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ABSTRACT

A solar flare is composed of impulsive energy release events by magnetic reconnection, which forms and heats flare
loops. Recent studies have revealed a two-phase evolution pattern of UV 1600 Å emission at the feet of these loops:
a rapid pulse lasting for a few seconds to a few minutes, followed by a gradual decay on timescales of a few tens of
minutes. Multiple band EUV observations by Atmosphere Imaging Assembly further reveal very similar signatures.
These two phases represent different but related signatures of an impulsive energy release in the corona. The rapid
pulse is an immediate response of the lower atmosphere to an intense thermal conduction flux resulting from the
sudden heating of the corona to high temperatures (we rule out energetic particles due to a lack of significant
hard X-ray emission). The gradual phase is associated with the cooling of hot plasma that has been evaporated
into the corona. The observed footpoint emission is again powered by thermal conduction (and enthalpy), but now
during a period when approximate steady-state conditions are established in the loop. UV and EUV light curves of
individual pixels may therefore be separated into contributions from two distinct physical mechanisms to shed light
on the nature of energy transport in a flare. We demonstrate this technique using coordinated, spatially resolved
observations of UV and EUV emissions from the footpoints of a C3.2 thermal flare.
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1. INTRODUCTION

The source of flare energy is magnetic, but the ultimate form
of the flare energy output is radiation of all kinds: lines and
continua by thermal and non-thermal particles. The bulk of
X-ray and EUV radiation is produced in flare coronal loops,
whereas enhanced optical, UV, and hard X-ray emissions are
usually observed at the footpoints of these flare loops. Flare
plasmas and particles are magnetically confined to be able to
communicate mainly along the loop from its lower-atmosphere
root to the corona. Therefore, various radiation signatures
along a flare loop are coherently coupled by physics governing
energetics and dynamics of magnetized flare plasmas.

In general, we may separate the energy release process along
a flare loop into the heating phase and the cooling phase. A
series of hydrodynamic responses takes place in an impulsively
heated flaring atmosphere. A downward heat flux or energetic
particle beam generates a localized pressure pulse that drives
bi-directional flow: an evaporation upflow into the corona and a
condensation downflow into the chromosphere (Canfield 1986).
Evaporation sends heated plasma into the corona, which then
cools as it radiates in X-ray and EUV wavelengths. Note that
thermal conduction cooling of the evaporated material drives
further evaporation, but this is a quasi-steady process, different
from the initial explosive evaporation. Finally, the late stage of
cooling is dominated by radiation and involves a slow draining
of the material back onto the chromosphere. This process of flare
loop evolution is often demonstrated by observations showing
that bulk X-ray and EUV emissions in the corona are delayed
with respect to the impulsively rising hard X-ray, UV, and optical
emissions from the lower atmosphere.

Numerous spectroscopic observations have unraveled
dynamics in the early (heating) phase of the flare, showing

upflows of up to a few hundred kilometers per second in hot
lines formed at a few million degrees (Antonucci et al. 1982;
Doschek et al. 1992; Culhane et al. 1992; Bentley et al. 1994), as
well as downflows of several tens of kilometers per second in the
chromospheric Hα line (Ichimoto & Kurokawa 1984; Canfield
& Metcalf 1987; Schmieder et al. 1987; Canfield et al. 1987,
1990a, 1990b; Zarro et al. 1988; Wuelser & Marti 1989; Wuelser
et al. 1994; Ding et al. 1995). Spectroscopic observations by
recent missions such as the Coronal Diagnostic Spectrometer
(CDS; Harrison et al. 1995) and the EUV Imaging Spectrometer
(EIS; Culhane et al. 2007) have also identified these dynami-
cal phenomena in UV and EUV lines at the feet of flare loops,
where sometimes hard X-ray sources are located (Milligan et al.
2006a, 2006b; Milligan & Dennis 2009; Watanabe et al. 2010;
Del Zanna et al. 2011; Graham et al. 2011). It takes a rather short
time for energy flux carried by either non-thermal particles or
thermal conduction to reach the lower atmosphere and enhance
UV and optical emissions (Fisher et al. 1985; Canfield & Gayley
1987). Therefore, the impulsive and dynamic behavior of radia-
tion at the lower atmosphere, usually ahead of significant coro-
nal emissions, is registered as prompt signatures of flare energy
release.

On the other hand, during the cooling phase, observations of
some stellar flares have shown that emissions in a few optical and
UV bands appear to decay rather gradually at a rate very similar
to the timescale of coronal radiation (Hawley & Fisher 1992;
Hawley et al. 2003). Similar behavior of UV light curves was
observed in some flares by Solar Maximum Mission (e.g., Cheng
& Pallavicini 1987). With high-resolution observations by the
Transition Region And Corona Explorer (TRACE; Handy et al.
1999) and the Atmosphere Imaging Assembly (AIA; Lemen
et al. 2012), Qiu et al. (2010, 2012), Cheng et al. (2012), and
Liu et al. (2013) have also found that the broadband 1600 Å UV
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emission from individual pixels (1′′× 1′′) exhibits two-phase
evolution characterized by a rapid rise and a gradual decay.
During the cooling phase, conductive flux continuously flows
from the corona toward the lower atmosphere—the transition
region and chromosphere—which cools off by radiation. It
is therefore considered that the prolonged decay in the lower
atmosphere emission is coupled with coronal evolution, and
may serve as a coronal “pressure gauge” (Fisher 1987; Griffiths
et al. 1998; Hawley et al. 2003).

Separating the radiative signatures from the footpoint of a
single loop into two distinct physical contributions provides
crucial observational constraints to flare models. Fisher &
Hawley (1990) modeled an observed solar flare with a heating
rate assumed to have the same time profile of the observed hard
X-ray light curve. Quite a few solar flare studies followed a
similar approach using (spatially unresolved) hard X-ray light
curves or energy flux converted from spectral analysis to infer
impulsive energy release rate in the flare loop (e.g., Raftery
et al. 2009). Taking advantage of high-resolution UV imaging
observations, Qiu et al. (2012) and Liu et al. (2013) recently
modeled heating of thousands of flare loops (with nominal cross
section of 1′′ × 1′′) using heating rates inferred from the rise
phase of the UV emission at the feet of these flare loops. Using
UV signatures to build heating rates, these studies not only
resolve heating in individual loops but are not confined to flares
that have significant thick-target hard X-ray emissions. It should
be noted that the subsequent decay of the UV emission at these
same feet, which is considered to be governed by evolution
of the overlying flaring corona, should depend on the heating
history. Along this line, Liu et al. (2013) conducted modeling
and analysis of an M8.0 flare and computed UV emission in the
cooling phase. The result has shown, for the first time, that the
computed UV emission is in good agreement with the observed
UV flux and both decay at the same rate.

