Exam-2 on October 22, Wednesday, in class

Assignment 7: due October 17, Friday

Problems to be submitted:

- 27. In a curvilinear coordinate system, the three unit vectors are **orthogonal**.
- (a) In cylindrical coordinate, $\hat{s} \times \hat{\phi} = \hat{z}$, $\hat{\phi} \times \hat{z} = \hat{s}$, $\hat{z} \times \hat{s} = \hat{\phi}$. We have shown that $\hat{s} = \cos \phi \hat{x} + \sin \phi \hat{y}$, use the orthogonality to find $\hat{\phi}$.
- (b) In spherical coordinates, $\hat{r} \times \hat{\theta} = \hat{\phi}$, $\hat{\theta} \times \hat{\phi} = \hat{r}$, $\hat{\phi} \times \hat{r} = \hat{\theta}$. Given $\hat{r} = \sin \theta \cos \phi \hat{x} + \sin \theta \sin \phi \hat{y} + \cos \theta \hat{z}$, and $\hat{\phi}$ same as in (a), find $\hat{\theta}$.
- (c) A particle's position is $\vec{r} = r\hat{r}$. Find its velocity $\vec{v} = \frac{d\vec{r}}{dt}$ in spherical coordinates. Hint: recall how we should write the infinitestimal displacement $d\vec{r}$.
- (d) Repeat (c), but now find the velocity in cartesian coordinates, and show that your solutions in
- (c) and (d) are identical.
- 28. A cone has height H and circular cross-section with its radius R=2H at the bottom. The bottom of the cone is placed in the xy plane, and the axis of the cone is along the z-axis. The mass density of the cone is a constant ρ .
- (a) From the definition,

$$\vec{r}_{cm} = \frac{\int \rho \vec{r} dV}{\int \rho dV},$$

we may use cylindrical coordinates to write $\vec{r} = s\hat{s} + z\hat{z}$, and find

$$\vec{r}_{cm} = \frac{\int \rho s dV}{\int \rho dV} \hat{s} + \frac{\int \rho z dV}{\int \rho dV} \hat{z}.$$

Finish the integrals.

(b) We may also find the three components of \vec{r}_{cm} in cartesian coordinates by

$$x_{cm} = \frac{\int x \rho dV}{\int \rho dV}, y_{cm} = \frac{\int y \rho dV}{\int \rho dV}, z_{cm} = \frac{\int z \rho dV}{\int \rho dV},$$

and $\vec{r}_{cm} = x_{cm}\hat{x} + y_{cm}\hat{y} + z_{cm}\hat{z}$. Here you will write x, y, z and dV in cylindrical coordinates and finish the integrals.

- (c) Compare your solutions in (a) and (b). Are they the same? If not, which solution is correct? Why is the other one incorrect?
- (d) Also find the moment of inertial of the cone about z-axis.
- 29. The electric field by a point charge Q at origin is give by

$$\vec{E} = kQ \frac{x\hat{x} + y\hat{y} + z\hat{z}}{(x^2 + y^2 + z^2)^{3/2}}.$$

Find the work done by this electric field on a test charge q moving from the initial position (x_0, y_0, z_0) to the final position $(2x_0, 2y_0, 2z_0)$, along the following paths.

- (a) The path consists of three parts. First, along a straight line with x changing from x_0 to $2x_0$, $y = y_0$, $z = z_0$, i.e. no change in y and z; then along a straight line with y changing from y_0 to $2y_0$, and $x = 2x_0$, $z = z_0$, i.e. no change in x and z, and finally along a straight line with z changing from z_0 to $2z_0$, and $x = 2x_0$, $y = 2y_0$, i.e., no change in x and y.
- (b) The path is along a straight line in the direction of the initial positive vector, which is the same direction of the final position vector. Hint: re-write \vec{E} , the initial and final position vectors, and the line integral in spherical coordinates.
- (c) Compare your solution in (a) and (b): does the result depend on the path of integral?
- (d) Evaluate $\nabla \times \vec{E}$, and show that \vec{E} is a conservative force.
- (e) Show that the electric field \vec{E} is the (minus) gradient of the electric potential, $\vec{E} = -\vec{\nabla}V$, V given by

$$V = \frac{kQ}{r}.$$

- (f) Sketch the field lines of \vec{E} and contours of V.
- 30. Consider a force $\vec{F} = c(y\hat{x} x\hat{y})$, where c is a positive constant, doing work on a particle as it moves from the initial position (x_0, y_0, z_0) to the final position $(2x_0, 2y_0, 2z_0)$.
- (a) Find the work done along the path same as in Problem 29 (a).
- (b) Find the work done along the path same as in Problem 29 (b). Here you want to find the relation between y and x along this path, and conduct the integral in cartesian coordinates.
- (c) Are the results in (a) and (b) same or different? Find $\vec{\nabla} \times \vec{F}$, and show that this is not a conservative force.
- (d) Sketch the field lines of \vec{F} .

