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Exam-2 on October 22, Wednesday, in class

Assignment 7: due October 17, Friday

Problems to be submitted:

27. In a curvilinear coordinate system, the three unit vectors are orthogonal.

(a) In cylindrical coordinate, ŝ×φ̂ = ẑ, φ̂× ẑ = ŝ, ẑ× ŝ = φ̂. We have shown that ŝ = cosφx̂+sinφŷ,

use the orthogonality to find φ̂.

(b) In spherical coordinates, r̂ × θ̂ = φ̂, θ̂ × φ̂ = r̂, φ̂× r̂ = θ̂. Given r̂ = sin θ cosφx̂+ sin θ sinφŷ +

cos θẑ, and φ̂ same as in (a), find θ̂.

(c) A particle’s position is ~r = rr̂. Find its velocity ~v =
~dr
dt in spherical coordinates. Hint: recall

how we should write the infinitestimal displacement ~dr.

(d) Repeat (c), but now find the velocity in cartesian coordinates, and show that your solutions in

(c) and (d) are identical.

28. A cone has height H and circular cross-section with its radius R = 2H at the bottom. The

bottom of the cone is placed in the xy plane, and the axis of the cone is along the z-axis. The mass

density of the cone is a constant ρ.

(a) From the definition,

~rcm =

∫
ρ~rdV∫
ρdV

,

we may use cylindrical coordinates to write ~r = sŝ+ zẑ, and find

~rcm =

∫
ρsdV∫
ρdV

ŝ+

∫
ρzdV∫
ρdV

ẑ.

Finish the integrals.

(b) We may also find the three components of ~rcm in cartesian coordinates by

xcm =

∫
xρdV∫
ρdV

, ycm =

∫
yρdV∫
ρdV

, zcm =

∫
zρdV∫
ρdV

,

and ~rcm = xcmx̂ + ycmŷ + zcmẑ. Here you will write x, y, z and dV in cylindrical coordinates and

finish the integrals.

(c) Compare your solutions in (a) and (b). Are they the same? If not, which solution is correct?

Why is the other one incorrect?

(d) Also find the moment of inertial of the cone about z-axis.

29. The electric field by a point charge Q at origin is give by

~E = kQ
xx̂+ yŷ + zẑ

(x2 + y2 + z2)3/2
.
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Find the work done by this electric field on a test charge q moving from the initial position (x0, y0, z0)

to the final position (2x0, 2y0, 2z0), along the following paths.

(a) The path consists of three parts. First, along a straight line with x changing from x0 to 2x0,

y = y0, z = z0, i.e. no change in y and z; then along a straight line with y changing from y0 to 2y0,

and x = 2x0, z = z0, i.e. no change in x and z, and finally along a straight line with z changing

from z0 to 2z0, and x = 2x0, y = 2y0, i.e., no change in x and y.

(b) The path is along a straight line in the direction of the initial positive vector, which is the same

direction of the final position vector. Hint: re-write ~E, the initial and final position vectors, and

the line integral in spherical coordinates.

(c) Compare your solution in (a) and (b): does the result depend on the path of integral?

(d) Evaluate ~∇× ~E, and show that ~E is a conservative force.

(e) Show that the electric field ~E is the (minus) gradient of the electric potential, ~E = −~∇V , V

given by

V =
kQ

r
.

(f) Sketch the field lines of ~E and contours of V .

30. Consider a force ~F = c(yx̂− xŷ), where c is a positive constant, doing work on a particle as it

moves from the initial position (x0, y0, z0) to the final position (2x0, 2y0, 2z0).

(a) Find the work done along the path same as in Problem 29 (a).

(b) Find the work done along the path same as in Problem 29 (b). Here you want to find the

relation between y and x along this path, and conduct the integral in cartesian coordinates.

(c) Are the results in (a) and (b) same or different? Find ~∇ × ~F , and show that this is not a

conservative force.

(d) Sketch the field lines of ~F .
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Solution

27. [1+1+2+4] (a) φ̂ = ẑ × ŝ = ẑ × (cosφx̂+ sinφŷ) = − sinφx̂+ cosφŷ.

