Physics 425, Spring 2009

Quiz 2 – February 5

Name: ___________________ ID: ___________________

(books and notes are not allowed)

Planck constant: \(h = 6.63 \times 10^{-34} \text{ J s} \), Boltzmann constant: \(k = 1.38 \times 10^{-23} \text{ J/K} \)
Avogadro number: \(N_a = 6.02 \times 10^{23} \)
E = \(\frac{1}{2} f k T \), \(\Delta E = \frac{1}{2} f k \Delta T \), so \(\Delta T = \frac{2 \Delta E}{f k} = 725 \text{ K} \)

For a particular ideal gas system it has been determined that the internal energy is given by \(E = 2.5PV + C \), where \(P \) is the pressure, \(V \) is the volume, and \(C \) is a constant. The system is initially in the state \(P = 2 \times 10^5 \text{ Pa}, V = 0.01 \text{ m}^3 \), and evolves quasi-statically to a final state of \(V = 0.03 \text{ m}^3 \) along the path \(P = 10^5 + 10^9 (V - 0.02)^2 \). (Note: 1 J = 1 Pa \text{ m}^3)

(a) Calculate work \(W \). Is the work done by the system or on the system?
(b) Calculate heat \(Q \). Does the system absorb or release heat?
(c) Suppose that the gas has \(2 \times 10^{24} \) degrees of freedom, how much does the gas temperature change?

Key:
(a) \(W = \int \frac{P}{V} dV = \int_{V_i=0.01}^{V_f=0.03} \left[10^5 + 10^9 (V - 0.02)^2 \right] dV = 10^5 (V_f - V_i) + \frac{10^9}{3} [(V_f - 0.02)^3 - (V_i - 0.02)^3] = 2.67 \times 10^3 \text{ J} \)
W is positive, and also the system is expanding, so the work is done by the system.

(b) \(Q = \Delta E + W \)
\(\Delta E = E_f - E_i = 2.5(P_f V_f - P_i V_i) \)
As \(P_f = 10^5 + 10^9 (V_f - 0.02)^2 = 2.00 \times 10^5 \text{ Pa} \),
\(\Delta E = 2.5(P_f V_f - P_i V_i) = 1 \times 10^4 \text{ J} \)
\(Q = \Delta E + W = 1.27 \times 10^4 \text{ J} \)
\(Q > 0 \), the system absorbs heat to do work as well as increase its internal energy.

(c) \(E = \frac{1}{2} f k T, \Delta E = \frac{1}{2} f k \Delta T \), so \(\Delta T = \frac{2 \Delta E}{f k} = 725 \text{ K} \)