Solution

- 27. [1+1+2+4] (a) $\hat{\phi} = \hat{z} \times \hat{s} = \hat{z} \times (\cos \phi \hat{x} + \sin \phi \hat{y}) = -\sin \phi \hat{x} + \cos \phi \hat{y}$.
- (b) $\hat{\theta} = \hat{\phi} \times \hat{r} = (-\sin\phi\hat{x} + \cos\phi\hat{y}) \times (\sin\theta\cos\phi\hat{x} + \sin\theta\sin\phi\hat{y} + \cos\theta\hat{z}) = \cos\theta\cos\phi\hat{x} + \cos\theta\sin\phi\hat{y} \sin\theta\hat{z}$.
- (c) The infinitesimal displacement is given by $d\vec{r} = dr\hat{r} + rd\theta\hat{\theta} + r\sin\theta d\phi\hat{\phi}$, so we get

$$\frac{d\vec{r}}{dt} = \frac{dr}{dt}\hat{r} + r\frac{d\theta}{dt}\hat{\theta} + r\sin\theta\frac{d\phi}{dt}\hat{\phi} = \dot{r}\hat{r} + r\dot{\theta}\hat{\theta} + r\sin\theta\dot{\phi}\hat{\phi}.$$

(d) In cartesian coordinates, $d\vec{r} = dx\hat{x} + dy\hat{y} + dz\hat{z}$, so

$$\frac{d\vec{r}}{dt} = \dot{x}\hat{x} + \dot{y}\hat{y} + \dot{z}\hat{z}.$$

We will convert the spherical coordinates back to cartesian. First, we write the unit vectors in spherical coordinates into unit vectors in cartesian coordinates, leading to

$$\begin{split} \frac{\vec{dr}}{dt} &= \dot{r}\hat{r} + r\dot{\theta}\hat{\theta} + r\sin\theta\dot{\phi}\hat{\phi} \\ &= (\sin\theta\cos\phi\dot{r} + r\cos\theta\cos\phi\dot{\theta} - r\sin\theta\sin\phi\dot{\phi})\hat{x} \\ &+ (\sin\theta\sin\phi\dot{r} + r\cos\theta\sin\phi\dot{\theta} + r\sin\theta\cos\phi\dot{\phi})\hat{y} \\ &+ (\cos\theta\dot{r} - r\sin\theta\dot{\theta})\hat{z}. \end{split}$$

We then use coordinates transformation and chain rules to find \dot{r} , $\dot{\theta}$, and $\dot{\phi}$ as functions of \dot{x} , \dot{y} , \dot{z} . Here $r = \sqrt{x^2 + y^2 + z^2}$, leading to

$$\dot{r} = \frac{x}{r}\dot{x} + \frac{y}{r}\dot{y} + \frac{z}{r}\dot{z} = \sin\theta\cos\phi\dot{x} + \sin\theta\sin\phi\dot{y} + \cos\theta\dot{z}.$$

From $\cos \theta = z/r$, we find

$$-\sin\theta\dot{\theta} = -\frac{z}{r^2}\dot{r} + \frac{1}{r}\dot{z} \to \dot{\theta} = \frac{\cos\theta}{r\sin\theta}\dot{r} - \frac{1}{r\sin\theta}\dot{z}.$$

Then from $\tan \phi = y/x$, we get

$$\sec^2 \phi \dot{\phi} = -\frac{y}{x^2} \dot{x} + \frac{1}{x} \dot{y} \to \dot{\phi} = -\frac{\sin \phi}{r \sin \theta} \dot{x} + \frac{\cos \phi}{r \sin \theta} \dot{y}.$$