In this paper, we report UV and EUV observations of a C3.2
flare observed by AIA on 2010 August 1. It is found that the flare
EUV emission at the footpoints exhibits a two-phase evolution
similar to the UV emission. We speculate that these EUV emis-
sions are also generated in the lower atmosphere such as the
transition region, which is impulsively heated and then cools
down on coronal evolution timescales. This same notion was
addressed in a few previous studies. While modeling active
region loops, Patsourakos & Klimchuk (2008) and Klimchuk
(2009, 2012) have shown that the transition region emission at
the base of coronal loops contributes significantly to the total
emission budget in EUV 171 Å such as observed by TRACE.
Recently, Brosius & Holman (2012) suggested that the simulta-
neous EUV emissions observed by AIA during the early phase
of a B4.8 flare were produced by lower-atmosphere plasmas of a
few hundred thousand degrees. On the other hand, some recent
observations by Soft X-ray Telescope (SXT; e.g., Tsuneta et al.
1991; Mrozek & Tomczak 2004) and EIS (e.g., Milligan 2011;
Graham et al. 2013) have revealed high-temperature emissions
of up to 8 MK at the flare footpoints during the impulsive phase.

Q1
In those events, hard X-ray emissions were also found at the
footpoints, and chromospheric evaporation is considered to be
driven by precipitating non-thermal particles. In this study, we
will discuss the origin of the footpoint EUV emissions in this
C3.2 flare and their implication on flare modeling. The following
section gives an overview of the flare, followed by observations
of the spatially resolved flare footpoint emissions in UV and
EUV bands. In Section 4, we estimate UV and EUV emis-
sions during the decay phase using a simple conductive heating

model, and conclusions and discussions are presented in the last
section.

2. OBSERVATIONS

In this paper, we exclusively study the rise and decay of
UV and EUV emissions in flare footpoints identified from AIA
observations of a C3.2 flare on 2010 August 1. A preliminary
analysis of emissions from the coronal loops of the same flare
observed by AIA and GOES is presented in Qiu et al. (2012).
Figure 1 shows the light curves of the total data counts summed
in the active region in a few UV and EUV bands observed by
AIA. For clarity of presentation, in the plot, the minimum value
is subtracted from each light curve, which is then normalized
to its maximum. We note that whereas emissions in UV, soft
X-ray, and EUV 94 band rise during the flare, the EUV 171
emission first decreases during the rise phase of the flare and
then increases 2 hr later. The early attenuation of the EUV 171
emission is caused by disruption and disappearance of active
region loops at the onset of the flare, which contributes to
coronal dimming typically observed in this wavelength (Harra
et al. 2007; Qiu et al. 2007; also see Hock et al. 2013, for recent
observations).

As shown in Figure 1, the flare is a long-duration event with
coronal radiation in soft X-ray and then subsequently EUV
temperatures last for nearly four hours. Enhanced emissions at
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UV 1600 Å band last for two hours. Throughout the flare, UV
or EUV flux observed by AIA is not saturated in any band, and
the exposure time at any single band was a constant; therefore,
the flare is a good candidate for quantitative analysis. RHESSI
observations of this flare show gradual X-ray emission up to
20 keV similar to the GOES light curve, suggesting that the
flare probably does not have significant non-thermal emissions.

Flare emission in the UV 1600 Å broadband is dominated
by C iv line emission, which is an optically thin line formed
at 105 K, the temperature of the upper chromosphere and tran-
sition region. Enhancement of this emission is observed at the
feet of the flare loops, thereby forming the classic flare ribbons.
AIA also observes at the UV 1700 Å broadband, which mostly
reflects the flare-enhanced UV continuum emission at the flare
footpoints. Past spectral observations suggest that UV contin-
uum in these wavelengths is formed at the temperature minimum
and thus characterized by temperatures of 4400–4700 K in qui-
escent or active regions (Brekke & Kjeldseth-Moe 1994). Con-
tinuum enhancement during a flare is characterized by bright-
ness temperatures up to 5400 K (Cook & Brueckner 1979). Cook
& Brueckner (1979) also reported that the decay time of this in-
creased brightness temperature is comparable to the soft X-ray
decay time. Given the large column depth of the temperature
minimum region, these enhancements are not readily explained
by direct heating from either thermal or non-thermal electron
flux. Instead it is typically attributed to photoionization from
short-wavelength emissions from above (Machado & Henoux
1982; Phillips et al. 1992; Doyle & Phillips 1992). This close
causal link between the enhancements of C iv and UV contin-
uum explains the nearly identical morphology observed in the
1600 Å and 1700 Å images.

Assuming the continuum enhancement to be the same in
both the 1700 Å and 1600 Å bands, although characterized by
different regions of the blackbody curve, we can use the former
to remove the continuum from the latter. To do this, we assume
that the 1700 Å band is dominated by the continuum emission
(Brekke et al. 1996) to estimate the brightness temperature of
the enhancement in a given pixel. We then subtract an amount
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Figure 1. Light curves of the 2010 August 1 C3.2 flare in UV 1600 Å and EUV 171 and 94 Å by SDO/AIA, and soft X-ray 1–8 Å by GOES.

(A color version of this figure is available in the online journal.)

from the 1600 Å band corresponding to the same brightness
temperature. The remainder, we contend, is an estimate of the
C iv emission from that pixel.

EUV emissions are usually produced in flare loops heated to a
few tens of MK and then cooled to 2–3 million K or even below
(e.g., Reale et al. 2012). This general statement is supported
by Figure 1, showing X-ray and EUV emission characteristics
of different temperatures peaking at different times. Figure 2
shows the time sequence of the flare evolution observed in UV
1600 Å broadband, as well as in five EUV bands at 304, 193, 335,
94, and 131 Å, which are roughly representative of increasing
temperatures of coronal plasmas. The figure shows the flare to
consist of brightenings in two different loop systems. A set of
short loops in the north brightens first, followed by a set of long
loops in the south. For the same loop(s), emissions at relatively
high temperatures (in 131 and 94 band, for example) occur
earlier than emissions at relatively low temperatures (in 193 and
304 bands, for example).

Apart from EUV emissions in flare loops, these images also
show impulsive rise of EUV emission coincident with the UV
emission at the same location during the early phase of the flare
(left column of Figure 2). These emissions arise where the flare
loops, visible in EUV images minutes later, are rooted. The
origin of these emissions is the focus of this study.

Images from the AIA multiple bands are rebinned to the
scale of 1.′′2 × 1.′′2 and are co-aligned with each other with
subarcsecond accuracy. Spatially resolved light curves, in units
of data number (DN) per second per pixel, are obtained in
these bands. In the following analysis, we select the brightest
UV footpoint pixels observed in 1600 Å that exhibit strong
emission, or more specifically those pixels with a count rate
greater than five times the median count rate (Iq = 71 DN s−1)
of the quiescent region for more than 3 minutes. These pixels
account for 50% of all flaring pixels analyzed in Qiu et al.
(2012), but since these are the brighter half, their total emission
predominates the total UV emission of the flare.