(b) θ̂ = φ̂× r̂ = (− sinφx̂+cosφŷ)×(sin θ cosφx̂+sin θ sinφŷ+cos θẑ) = cos θ cosφx̂+cos θ sinφŷ−
sin θẑ.

(c) The infinitesimal displacement is given by ~dr = drr̂ + rdθθ̂ + r sin θdφφ̂, so we get

~dr

dt
=
dr

dt
r̂ + r

dθ

dt
θ̂ + r sin θ

dφ

dt
φ̂ = ṙr̂ + rθ̇θ̂ + r sin θφ̇φ̂.

(d) In cartesian coordinates, ~dr = dxx̂+ dyŷ + dzẑ, so

~dr

dt
= ẋx̂+ ẏŷ + żẑ.

We will convert the spherical coordinates back to cartesian. First, we write the unit vectors in

spherical coordinates into unit vectors in cartesian coordinates, leading to

~dr

dt
= ṙr̂ + rθ̇θ̂ + r sin θφ̇φ̂

= (sin θ cosφṙ + r cos θ cosφθ̇ − r sin θ sinφφ̇)x̂

+(sin θ sinφṙ + r cos θ sinφθ̇ + r sin θ cosφφ̇)ŷ

+(cos θṙ − r sin θθ̇)ẑ.

We then use coordinates transformation and chain rules to find ṙ, θ̇, and φ̇ as functions of ẋ, ẏ, ż.

Here r =
√
x2 + y2 + z2, leading to

ṙ =
x

r
ẋ+

y

r
ẏ +

z

r
ż = sin θ cosφẋ+ sin θ sinφẏ + cos θż.

From cos θ = z/r, we find

− sin θθ̇ = − z

r2
ṙ +

1

r
ż → θ̇ =

cos θ

r sin θ
ṙ − 1

r sin θ
ż.

Then from tanφ = y/x, we get

sec2 φφ̇ = − y

x2
ẋ+

1

x
ẏ → φ̇ = − sinφ

r sin θ
ẋ+

cosφ

r sin θ
ẏ.

Taking these back to ~dr/dt expression, with some algebra and reorganization of terms, it is seen

that

vx = sin θ cosφṙ + r cos θ cosφθ̇ − r sin θ sinφφ̇

=

(
sin θ cosφ+

cos2 θ cosφ

sin θ

)
ṙ − cos θ cosφ

sin θ
ż + sin2 φẋ− sinφ cosφẏ

=
cosφ

sin θ
ṙ − cos θ cosφ

sin θ
ż + sin2 φẋ− sinφ cosφẏ

=
cosφ

sin θ
(sin θ cosφẋ+ sin θ sinφẏ + cos θż)− cos θ cosφ

sin θ
ż + sin2 φẋ− sinφ cosφẏ

= ẋ.
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Similarly, we find

vy = sin θ sinφṙ + r cos θ sinφθ̇ + r sin θ cosφφ̇

=

(
sin θ sinφ+

cos2 θ sinφ

sin θ

)
ṙ − cos θ sinφ

sin θ
ż − sinφ cosφẋ+ cos2 φẏ

=
sinφ

sin θ
(sin θ cosφẋ+ sin θ sinφẏ + cos θż)− cos θ sinφ

sin θ
ż − sinφ cosφẋ+ cos2 φẏ

= ẏ.

And then vz = cos θṙ − r sin θθ̇ = (cos θ − cos θ) ṙ + ż = ż. Therefore, ṙr̂ + rθ̇θ̂ + r sin θφ̇φ̂ =

ẋx̂+ ẏŷ + żẑ.

28. [3+2+1+2] (a) We first find the total mass

M =

∫
ρdV = 2πρ

∫ H

0
dz

∫ 2(H−z)

0
sds =

4

3
πρH3.

Then we find ∫
ρsdV = 2πρ

∫ H

0
dz

∫ 2(H−z)

0
s2ds =

4

3
πρH4,∫

ρzdV = 2πρ

∫ H

0
zdz

∫ 2(H−z)

0
sds =

1

3
πρH4.