Taking these back to $d\vec{r}/dt$ expression, with some algebra and reorganization of terms, it is seen that

$$v_x = \sin\theta\cos\phi\dot{r} + r\cos\theta\cos\phi\dot{\theta} - r\sin\theta\sin\phi\dot{\phi}$$

$$= \left(\sin\theta\cos\phi + \frac{\cos^2\theta\cos\phi}{\sin\theta}\right)\dot{r} - \frac{\cos\theta\cos\phi}{\sin\theta}\dot{z} + \sin^2\phi\dot{x} - \sin\phi\cos\phi\dot{y}$$

$$= \frac{\cos\phi}{\sin\theta}\dot{r} - \frac{\cos\theta\cos\phi}{\sin\theta}\dot{z} + \sin^2\phi\dot{x} - \sin\phi\cos\phi\dot{y}$$

$$= \frac{\cos\phi}{\sin\theta}(\sin\theta\cos\phi\dot{x} + \sin\theta\sin\phi\dot{y} + \cos\theta\dot{z}) - \frac{\cos\theta\cos\phi}{\sin\theta}\dot{z} + \sin^2\phi\dot{x} - \sin\phi\cos\phi\dot{y}$$

$$= \dot{x}.$$

Similarly, we find

$$v_{y} = \sin \theta \sin \phi \dot{r} + r \cos \theta \sin \phi \dot{\theta} + r \sin \theta \cos \phi \dot{\phi}$$

$$= \left(\sin \theta \sin \phi + \frac{\cos^{2} \theta \sin \phi}{\sin \theta}\right) \dot{r} - \frac{\cos \theta \sin \phi}{\sin \theta} \dot{z} - \sin \phi \cos \phi \dot{x} + \cos^{2} \phi \dot{y}$$

$$= \frac{\sin \phi}{\sin \theta} (\sin \theta \cos \phi \dot{x} + \sin \theta \sin \phi \dot{y} + \cos \theta \dot{z}) - \frac{\cos \theta \sin \phi}{\sin \theta} \dot{z} - \sin \phi \cos \phi \dot{x} + \cos^{2} \phi \dot{y}$$

$$= \dot{y}.$$

And then $v_z = \cos\theta \dot{r} - r\sin\theta \dot{\theta} = (\cos\theta - \cos\theta)\dot{r} + \dot{z} = \dot{z}$. Therefore, $\dot{r}\hat{r} + r\dot{\theta}\hat{\theta} + r\sin\theta \dot{\phi}\hat{\phi} = \dot{x}\hat{x} + \dot{y}\hat{y} + \dot{z}\hat{z}$.

28. [3+2+1+2] (a) We first find the total mass

$$M = \int \rho dV = 2\pi \rho \int_0^H dz \int_0^{2(H-z)} s ds = \frac{4}{3}\pi \rho H^3.$$

Then we find

$$\int \rho s dV = 2\pi \rho \int_0^H dz \int_0^{2(H-z)} s^2 ds = \frac{4}{3}\pi \rho H^4,$$
$$\int \rho z dV = 2\pi \rho \int_0^H z dz \int_0^{2(H-z)} s ds = \frac{1}{3}\pi \rho H^4.$$

So

$$\vec{r}_{cm} = H\hat{s} + \frac{1}{4}H\hat{z}.$$

(b) Here we write $x = s \cos \phi, y = s \sin \phi$, so the integrals become

$$x_{cm} = \int \rho x dV = \rho \int_0^H dz \int_0^{2(H-z)} s^2 ds \int_0^{2\pi} \cos \phi d\phi = 0,$$
$$y_{cm} = \int \rho y dV = \rho \int_0^H dz \int_0^{2(H-z)} s^2 ds \int_0^{2\pi} \sin \phi d\phi = 0.$$

The center of mass position is therefore

$$\vec{r}_{cm} = z_{cm}\hat{z} = \frac{1}{4}H\hat{z}.$$

- (c) Apparently, from symmetry, we know the solution (b) is correct. Solution (a) is not correct because \hat{s} is not a constant unit vector and its direction changes with the location of dV; therefore \hat{s} cannot be taken out of the integral.
- (d) The moment of inertial is given by

$$I = \int r_{\perp}^{2} \rho dV = 2\pi \rho \int_{0}^{H} dz \int_{0}^{2(H-z)} s^{2} s ds = \frac{8}{5} \pi \rho H^{5}.$$