3. UV AND EUV EMISSIONS AT THE
FOOTPOINTS OF FLARING LOOPS

3.1. UV Emissions

The top panels of Figure 3 show an example of the UV 1600
(dark dashed line in both panels) and 1700 (dark solid line in the

right panel) light curves from one of the brightest UV pixels.
(This pixel is the brightest pixel within the small red box in
the left column of Figure 2.) Most of the bright pixels exhibit a
rapid rise for 5–10 minutes, followed by a gradual decay over
a few tens of minutes. Such two-phase evolution was reported
in stellar flares observed in a few UV lines including the C iv
line (Hawley et al. 2003). Recently, Qiu et al. (2010, 2012),
Cheng et al. (2012), and Liu et al. (2013) also reported such an
evolution pattern in UV 1600 emissions from spatially resolved
flare kernels observed by TRACE or AIA. So the two-phase
evolution appears to be common in UV emissions from flare
footpoints.

We also note that the observed 1700 Å emission exhibits a
light curve very similar to that of 1600 Å: an impulsive rise
and a gradual decay on timescales identical to those observed
in 1600 Å band. While the morphology of the two light curves
is identical, they are quantitatively quite different. The 1600 Å
emission is enhanced by an order of magnitude over the pre-
flare emission, while the peak 1700 Å emission is only about
twice the pre-flare emission. We attribute this difference to the
contribution of C iv to the former and not the latter.

The top panels of Figure 4 show the UV light curves computed
from the summed counts from all footpoint pixels identified
in the UV 1600 Å band. With all flaring pixels summed up,
emissions in the 1600 Å and 1700 Å bands rise above pre-flare
levels by 150% and 40%, respectively.

The broadband 1600 Å emission obtained by AIA includes
contribution by the optically thin C iv line emission, which
forms at the temperature of 105 K, the typical transition region
temperature, and the UV continuum forming around 4500 K
in the temperature minimum region. Both the line emission
and the continuum emission are enhanced during the flare when
the lower atmosphere is heated. AIA also takes broadband
images at UV 1700 Å with a few lines, whose net contribution,
however, may not dominate the emission in this broadband
(Brekke et al. 1996). Comparison of images obtained in these
two bands therefore helps to distinguish C iv emission from the
UV continuum.

To the first order, we assume that the UV continuum in
both bands is formed at the same brightness temperature TB
described by Planck’s function, and that the 1700 Å emission
is predominantly continuum emission. Taking into account the
AIA instrument response function, the 1700 Å emission can
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Figure 2. Evolution of the flare as observed in AIA UV 1600 Å band and EUV 94, 131, 193, 304, and 335 Åbands. Images at EUV 171 and 211 Å are not shown, since
the flare morphology in these two bands is similar to that observed in 193 Å band. The red box in the figure shows the location of the sample footpoint pixel, which is
impulsively brightened and identified in the UV 1600 Å images. Images of the left column show UV and EUV images at the time when this pixel is brightest; it is seen
that this same pixel is brightest at all bands. Images in other columns show time evolution after the impulsive brightening at this pixel. Whereas UV 1600 Å images
only exhibit emission at the footpoint, all EUV images show flare loops connected at or overlapping upon this sample footpoint pixel. The times of these images are
also indicated by dotted lines in Figure 3.

(A color version of this figure is available in the online journal.)

then be used to compute the brightness temperature TB. The
red curve in the top right panel of Figure 3 is the computed
TB at the sample pixel during the flare. This temperature varies
from 4800 K before the flare to 5200 K at the peak of the flare,
namely the brightness temperature is raised by 400 K for this
bright flaring pixel. These numbers are within the reasonable
range in agreement with past UV spectroscopic observations of
flares (Cook & Brueckner 1979).

We then compute the continuum contribution to the 1600 Å
band using the same TB and the response function of the AIA
UV filter. The calculated 1600 Å continuum light curve for that
same pixel is shown as the blue curve in the top left panel in the
figure, together with the observed total count rate in this band,
both in absolute scales. The comparison suggests that whereas
the pre-flare emission in this broadband is dominated by the
continuum, during the flare, the continuum emission contributes
only a fraction of the total UV emission. The remainder UV
emission during the flare is most likely the contribution of the
C iv line (dark solid curve). In this bright pixel, the peak C iv
emission is about four times the continuum emission. When
summed over all flaring pixels (top left panel in Figure 4), the
total C iv emission (dark solid curve) is about 1.5 times the
continuum emission (blue solid curve).

We caution that the above exercise gives an estimate of
the possible contributions by the continuum and the C iv line

emissions to the UV 1600 Å broadband. In this estimate, we
have ignored contributions by all other lines in both the 1600 Å
and 1700 Å bands. On the other hand, by subtracting the 1700
emission off the 1600 band, contributions of these lines are
partly canceled. The estimate therefore only provides a first-
order evaluation of C iv emission in the flaring atmosphere.

3.2. EUV Emissions

The other panels in Figure 3 show light curves (dark solid
line) in six EUV bands for comparison to the UV 1600 Å light
curve (dark dashed line) from the same footpoint pixel. It is
evident that the EUV emission at one pixel typically exhibits
at least two peaks, and that the first peak in each EUV band is
coincident with the UV emission peak. Just like the UV light
curve, the first EUV peak also exhibits a two-phase evolution,
a rapid rise followed by a more gradual decay, and the rise and
decay timescales are entirely comparable with those of the UV
light curves. The EUV filters of AIA are sensitive to plasmas
with a range of temperatures including, in every case, a few
hundred thousand degrees (Lemen et al. 2012). It is therefore
very likely that the first EUV peak is produced the same way
UV emission is produced: impulsive energy deposition from
thermal conduction in the lower atmosphere followed by a
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Figure 3. Top: observed UV 1600 (dashed black in both panels) and 1700 (solid back in the right panel) light curves of the sample footpoint pixel, superimposed
with the estimated continuum light curve in the 1600 band computed using the brightness temperature (red in the right panel), and C iv emission light curve, and
compared with the model-computed UV C iv light curve (red in the left panel). Middle and bottom: observed EUV count rate light curves at the sample footpoint
pixel, superimposed with model-calculated light curve under static equilibrium (solid red) and steady-state (dashed red) approximations, respectively. Note that the
model-computed light curves in the 171, 94, and 131 bands are multiplied by factors of 0.3, 3, and 0.3, respectively. In all the EUV panels, the black dashed curve
shows the observed UV 1600 Å light curve arbitrarily scaled. The vertical dotted lines indicate the times of the snapshot images in Figure 2.

(A color version of this figure is available in the online journal.)

more gradual process correlated with plasma evolution in the
overlying coronal loop.

The EUV emission, however, exhibits a more complicated
structure than the UV light curve at the same footpoint pixel.
For example, in the 131 band, about 10–20 minutes after the
first peak, a second and more gradual emission peak shows
up in the EUV light curve. In other EUV bands, the second
peak occurs still later by up to 2 hr. While the first EUV peak
occurs simultaneously in all EUV bands, i.e., independent of
temperature, the timing of the second EUV peak is wavelength
dependent. In general, emissions at EUV bands sensitive to
higher temperatures (e.g., 94, 131, and 335 bands with response
function peaking at >3 MK) tend to rise (when the first peak
stops decaying) and peak earlier than the low-temperature
sensitive bands (e.g., 211, 193, and 171 bands with response
function peaking at 1–2 MK). These observations convince us
that the second-peak EUV emission is explained by the standard
picture of post-flare plasma cooling from ten to a few million K.

