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Assignment 6: due October 8

Problems to be submitted:

22. The figure shows a mass particle m1 between two identical springs with spring constant k,

and another mass particle m2 is attached to m1 by a massless inextensible string of length l. The

gravitational acceleration is a constant g. m1 can only move along the direction of the springs,

and m2 is a pendulum that can swing back and forth about m1. The coordinate system is such

that origin is at where m2 is in equilibrium, as shown in Figure a. When the system is perturbed,

the displacement of m1 is x, and displacement of m2 is x2, y2 in this coordinate system (Figure b).

The displacement of m2 can be also expressed by the angle θ of the pendulum with the vertical, as

shown in Figure b.

(a) Find x2 and y2, respectively, as function of x, θ, which are the two independent variables in

this coupled system.

(b) Find the total potential energy of the system U(x, θ) as a function of x, θ – please consider ALL

potential energies in this system.

(c) Find the two components of the velocity of m2, ẋ2 = dx2
dt and ẏ2 = dy2

dt , respectively, as functions

of x, θ, ẋ, θ̇, using chain rules.

(d) Find the total kinetic energy of the two masses T = T1 + T2, again as function of x, θ, ẋ, θ̇.

(e) Can I write the velocity of m2 as v2 = lθ̇, and find T2 = (1/2)m2l
2θ̇2? Is the kinetic energy T2

derived this way same or different from your solution in (d)? If different, which way is the correct

way? Explain.

(f) In your (correct) solution of the potential and kinetic energy functions, there must be cos θ

or sin θ terms. Now we consider small perturbation, i.e., θ � 1, expand the cos θ or sin θ term as

power functions of θ about zero, and keep the number of expansion terms so that your potential and

kinetic energy functions are only quadratic functions of x, θ, ẋ, θ̇. For example, x2, θ2, ẋ2, θ̇2, xθ, ẋθ̇

are all quadratic functions.

Note that there should be cross-term in one of your energy functions, otherwise your

solution must be wrong!



– 2 –

23. Two particles of masses m1 and m2 is attached at the two ends of a spring with spring constant

k. The particles can move in only one direction (along the direction of the spring), and their dis-

placements from their equilibrium position are noted as x1 and x2, respectively. Earlier, we have

solved the problem with the standard normal modes method. Now we will rewrite the equations of

motion with another set of variables defined in the following way:

X =
m1x1 +m2x2

M
, Y = x2 − x1.

(a) Show that the kinetic energy and the potential energy of this system can be rewritten as

T =
1

2
MẊ2 +

1

2
µẎ 2, U =

1

2
kY 2,

namely, there is no cross-term in the energy functions. Here M ≡ m1 +m2 is the total mass, and

µ ≡ m1m2
M is the reduced mass.

(b) Then find the equations of motion with respect to the new variables (X,Y ) by

MẌ = − ∂U

∂X
, µŸ = −∂U

∂Y
.

Show that these two differential equations are no longer coupled.

(c) Explain what is the physical picture of the motion indicated by X and Y – you do not have to

solve the differential equations. How is this result related to your solution to HW5-Problem 21?

24. Boas Chapter 4 Section 5, Problem 1.

25. Boas Chapter 4 Section 6, Problem 7.

26. A second-order ordinary differential equation is written as

1

sin θ

d

dθ

(
sin θ

dy

dθ

)
+ l(l + 1)y = 0.,

where l is a constant positive integer. Now introduce variable x = cos θ, rewrite the differential

equation with respect to the independent variable x – this is called the Legendre equation.
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Solution

22. [2+2+2+2+2+2](a) x2 = x+ l sin θ, y2 = l(1 − cos θ).

(b) The total potential energy includes the spring energy and gravitational protential energy,

U =
1

2
kx2 +

1

2
kx2 +m2gy2

= kx2 +m2gl(1 − cos θ).

(c) ẋ2 = ẋ+ l cos θθ̇, ẏ2 = l sin θθ̇.

(d) The total kenetic energy is

T =
1

2
m1ẋ

2 +
1

2
m2ẋ

2
2 +

1

2
m2ẏ

2
2

=
1

2
m1ẋ

2 +
1

2
m2(ẋ+ l cos θθ̇)2 +

1

2
m2(l sin θθ̇)

2

=
1

2
(m1 +m2)ẋ

2 +
1

2
m2l

2θ̇2 +m2l cos θẋθ̇.