So

~rcm = Hŝ+
1

4
Hẑ.

(b) Here we write x = s cosφ, y = s sinφ, so the integrals become

xcm =

∫
ρxdV = ρ

∫ H

0
dz

∫ 2(H−z)

0
s2ds

∫ 2π

0
cosφdφ = 0,

ycm =

∫
ρydV = ρ

∫ H

0
dz

∫ 2(H−z)

0
s2ds

∫ 2π

0
sinφdφ = 0.

The center of mass position is therefore

~rcm = zcmẑ =
1

4
Hẑ.

(c) Apparently, from symmetry, we know the solution (b) is correct. Solution (a) is not correct

because ŝ is not a constant unit vector and its direction changes with the location of dV ; therefore

ŝ cannot be taken out of the integral.

(d) The moment of inertial is given by

I =

∫
r2⊥ρdV = 2πρ

∫ H

0
dz

∫ 2(H−z)

0
s2sds =

8

5
πρH5.
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29. [2+2+1+1+1+2] (a) The force on the charge q is ~F = q ~E, so the work done is W =
∫
~F · ~dr.

The line integral consists of three parts

W = q

∫
~E · ~dr = kQq

[∫ 2x0

x0

xdx

(x2 + y20 + z20)3/2
+

∫ 2y0

y0

ydy

(4x20 + y2 + z20)3/2
+

∫ 2z0

z0

zdz

(4x20 + 4y20 + z2)3/2

]
= kQq

[
1

(x20 + y20 + z20)1/2
− 1

(4x20 + y20 + z20)1/2
+

1

(4x20 + y20 + z20)1/2
− 1

(4x20 + 4y20 + z20)1/2

]
+kQq

[
1

(4x20 + 4y20 + z20)1/2
− 1

(4x20 + 4y20 + 4z20)1/2

]
= kQq

[
1

(x20 + y20 + z20)1/2
− 1

(4x20 + 4y20 + 4z20)1/2

]
.

(b) We write the electric field in spherical coordinates ~E = kQqr̂/r2, and the integral becomes

W = q

∫
~E · ~dr = kQq

∫
r̂ · r̂dr
r2

= kQq

∫ r1

r0

1

r2
dr = kQq

(
1

r0
− 1

r1

)
.

(c) The results in (a) and (b) are the same; so the work done by the electric field does not depend

on the path.

(d) We can use spherical coordinates to evaluate the curl of ~E. Since ~E = E(r)r̂, it is easily seen

that ~∇× ~E = 0.

Therefore, the electric force is a conservative force, and the work done does not depend on the

path.

(e) Again, we can find the gradient using the spherical coordinates,

−~∇V = −∂V
∂r

r̂ − 1

r

∂V

∂θ
θ̂ − 1

r sin θ

∂V

∂φ
φ̂ =

kQr̂

r2
.

(f) The electric field is radial, and its magnitude decreases with distance by 1/r2, as shown in

the figure. The contour of V is shown in dashed curves. The electric field is in the direction

perpendicular to the V contour.

30. [2+2+1+2] (a) We find the work by

W =

∫
~F · ~dr =

∫
(Fxdx+ Fydy) = c

∫
(ydx− xdy)

= c

∫ 2x0

x0

y0dx− c
∫ 2y0

y0

2x0dy = −cx0y0.

(b) Along that path, y − y0 = x− x0, or y = x+ y0 − x0, so dy = dx, then the work done is

W =

∫
~F · ~dr = c

∫
(ydx− xdy) = c

∫ 2x0

x0

(y − x)dx

= c

∫ 2x0

x0

(y0 − x0)dx = cx0(y0 − x0).
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(c) The results in (a) and (b) are different, so the integra is path dependent. We also find

~∇× ~F =

(
∂Fy
∂x
− ∂Fx

∂y

)
ẑ = −2cẑ 6= 0.

Therefore, ~F is not a conservative force, and the work done by ~F is dependent on the path.

(d) The field lines of the force are shown in the figure, forming vortices, i.e., curl of the field is not

zero.