Moreover, although the second EUV peak is observed in
the same pixel as the first peak, in most cases, the two peaks
originate from plasmas in different parts of different flare loops.
The first peak is from the footpoint of a flare loop formed and
heated earlier, and the second peak is a cumulative emission by
parts of the loops that are formed progressively and overlap on

top of the footpoint of the earlier loop. Figure 2 confirms this
scenario by comparing the morphology during the two peaks. It
appears that, for the sampled pixel, the first EUV peak occurs at
the feet of the set of the short loops residing to the north west,
and the second EUV peak is rather associated with the set of the
long loops tending to the south, and these long loops in the south
are formed and heated later than the short loops in the north (Qiu
et al. 2012). Woods et al. (2011) and Hock et al. (2013) suggest
that, in many flares, these long loops associated with what they
call the EUV late phase are related to the breakout model for
coronal mass ejections.

Figure 4 shows the UV and EUV light curves of the total
counts from all footpoint pixels identified in the UV 1600 Å
band. It appears that the total EUV light curves also exhibit
two or more components. The first component evolves the same
way as the UV light curve independent of wavelength or tem-
perature, and the second component evolves on timescales de-
pendent on temperature. Again, the most likely scenario is that
the early-phase EUV emissions from these pixels are indeed
produced at the flare footpoints in the upper chromosphere or
transition region heated impulsively, and emissions later on are
from later formed flare loops overlapping the footpoints bright-
ened earlier. The second emission component, even if from a
single pixel, is a complex collection of coronal emissions from
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Figure 4. Observed UV and EUV light curves (solid black) summed from all footpoint pixels identified from the UV 1600 Å images, compared with the model-
computed UV C iv light curve and EUV light curves with static equilibrium (solid red) and steady-state (dashed red) approximations, respectively. Note that the model
computed EUV light curves are multiplied by factors indicated in the figure. In all the EUV panels, the black dashed line shows the observed UV 1600 Å light curve
arbitrarily scaled.

(A color version of this figure is available in the online journal.)

fractions of multiple loops that cannot be easily resolved. In
the following text, we focus on discussing the two-phase evolu-
tion of the first peak occurred simultaneously in UV and EUV
emissions.

4. FOOTPOINT UV/EUV EMISSION AS
A CORONAL PRESSURE GAUGE

The two phases of the footpoint emission are governed by
different physics. The impulsive spike shown in the UV and
EUV light curves is considered to be a signature of the lower
atmosphere responding to energy deposition. It is most likely
generated by a condensation shock front propagating downward
from the site of energy deposition by thermal conduction (Fisher
1989). The gradual decay, on the other hand, reflects the cooling
of the overlying corona. Hawley et al. (2003) reported such two-
phase evolution in UV emissions from a few lines in stellar flare
observations, and found that these lines (including C iv) can be
used as a transition region pressure gauge monitoring evolution
of coronal plasmas in overlying flare loops during the cooling
phase. During this phase, the entire loop is in approximate
hydrostatic balance so that the differential emission measure
(DEM) throughout the transition region is proportional to the
equilibrium pressure—the coronal pressure. The emission from
any line formed at transition region temperatures, such as C iv, is
therefore also proportional to coronal pressure. In the following

discussion, we explore whether this pressure-gauge logic can
re-produce observed UV and EUV signatures.

4.1. Transition Region Differential Emission Measure

To find plasma evolution in overlying coronal loops, Qiu et al.
(2012) used a zero-dimensional EBTEL model (Klimchuk et al.
2008; Cargill et al. 2012) to calculate the mean temperature
and density in the coronal loop. Inputs to the model include the
heating rate and loop length at each footpoint pixel. The latter is
measured from the AIA imaging observations. The heating rate
is inferred from the impulsive pulse of the UV light curve from
that pixel, after using a single scaling parameter. The EBTEL
model also allows heat input either directly to the coronal plasma
or non-thermal energy deposition in the lower atmosphere. As
this particular flare exhibits very little non-thermal signature,
we assume that the energy input was of the former variety.

The output of the EBTEL model are coronal plasma properties
(mean temperature and density) which are used to compute the
synthetic X-ray and EUV emissions by coronal loops observed
by GOES and AIA. By matching the observed and synthetic
X-ray and EUV fluxes, Qiu et al. (2012) were able to arrive at
a first-order estimate to the scaling parameter used to convert
impulsive emission to heating. We note that in Qiu et al. (2012),
the earlier version of the EBTEL model (EBTEL1; Klimchuk
et al. 2008) was employed. In the present study, the coronal
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Figure 5. Left: mean temperature (solid) and density (dashed) of the half-loop rooted at the sample footpoint pixel; middle: the UV 1600 Å light curve at the footpoint
pixel (dashed), the inferred loop-heating rate (dotted) from the rise of the UV light curve, and the mean pressure (solid) of the coronal plasma. The temperature, density,
and pressure are computed using EBTEL-2 model (Cargill et al. 2012). Right: the mean transition region DEM of this loop averaged over 10 minutes in different
stages of the flux tube evolution indicated by the shaded bands in the left panel. Solid lines show the DEM ξse computed with the static equilibrium assumption, and
dashed lines show the DEM ξss with the steady-state assumption.

(A color version of this figure is available in the online journal.)

plasma properties are re-calculated using the updated version
of the EBTEL model (EBTEL2; Cargill et al. 2012). The
difference between the results by the two versions of the models
is insignificant, mainly because of the appropriate choice of free
parameters guided by observations.

Figure 5 shows the mean temperature and density of the flux
tube rooted at the bright pixel illustrated in Figure 3. The heating
rate is inferred from the rise of the UV light curve at this pixel
with a duration of 10 minutes, and the best-guess magnitude
of the heating flux is 1.6 × 109 erg cm−2 s−1. The resultant
pressure of the flux tube is plotted in the middle panel, and it is
seen that the decay of the UV 1600 light curve (and therefore
the EUV light curves as well) evolves on the same timescale as
the coronal pressure.

This pressure is used to synthesize the C iv emission follow-
ing the “pressure gauge” (Fisher 1987; Hawley & Fisher 1992).
We assume the transition region, where the spectral lines form,
to be in hydrostatic balance at some pressure. The atmosphere is
then structured by the balance between optically thin radiative
losses and conductive heat downward from the cooling coronal
loop; the plasma flow is neglected. With these conditions, the
analytical solution is obtained to compute the DEM along the
leg of the flux tube (Fisher 1987; Griffiths et al. 1998; Hawley
& Fisher 1992) to be

ξse(T ) = P̄

√
κ0

8k2
B

T
1
2 Q− 1

2 (T ), (1)

where

Q(T ) =
∫ T

T0

T ′ 1
2 Λ(T ′)dT ′ (2)

and Λ(T ) is the optically thin radiative loss function. Expressing
the temperature-dependent scaling constant as gse(T ), we can
compute the transition region DEM as ξse(T ) = gse(T )P̄ , which
is directly proportional to the mean pressure P̄ computed using
the zero-dimensional EBTEL model (Cargill et al. 2012).

