Solutions to Homework Problem Set 4

Reif 2-10:

The work done by pressure is (if \(\gamma \neq 1 \))

\[
W = \int_{V_i}^{V_f} P dV = \int_{V_i}^{V_f} K V^{-\gamma} dV = \frac{K}{1-\gamma} (V_f^{1-\gamma} - V_i^{1-\gamma})
\]

Using \(K = P V^\gamma = P_i V_i^\gamma = P_f V_f^\gamma \), the above result can be further deduced to

\[
W = \frac{P_f V_f - P_i V_i}{1-\gamma}
\]

Reif 2-11:

When the system evolves quasi-statically and adiabatically (i.e., in thermal insulation) from macro-state A to B, the change in the internal energy is given according to the First Law:

\[
\Delta E = E_B - E_A = -W = -\int_{V_A}^{V_B} P dV
\]

Using the result from R.2-10,

\[
W = \frac{P_B V_B - P_A V_A}{1-\gamma} = \frac{(8 \times 10^9 - 32 \times 10^9)\text{erg}}{1-5/3} = 36 \times 10^9\text{erg} = 3600\text{J}
\]

Therefore, \(\Delta E = E_B - E_A = -W = -3600\text{J} \).

(a) Along route a, the system first expands at the constant pressure \(P = P_A \) from \(V_A \) to \(V_B \) and does work, then the pressure reduces to \(P_B \) but without any change in the volume hence not doing any work. So the amount of work by the system is \(W = \int P dV = P_A (V_B - V_A) = 32 \times (8 - 1) \times 100\text{J} = 22400\text{J} \).

Using the first law, the amount of heat is therefore \(Q = W + \Delta E = (22400 - 3600)\text{J} = 18800\text{J} \). \(Q \) is positive, indicating that the system absorbs heat.

(b) Along route b, the linear relation between \(P \) and \(V \) is

\[
\frac{P - P_A}{P_B - P_A} = \frac{V - V_A}{V_B - V_A}
\]

. With this relation, the integral \(W = \int_{V_A}^{V_B} P dV = 11550\text{J} \). Or in a simpler way, the work done is the area in the P-V diagram under the b curve, therefore, \(W = 1/2(V_A + V_B)(P_A - P_B) = 11550\text{J} \). \(W \) is positive because the system is expanding to larger \(V \) with decreasing \(P \), doing a positive work.

Using the first law, \(Q = \Delta E + W = 7950\text{J} \). \(Q \) is positive indicating that the system absorbs heat.

(c) The work integral can be done in two steps, A-A', and A'-B. No work is done from A-A' since the volume does not change. So \(W = P_B (V_B - V_A) = 700\text{J} \), and \(Q = \Delta E + W = -2900\text{J} \). Along this route, the system releases heat.