29. [2+2+1+1+1+2] (a) The force on the charge q is $\vec{F} = q\vec{E}$, so the work done is $W = \int \vec{F} \cdot d\vec{r}$. The line integral consists of three parts

$$\begin{split} W &= q \int \vec{E} \cdot \vec{dr} = kQq \left[\int_{x_0}^{2x_0} \frac{x dx}{(x^2 + y_0^2 + z_0^2)^{3/2}} + \int_{y_0}^{2y_0} \frac{y dy}{(4x_0^2 + y^2 + z_0^2)^{3/2}} + \int_{z_0}^{2z_0} \frac{z dz}{(4x_0^2 + 4y_0^2 + z^2)^{3/2}} \right] \\ &= kQq \left[\frac{1}{(x_0^2 + y_0^2 + z_0^2)^{1/2}} - \frac{1}{(4x_0^2 + y_0^2 + z_0^2)^{1/2}} + \frac{1}{(4x_0^2 + y_0^2 + z_0^2)^{1/2}} - \frac{1}{(4x_0^2 + 4y_0^2 + z_0^2)^{1/2}} \right] \\ &+ kQq \left[\frac{1}{(4x_0^2 + 4y_0^2 + z_0^2)^{1/2}} - \frac{1}{(4x_0^2 + 4y_0^2 + 4z_0^2)^{1/2}} \right] \\ &= kQq \left[\frac{1}{(x_0^2 + y_0^2 + z_0^2)^{1/2}} - \frac{1}{(4x_0^2 + 4y_0^2 + 4z_0^2)^{1/2}} \right]. \end{split}$$

(b) We write the electric field in spherical coordinates $\vec{E} = kQq\hat{r}/r^2$, and the integral becomes

$$W \ = \ q \int \vec{E} \cdot \vec{dr} = kQq \int \frac{\hat{r} \cdot \hat{r} dr}{r^2} = kQq \int_{r_0}^{r_1} \frac{1}{r^2} dr = kQq \left(\frac{1}{r_0} - \frac{1}{r_1}\right).$$

- (c) The results in (a) and (b) are the same; so the work done by the electric field does not depend on the path.
- (d) We can use spherical coordinates to evaluate the curl of \vec{E} . Since $\vec{E} = E(r)\hat{r}$, it is easily seen that $\vec{\nabla} \times \vec{E} = 0$.

Therefore, the electric force is a conservative force, and the work done does not depend on the path.

(e) Again, we can find the gradient using the spherical coordinates,

$$-\vec{\nabla}V = -\frac{\partial V}{\partial r}\hat{r} - \frac{1}{r}\frac{\partial V}{\partial \theta}\hat{\theta} - \frac{1}{r\sin\theta}\frac{\partial V}{\partial \phi}\hat{\phi} = \frac{kQ\hat{r}}{r^2}.$$

- (f) The electric field is radial, and its magnitude decreases with distance by $1/r^2$, as shown in the figure. The contour of V is shown in dashed curves. The electric field is in the direction perpendicular to the V contour.
- 30. [2+2+1+2] (a) We find the work by

$$W = \int \vec{F} \cdot d\vec{r} = \int (F_x dx + F_y dy) = c \int (y dx - x dy)$$
$$= c \int_{x_0}^{2x_0} y_0 dx - c \int_{y_0}^{2y_0} 2x_0 dy = -cx_0 y_0.$$

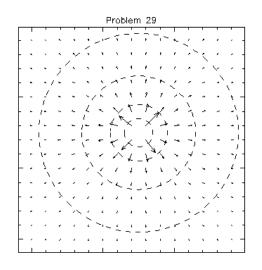
(b) Along that path, $y - y_0 = x - x_0$, or $y = x + y_0 - x_0$, so dy = dx, then the work done is

$$W = \int \vec{F} \cdot d\vec{r} = c \int (ydx - xdy) = c \int_{x_0}^{2x_0} (y - x)dx$$
$$= c \int_{x_0}^{2x_0} (y_0 - x_0)dx = cx_0(y_0 - x_0).$$

(c) The results in (a) and (b) are different, so the integra is path dependent. We also find

$$\vec{\nabla} \times \vec{F} = \left(\frac{\partial F_y}{\partial x} - \frac{\partial F_x}{\partial y}\right) \hat{z} = -2c\hat{z} \neq 0.$$

Therefore, \vec{F} is not a conservative force, and the work done by \vec{F} is dependent on the path. (d) The field lines of the force are shown in the figure, forming vortices, i.e., curl of the field is not



zero.