Plasmas inside flaring flux tubes are usually not in static
equilibrium but undergo dynamic evolution. During the heating
phase, upflow (chromospheric evaporation) up to a few hundred
kilometers per second is generated, and the decay phase is
dominated by downflow (coronal condensation) of order a few
tens of kilometers per second. Therefore, the transition region
DEM should be corrected with respect to flow terms; under the

steady-state assumption, this is computed as (Klimchuk et al.
2008)

ξss(T ) = P̄
κ

1
2

0

2kB

[T
1
2 Λ(T )]−

1
2 (

√
γ 2 + 1 + γ ), (3)

where γ is a function of mean coronal temperature T̄c and flow
speed vc across the coronal base, both calculated in EBTEL:

γ = 5kBT
1
2

2
√

κ0T
1
2 Λ(T )

−vc

T̄c

. (4)

The above pressure-gauge relation may be written as ξss(T ) =
gss(T )P̄ . Similar to Equation (1), the transition region DEM is
scaled with the coronal pressure, the scaler gss being dependent
also on the plasma flow. For upflow, vc > 0, and for downflow,
vc < 0.

The right panel in Figure 5 shows the transition region DEM
ξse and ξss in a few stages during the flux tube evolution. These
few stages are indicated by the shaded bands in the left panel,
representative of the rise, early-decay, and late-decay phases
of the flux tube, respectively. The DEM in each stage is the

Q3
mean value over 10 minutes. The DEM is modified when flow
is included.

During the impulsive heating phase, the loop is far from
equilibrium and cannot be modeled in this manner. Rapid
heating of the lower atmosphere from thermal conduction leads
to upward and downward moving shocks (MacNeice 1986).
The upward shock is the leading edge of an evaporation flow
of a hundred km s−1 or more. The downward shock leads
downflow, often called chromospheric condensation (Fisher
1989) in this initial phase of the flare, which is distinguished
from the process of cooling and draining of coronal plasma
in the later phase. The effect, sometimes regarded as a rapid
downward motion of the transition region, is to raise material
at chromospheric densities to transition region temperatures.
This results in emission from associated lines, such as C iv, far
in excess of what an equilibrium atmosphere might produce.
This enhancement lasts only as long as the condensation shock
does. Afterward the loop assumes hydrostatic balance at its new
pressure and begins cooling as described above. We attribute
the brief, impulsive enhancement in C iv to this scenario and
use its amplitude and duration to infer the energy input into the
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Figure 6. Left: ratio of observed EUV fluxes in 171, 193, and 211 bands to the C iv flux for the sample pixel during the flare. Right: ratio of observed EUV fluxes in
193 and 211 bands to that in 171 band for the same pixel. In both panels, the C iv light curve, arbitrarily scaled, is plotted to provide information of the evolution of
the footpoint emission.

(A color version of this figure is available in the online journal.)

coronal loop, but do not attempt to capture the physics in the
EBTEL model. Instead we quantify the relationship through a
single empirical parameter, which we fix through observational
comparison as described above.

4.2. Comparison with Observations

To compare with observations, we use the calculated tran-
sition region DEM to compute C iv at the flaring pixel. The
emissivity of the optically thin C iv line ε(T ) is derived from
CHIANTI 7.0 with ionization equilibrium (Dere et al. 1997;
Landi et al. 2012). The total C iv photon flux in units of pho-
tons cm−2 s−1 sr−1 is computed using the DEM, and is converted
to observed count rate in units of DN s−1 by convolving with the
AIA instrument response function. Note that we have used the
latest version of the response function released in 2012 January,
and with the correction factor from normalization to EVE ob-
servations; for the 1600 band, this correction factor is 2.1, and
for the 1700 band, this correction factor is 0.75 (Boerner et al.
2012).

This is then compared with the observed C iv light curve.
Comparison for a single pixel is given in the top left panel in
Figure 3, and the summed emission from all footpoint pixels is
shown in the top left panel in Figure 4. It is seen that, during the
impulsive rise, the model-calculated C iv emission is far less
than observed. This is expected from the shock condensation
scenario outlined in the previous section. On the other hand,
during the decay, the model-calculated emission declines on the
same timescale as observed; the amount of emission, computed
with either static equilibrium or steady-state approximation, is
smaller than the observed flux by a factor of two to three for
the bright pixel. When emissions from all pixels are summed
up, the computed C iv emission agrees with the observed total.
This result indicates that the pressure-gauge approximation can
reproduce the observed decay timescale reasonably well; on the
other hand, the magnitude comparison for single pixel and for
all the pixels suggest that the observation or model or both of the
C iv emission seem to differ for differently heated flux tubes.

In the same way, we convolve the AIA instrument response
functions of the six EUV bands with the computed DEM
to synthesize the EUV count rate light curves at the flare
footpoints—the 304 Å band is not computed since the formation
mechanism of this line is more complex, for example, it is
not optically thin. Figure 3 shows comparison of the EUV
light curves for one pixel, and Figure 4 shows the sum of the
emissions in all footpoint pixels. In these figures, the solid red

curves and dashed red curves show the computed flux with static
or steady-state approximations, respectively. In the later case,
the computed flux is enhanced as coronal downflow into the
transition region is included in the decay phase.

In synthesizing the EUV bands we integrate the DEM from
100,000 to 500,000 K only; we do not include the corona. The
upper bound of the temperature is rather arbitrary but not entirely
unreasonable. The temperature distribution of the plasmas is
along the length of the flare loop; however, we only look at one
pixel at the footpoint. Because of the geometry of the loop on the
solar disk, and the fact that flare loops in this event are very long
with their half-length ranging from 50–100 Mm, only relatively
cool plasmas at the bottom of the flux tube would contribute to
emission at the footpoint pixel.

The figures show that, again, the computed and observed
EUV light curves for the first peak decay on almost the same
timescale, which is the decay timescale of the pressure in the
flux tube. In terms of magnitude, the computed emission is
quite comparable with the observed in 335, 211, and 193 bands.
The computed flux in 131 and 171 bands is higher by a factor
of three to four; on the other hand, the computed flux in 94
band is smaller than observed by nearly a factor of five. Note
that Brosius & Holman (2012) also conjectured that the low-
temperature response in the 94 band is likely underestimated
by a factor of five. With uncertainties in the effective upper-
bound temperature that contributes to the footpoint emission,
as well as in the low-temperature response of AIA filters, it is
still striking that the pressure-gauge calculation based on very
simplified assumptions produces close estimates of the UV and
EUV emissions at the flare footpoints.

The above experiments show that the pressure-gauge calcula-
tion may be applied to the gradual cooling phase when the flare
loop is very close to equilibrium. On the other hand, the calcu-
lation does not agree with the signatures during the impulsive
heating phase, which is unlikely to be in an equilibrium state.
The static or steady-state equilibrium dictates that the plasma
DEM is proportional to the pressure which is uniform along the
loop. Therefore, the ratio of optically thin EUV or UV fluxes
should remain a constant during its evolution. In Figure 6, we
plot the ratio of the EUV flux in a few bands to the C iv flux
as well as the ratio of EUV fluxes for the sample footpoint
pixel during its evolution. It is shown that the flux ratio is al-
most a constant during the gradual cooling phase, justifying
the pressure-gauge assumptions. However, during the impul-
sive heating phase, the flux ratio varies rapidly. Such behav-
ior is observed in most footpoint pixels. It is therefore evident
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that the impulsive phase cannot be described by steady-state
equilibrium.

