplzh, U =ka? + %mggZQQ.
It is seen that there is no crossterm in the potential energy, but there is a cross-term &6 in the
kinetic energy, so the motions indicated by the two independent variables (x, 6) are coupled. With
the cross-term in the kinetic energy, we cannot write the equations of motion the same way as in
the next problem; we will use Lagrange method to find equations of motion, or Euler-Lagrange
equations, later in the Mechanics class.

23. [34242] (a) Note that by these definitions, X is the position of the center of mass, and Y is
the distance between the two masses. We can find x; and x5 as functions of X,Y as

x1:X—%Y, xQ:X—i—%Y.



The kinetic energy is therefore

T = %mli‘%—i—%mﬂ%
- g (5= ) e o (5 )’
= %MXQ—I—%NYQ.

And the potential energy is
1 1
U= §k($2 - $1)2 == 5]{3}/2

With the new variables, there is no cross-term in potential and kinetic energy functions. So X
and Y motions are decoupled.
(b) The two equations of motion now are given by

ou . ou

MX =
The equations are no longer coupled, i.e., X does not depend on Y, and Y does not depend on X.
(c) The first equation of motion indicates force-free motion of the center of mass, so center of mass
will have a motion of constant velocity after the initial perturbation with eigen frequency w? = 0.
The second equation of motion is an oscillation of the distance between the two particles due to
the spring, with the eigen frequency w3 = k/pu — is it the same as your solution in Problem 217!
The motion of each individual mass is a linear combination of these two separate modes of motion,
i.e., translational motion of the center of mass and oscillation relative to the center of mass.

24. [2 points] We first take differential of two side of the equation z = ze ¥ as
dz = e Ydx — ze Ydy,

SO we get

— = Y— xe‘y@ = e Ysinht + ze Ysint.

dt dt dt

We may also use the method in the class; first take the natural logarithm of the two sides of the

equation, Inz = Inx — y. Then take the differential of both sides, leading to

dz —y dx _

%:dj_dy7
z X

Therefore, we find

d d d
d—j = %d—f — Zdizi = ¢ Ysinht + ze ¥Ysint,
same as above.
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25. [4 points] We take differential of the two sides of the equation
3y?dy — 2zydr — 22dy = 0,

leading to

dy  2xy

dr ~ 3y2 — 22’
which is the slope of the curve. At the point (3, —1), the slope is dy/dz = 1, and the tangent line
crossing the point is y + 1 = 1(x — 3), or y — 2 = —4. The curve and the tangent line are plotted

in the figure below.
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26. [4 points] Take differential on two sides of the equation x = cos#, we find dx = — sin 6d#f, so
Z—z = —sind.

Then using the chain rule, we find

dy dydzx . ody

B dedd —sm9%.
In the same way,

d dx d .

B dode —51110%.

Take these back to the original differential equation, we find

1 d (. dy\ 1 odT. Codyl d (o dy . dy

So the original differential equation becomes

dz x

This is Legendre equation, and its solution is known as Legendre polynomials, which we will use

d [(1 _ ﬁ)jy] +1(l+ 1)y =0.

to find electrostatic potential outside a conducting sphere.