(e) We cannot write the velocity of m2 as lθ̇, because m2 also moves together with m1. So the

kinetic energy T2 = 1
2m2l

2θ̇2 is incorrect – this is the most common, and fatal, mistake in

problems of this kind!

(f) Both energy functions have cos θ term. We expand this term as

cos θ = 1 − θ2

2
+
θ4

4!
+ ....

We will keep up to the second term for the potential energy and up to the first term for the kinetic

energy, so that both energy functions are quadratic functions of the independent variables,

T =
1

2
(m1 +m2)ẋ

2 +
1

2
m2l

2θ̇2 +m2lẋθ̇, U = kx2 +
1

2
m2glθ

2.

It is seen that there is no crossterm in the potential energy, but there is a cross-term ẋθ̇ in the

kinetic energy, so the motions indicated by the two independent variables (x, θ) are coupled. With

the cross-term in the kinetic energy, we cannot write the equations of motion the same way as in

the next problem; we will use Lagrange method to find equations of motion, or Euler-Lagrange

equations, later in the Mechanics class.

23. [3+2+2] (a) Note that by these definitions, X is the position of the center of mass, and Y is

the distance between the two masses. We can find x1 and x2 as functions of X,Y as

x1 = X − m2

M
Y, x2 = X +

m1

M
Y.
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The kinetic energy is therefore

T =
1

2
m1ẋ

2
1 +

1

2
m2ẋ

2
2

=
1

2
m1

(
Ẋ − m2

M
Ẏ
)2

+
1

2
m2

(
Ẋ +

m1

M
Ẏ
)2

=
1

2
(m1 +m2)Ẋ

2 +
1

2

m1m2

M
Ẏ 2

=
1

2
MẊ2 +

1

2
µẎ 2.

And the potential energy is

U =
1

2
k(x2 − x1)

2 =
1

2
kY 2.

With the new variables, there is no cross-term in potential and kinetic energy functions. So X

and Y motions are decoupled.

(b) The two equations of motion now are given by

MẌ = − ∂U

∂X
= 0, µŸ = −∂U

∂Y
= −kY.

The equations are no longer coupled, i.e., Ẍ does not depend on Y , and Ÿ does not depend on X.

(c) The first equation of motion indicates force-free motion of the center of mass, so center of mass

will have a motion of constant velocity after the initial perturbation with eigen frequency ω2
1 = 0.

The second equation of motion is an oscillation of the distance between the two particles due to

the spring, with the eigen frequency ω2
2 = k/µ – is it the same as your solution in Problem 21?!

The motion of each individual mass is a linear combination of these two separate modes of motion,

i.e., translational motion of the center of mass and oscillation relative to the center of mass.

24. [2 points] We first take differential of two side of the equation z = xe−y as

dz = e−ydx− xe−ydy,

so we get
dz

dt
= e−y dx

dt
− xe−y dy

dt
= e−y sinh t+ xe−y sin t.

We may also use the method in the class; first take the natural logarithm of the two sides of the

equation, lnz = lnx− y. Then take the differential of both sides, leading to

dz

z
=
dx

x
− dy,

Therefore, we find
dz

dt
=
z

x

dx

dt
− z

dy

dt
= e−y sinh t+ xe−y sin t,

same as above.
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25. [4 points] We take differential of the two sides of the equation

3y2dy − 2xydx− x2dy = 0,

leading to
dy

dx
=

2xy

3y2 − x2
,

which is the slope of the curve. At the point (3,−1), the slope is dy/dx = 1, and the tangent line

crossing the point is y + 1 = 1(x− 3), or y − x = −4. The curve and the tangent line are plotted

in the figure below.

26. [4 points] Take differential on two sides of the equation x = cos θ, we find dx = − sin θdθ, so

dx

dθ
= − sin θ.

Then using the chain rule, we find

dy

dθ
=
dy

dx

dx

dθ
= − sin θ

dy

dx
.

In the same way,
d

dθ
=
dx

dθ

d

dx
= − sin θ

d

dx
.

Take these back to the original differential equation, we find

1

sin θ

d

dθ

(
sin θ

dy

dθ

)
=

1

sin θ
(− sin θ)

d

dx

[
sin θ(− sin θ)

dy

dx

]
=

d

dx

(
sin2 θ

dy

dx

)
=

d

dx

[
(1 − x2)

dy

dx

]
.

So the original differential equation becomes

d

dx

[
(1 − x2)

dy

dx

]
+ l(l + 1)y = 0.

This is Legendre equation, and its solution is known as Legendre polynomials, which we will use

to find electrostatic potential outside a conducting sphere.