Finally, to estimate the contribution of coronal emission from
flare loops on top of the footpoint pixels, we plot the synthetic
EUV emission by plasmas in flare loops (Qiu et al. 2012)
but along a length of only 1 pixel. These are shown in the
blue curves in the middle and bottom panels in Figure 4. It is
evident that in nearly every band the coronal emission is delayed
with respect to the footpoint emission. The peak of the coronal
emission component is also temperature dependent, with high-
temperature emission (131 and 94 bands) peaking earlier than
low-temperature emissions (211, 193, and 171 bands). During
the first peak of the observed emission, the contribution by the
coronal component is insignificant except in the relatively hot
bands, for example, in the 131 band.

5. CONCLUSIONS AND DISCUSSIONS

We have investigated the UV and EUV footpoint emissions
observed by AIA during the early phase of the flare. It is
recognized that UV emission of the flare occurs at footpoints.
We have shown that these same footpoints also produce EUV
emissions observed by AIA, whose evolution is nearly identical
to the UV light curve with a rapid rise on timescales of a
few minutes followed by a gradual decay over a few tens of
minutes in this long-duration flare. Therefore, these emissions
are most likely produced by the same mechanism: impulsive
heating of the lower atmosphere—the upper chromosphere
and transition region—from a downward thermal conduction
flux, and subsequent decay governed by the coronal plasma
hydrodynamic evolution.

Using a simple zero-dimensional loop heating model and
loop heating rates empirically inferred from the rapid UV pulse,
we calculate mean properties of plasmas inside flaring loops,
and in turn, compute the transition region DEM as scaled to
the coronal pressure with static or steady-state approximations.
It is shown that the computed footpoint emissions in UV and
EUV bands exhibit the same evolutionary timescale as observed,
which is the timescale of the coronal pressure. Assuming that
the observed photon flux is produced by plasmas at the coronal
base with relatively low temperatures up to a few hundred
thousand K, the amount of computed emission compares well
with the observed in the seven bands by a factor of three to
five, a fairly good agreement given uncertainties in the loop
geometry and the AIA response functions at low temperatures.

Q4
This simple exercise suggests that evolution of flare footpoint
emissions may be used to monitor coronal plasma evolution
and shows the importance of coupling the coronal and lower
atmosphere heating and dynamics as independent constraints to
loop heating models.

It is noted that the transition region DEM may be substantially
increased at temperatures beyond a few hundred thousand K.
Computed EUV flux taking into account these higher tempera-
ture plasmas, however, produces a lot more flux than observed
by one to two orders of magnitude. This may indicate either
a temperature-dependent filling factor of this order or that the
static or steady-state assumptions are not a good approximation
for plasmas at higher temperatures.

The above experiment does not reproduce the impulsive pulse
of UV and EUV emissions in the first few minutes, indicating
that steady-state assumptions and/or assumed equilibrium con-
ditions used to calculate UV and EUV lines in CHIANTI are not
adequate for this period of impulsive heating. It is also plausible
that non-thermal particles heat the lower atmosphere during this

phase; however, there is no strong evidence for the presence of
these particles in this event. A more sophisticated hydrodynamic
modeling aided with imaging spectroscopic observations of the
flare footpoints will help gain insight into this phase.
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was conducted during the NSF REU Program at Montana
State University. D.W.L. acknowledges support by the NASA
Supporting Research and Technology Program. The work of
J.A.K. was supported by the NASA Supporting Research and
Technology Program.

REFERENCES
Q5

Antonucci, E., Gabriel, A. H., Acton, L. W., et al. 1982, SoPh, 78, 107
Bentley, R. D., Doschek, G. A., Simnett, G. M., et al. 1994, ApJL, 421, L55
Boerner, P., Edwards, C., Lemen, J., et al. 2012, SoPh, 275, 41
Brekke, P., & Kjeldseth-Moe, O. 1994, SoPh, 150, 19
Brekke, P., Rottman, G. J., Fontenla, J., & Judge, P. G. 1996, ApJ, 468, 418
Brosius, J. W., & Holman, G. D. 2012, A&A, 540, A24
Canfield, R. C. 1986, in Proc. Solar Maximum Mission Symposium, The Lower

Atmosphere of Solar Flares, ed. D. F. Neidig (Sunspot, NM: National Solar
Observatory), 10

Canfield, R. C., & Gayley, K. G. 1987, ApJ, 322, 999
Canfield, R. C., & Metcalf, T. R. 1987, ApJ, 321, 586
Canfield, R. C., Metcalf, T. R., Strong, K. T., & Zarro, D. M. 1987, Natur,

326, 165
Canfield, R. C., Metcalf, T. R., Zarro, D. M., & Lemen, J. R. 1990a, ApJ,

348, 333
Canfield, R. C., Penn, M. J., Wulser, J.-P., & Kiplinger, A. L. 1990b, ApJ,

363, 318
Cargill, P. J., Bradshaw, S. J., & Klimchuk, J. A. 2012, ApJ, 752, 161
Cheng, C.-C., & Pallavicini, R. 1987, ApJ, 318, 459
Cheng, J. X., Kerr, G., & Qiu, J. 2012, ApJ, 744, 48
Cook, J. W., & Brueckner, G. E. 1979, ApJ, 227, 645
Culhane, J. L., Fludra, A., Bentley, R. D., et al. 1992, PASJ, 44, L101
Culhane, J. L., Harra, L. K., James, A. M., et al. 2007, SoPh, 243, 19
Del Zanna, G., Mitra-Kraev, U., Bradshaw, S. J., Mason, H. E., & Asai, A.

2011, A&A, 526, A1
Dere, K. P., Landi, E., Mason, H. E., Monsignori Fossi, B. C., & Young, P. R.

1997, A&AS, 125, 149
Ding, M. D., Fang, C., & Huang, Y. R. 1995, SoPh, 158, 81
Doschek, G. A., Mariska, J. T., Watanabe, T., et al. 1992, PASJ, 44, L95
Doyle, J. G., & Phillips, K. J. H. 1992, A&A, 257, 773
Fisher, G. H. 1987, ApJ, 317, 502
Fisher, G. H. 1989, ApJ, 346, 1019
Fisher, G. H., Canfield, R. C., & McClymont, A. N. 1985, ApJ, 289, 414
Fisher, G. H., & Hawley, S. L. 1990, ApJ, 357, 243
Graham, D. R., Fletcher, L., & Hannah, I. G. 2011, A&A, 532, A27
Graham, D. R., Hannah, I. G., Fletcher, L., & Milligan, R. O. 2013, ApJ,

767, 83
Griffiths, N. W., Fisher, G. H., & Siegmund, O. H. W. 1998, in ASP Conf. Ser.

154, Cool Stars, Stellar Systems, and the Sun, ed. R. A. Donahue & J. A.
Bookbinder (San Francisco, CA: ASP), 621

Handy, B. N., Acton, L. W., Kankelborg, C. C., et al. 1999, SoPh, 187, 229
Harra, L. K., Hara, H., Imada, S., et al. 2007, PASJ, 59, 801
Harrison, R. A., Sawyer, E. C., Carter, M. K., et al. 1995, SoPh, 162, 233
Hawley, S. L., Allred, J. C., Johns-Krull, C. M., et al. 2003, ApJ, 597, 535
Hawley, S. L., & Fisher, G. H. 1992, ApJS, 78, 565
Hock, R., Woods, T. N., Klimchuk, J. A., Eparvier, F. G., & Jones, A. R. 2013,

ApJ
Q6Ichimoto, K., & Kurokawa, H. 1984, SoPh, 93, 105

Klimchuk, J. A. 2009, in ASP Conf. Ser. 415, The Second Hinode Science Meet-
ing: Beyond Discovery-Toward Understanding, ed. B. Lites, M. Cheung, T.
Magara, J. Mariska, & K. Reeves (San Francisco, CA: ASP), 221

Klimchuk, J. A. 2012, JGRA, 117, 12102
Klimchuk, J. A., Patsourakos, S., & Cargill, P. J. 2008, ApJ, 682, 1351

9

http://adsabs.harvard.edu/abs/1982SoPh...78..107A
http://adsabs.harvard.edu/abs/1982SoPh...78..107A
http://dx.doi.org/10.1086/187186
http://adsabs.harvard.edu/abs/1994ApJ...421L..55B
http://adsabs.harvard.edu/abs/1994ApJ...421L..55B
http://adsabs.harvard.edu/abs/2012SoPh..275...41B
http://adsabs.harvard.edu/abs/2012SoPh..275...41B
http://adsabs.harvard.edu/abs/1994SoPh..150...19B
http://adsabs.harvard.edu/abs/1994SoPh..150...19B
http://dx.doi.org/10.1086/177701
http://adsabs.harvard.edu/abs/1996ApJ...468..418B
http://adsabs.harvard.edu/abs/1996ApJ...468..418B
http://dx.doi.org/10.1051/0004-6361/201118144
http://adsabs.harvard.edu/abs/2012A&A...540A..24B
http://adsabs.harvard.edu/abs/2012A&A...540A..24B
http://dx.doi.org/10.1086/165795
http://adsabs.harvard.edu/abs/1987ApJ...322..999C
http://adsabs.harvard.edu/abs/1987ApJ...322..999C
http://dx.doi.org/10.1086/165654
http://adsabs.harvard.edu/abs/1987ApJ...321..586C
http://adsabs.harvard.edu/abs/1987ApJ...321..586C
http://dx.doi.org/10.1038/326165a0
http://adsabs.harvard.edu/abs/1987Natur.326..165C
http://adsabs.harvard.edu/abs/1987Natur.326..165C
http://dx.doi.org/10.1086/168240
http://adsabs.harvard.edu/abs/1990ApJ...348..333C
http://adsabs.harvard.edu/abs/1990ApJ...348..333C
http://dx.doi.org/10.1086/169345
http://adsabs.harvard.edu/abs/1990ApJ...363..318C
http://adsabs.harvard.edu/abs/1990ApJ...363..318C
http://dx.doi.org/10.1088/0004-637X/752/2/161
http://adsabs.harvard.edu/abs/2012ApJ...752..161C
http://adsabs.harvard.edu/abs/2012ApJ...752..161C
http://dx.doi.org/10.1086/165383
http://adsabs.harvard.edu/abs/1987ApJ...318..459C
http://adsabs.harvard.edu/abs/1987ApJ...318..459C
http://dx.doi.org/10.1088/0004-637X/744/1/48
http://adsabs.harvard.edu/abs/2012ApJ...744...48C
http://adsabs.harvard.edu/abs/2012ApJ...744...48C
http://dx.doi.org/10.1086/156775
http://adsabs.harvard.edu/abs/1979ApJ...227..645C
http://adsabs.harvard.edu/abs/1979ApJ...227..645C
http://adsabs.harvard.edu/abs/1992PASJ...44L.101C
http://adsabs.harvard.edu/abs/1992PASJ...44L.101C
http://adsabs.harvard.edu/abs/2007SoPh..243...19C
http://adsabs.harvard.edu/abs/2007SoPh..243...19C
http://dx.doi.org/10.1051/0004-6361/201014906
http://adsabs.harvard.edu/abs/2011A&A...526A...1D
http://adsabs.harvard.edu/abs/2011A&A...526A...1D
http://adsabs.harvard.edu/abs/1997A&AS..125..149D
http://adsabs.harvard.edu/abs/1997A&AS..125..149D
http://adsabs.harvard.edu/abs/1995SoPh..158...81D
http://adsabs.harvard.edu/abs/1995SoPh..158...81D
http://dx.doi.org/10.1002/app.1992.070440109
http://adsabs.harvard.edu/abs/1992PASJ...44L..95D
http://adsabs.harvard.edu/abs/1992PASJ...44L..95D
http://adsabs.harvard.edu/abs/1992A&A...257..773D
http://adsabs.harvard.edu/abs/1992A&A...257..773D
http://dx.doi.org/10.1086/165294
http://adsabs.harvard.edu/abs/1987ApJ...317..502F
http://adsabs.harvard.edu/abs/1987ApJ...317..502F
http://dx.doi.org/10.1086/168084
http://adsabs.harvard.edu/abs/1989ApJ...346.1019F
http://adsabs.harvard.edu/abs/1989ApJ...346.1019F
http://dx.doi.org/10.1086/162901
http://adsabs.harvard.edu/abs/1985ApJ...289..414F
http://adsabs.harvard.edu/abs/1985ApJ...289..414F
http://dx.doi.org/10.1086/168911
http://adsabs.harvard.edu/abs/1990ApJ...357..243F
http://adsabs.harvard.edu/abs/1990ApJ...357..243F
http://dx.doi.org/10.1051/0004-6361/201015416
http://adsabs.harvard.edu/abs/2011A&A...532A..27G
http://adsabs.harvard.edu/abs/2011A&A...532A..27G
http://dx.doi.org/10.1088/0004-637X/767/1/83
http://adsabs.harvard.edu/abs/2013ApJ...767...83G
http://adsabs.harvard.edu/abs/2013ApJ...767...83G
http://adsabs.harvard.edu/abs/1998ASPC..154..621G
http://adsabs.harvard.edu/abs/1999SoPh..187..229H
http://adsabs.harvard.edu/abs/1999SoPh..187..229H
http://adsabs.harvard.edu/abs/2007PASJ...59S.801H
http://adsabs.harvard.edu/abs/2007PASJ...59S.801H
http://adsabs.harvard.edu/abs/1995SoPh..162..233H
http://adsabs.harvard.edu/abs/1995SoPh..162..233H
http://dx.doi.org/10.1086/378351
http://adsabs.harvard.edu/abs/2003ApJ...597..535H
http://adsabs.harvard.edu/abs/2003ApJ...597..535H
http://dx.doi.org/10.1086/191640
http://adsabs.harvard.edu/abs/1992ApJS...78..565H
http://adsabs.harvard.edu/abs/1992ApJS...78..565H
http://adsabs.harvard.edu/abs/1984SoPh...93..105I
http://adsabs.harvard.edu/abs/1984SoPh...93..105I
http://adsabs.harvard.edu/abs/2009ASPC..415..221K
http://dx.doi.org/10.1029/2012JA018170
http://adsabs.harvard.edu/abs/2012JGRA..11712102K
http://adsabs.harvard.edu/abs/2012JGRA..11712102K
http://dx.doi.org/10.1086/589426
http://adsabs.harvard.edu/abs/2008ApJ...682.1351K
http://adsabs.harvard.edu/abs/2008ApJ...682.1351K


The Astrophysical Journal, 772:1 (10pp), 2013 ??? Qiu et al.

Landi, E., Del Zanna, G., Young, P. R., Dere, K. P., & Mason, H. E. 2012, ApJ,
744, 99

Lemen, J. R., Title, A. M., Akin, D. J., et al. 2012, SoPh, 275, 17
Liu, W., Qiu, J., Longcope, D. W., & Caspi, A. 2013, ApJ
Machado, M. E., & Henoux, J.-C. 1982, A&A, 108, 61
MacNeice, P. 1986, SoPh, 103, 47
Milligan, R. O. 2011, ApJ, 740, 70
Milligan, R. O., & Dennis, B. R. 2009, ApJ, 699, 968
Milligan, R. O., Gallagher, P. T., Mathioudakis, M., & Keenan, F. P. 2006a, ApJL,

642, L169
Milligan, R. O., Gallagher, P. T., Mathioudakis, M., et al. 2006b, ApJL,

638, L117
Mrozek, T., & Tomczak, M. 2004, A&A, 415, 377
Patsourakos, S., & Klimchuk, J. A. 2008, ApJ, 689, 1406
Phillips, K. J. H., Bromage, G. E., & Doyle, J. G. 1992, ApJ, 385, 731

Qiu, J., Hu, Q., Howard, T. A., & Yurchyshyn, V. B. 2007, ApJ, 659, 758
Qiu, J., Liu, W., Hill, N., & Kazachenko, M. 2010, ApJ, 725, 319
Qiu, J., Liu, W.-J., & Longcope, D. W. 2012, ApJ, 752, 124
Raftery, C. L., Gallagher, P. T., Milligan, R. O., & Klimchuk, J. A. 2009, A&A,

494, 1127
Reale, F., Landi, E., & Orlando, S. 2012, ApJ, 746, 18
Schmieder, B., Forbes, T. G., Malherbe, J. M., & Machado, M. E. 1987, ApJ,

317, 956
Tsuneta, S., Acton, L., Bruner, M., et al. 1991, SoPh, 136, 37
Watanabe, T., Hara, H., Sterling, A. C., & Harra, L. K. 2010, ApJ, 719, 213
Woods, T. N., Hock, R., Eparvier, F., et al. 2011, ApJ, 739, 59
Wuelser, J.-P., Canfield, R. C., Acton, L. W., et al. 1994, ApJ, 424, 459
Wuelser, J.-P., & Marti, H. 1989, ApJ, 341, 1088
Zarro, D. M., Canfield, R. C., Metcalf, T. R., & Strong, K. T. 1988, ApJ,

324, 582

10

http://dx.doi.org/10.1088/0004-637X/744/2/99
http://adsabs.harvard.edu/abs/2012ApJ...744...99L
http://adsabs.harvard.edu/abs/2012ApJ...744...99L
http://adsabs.harvard.edu/abs/2012SoPh..275...17L
http://adsabs.harvard.edu/abs/2012SoPh..275...17L
http://adsabs.harvard.edu/abs/1982A&A...108...61M
http://adsabs.harvard.edu/abs/1982A&A...108...61M
http://adsabs.harvard.edu/abs/1986SoPh..103...47M
http://adsabs.harvard.edu/abs/1986SoPh..103...47M
http://dx.doi.org/10.1088/0004-637X/740/2/70
http://adsabs.harvard.edu/abs/2011ApJ...740...70M
http://adsabs.harvard.edu/abs/2011ApJ...740...70M
http://dx.doi.org/10.1088/0004-637X/699/2/968
http://adsabs.harvard.edu/abs/2009ApJ...699..968M
http://adsabs.harvard.edu/abs/2009ApJ...699..968M
http://dx.doi.org/10.1086/504592
http://adsabs.harvard.edu/abs/2006ApJ...642L.169M
http://adsabs.harvard.edu/abs/2006ApJ...642L.169M
http://dx.doi.org/10.1086/500555
http://adsabs.harvard.edu/abs/2006ApJ...638L.117M
http://adsabs.harvard.edu/abs/2006ApJ...638L.117M
http://dx.doi.org/10.1051/0004-6361:20034598
http://adsabs.harvard.edu/abs/2004A&A...415..377M
http://adsabs.harvard.edu/abs/2004A&A...415..377M
http://dx.doi.org/10.1086/592683
http://adsabs.harvard.edu/abs/2008ApJ...689.1406P
http://adsabs.harvard.edu/abs/2008ApJ...689.1406P
http://dx.doi.org/10.1086/170979
http://adsabs.harvard.edu/abs/1992ApJ...385..731P
http://adsabs.harvard.edu/abs/1992ApJ...385..731P
http://dx.doi.org/10.1086/512060
http://adsabs.harvard.edu/abs/2007ApJ...659..758Q
http://adsabs.harvard.edu/abs/2007ApJ...659..758Q
http://dx.doi.org/10.1088/0004-637X/725/1/319
http://adsabs.harvard.edu/abs/2010ApJ...725..319Q
http://adsabs.harvard.edu/abs/2010ApJ...725..319Q
http://dx.doi.org/10.1088/0004-637X/752/2/124
http://adsabs.harvard.edu/abs/2012ApJ...752..124Q
http://adsabs.harvard.edu/abs/2012ApJ...752..124Q
http://dx.doi.org/10.1051/0004-6361:200810437
http://adsabs.harvard.edu/abs/2009A&A...494.1127R
http://adsabs.harvard.edu/abs/2009A&A...494.1127R
http://dx.doi.org/10.1088/0004-637X/746/1/18
http://adsabs.harvard.edu/abs/2012ApJ...746...18R
http://adsabs.harvard.edu/abs/2012ApJ...746...18R
http://dx.doi.org/10.1086/165344
http://adsabs.harvard.edu/abs/1987ApJ...317..956S
http://adsabs.harvard.edu/abs/1987ApJ...317..956S
http://adsabs.harvard.edu/abs/1991SoPh..136...37T
http://adsabs.harvard.edu/abs/1991SoPh..136...37T
http://dx.doi.org/10.1088/0004-637X/719/1/213
http://adsabs.harvard.edu/abs/2010ApJ...719..213W
http://adsabs.harvard.edu/abs/2010ApJ...719..213W
http://dx.doi.org/10.1088/0004-637X/739/2/59
http://adsabs.harvard.edu/abs/2011ApJ...739...59W
http://adsabs.harvard.edu/abs/2011ApJ...739...59W
http://dx.doi.org/10.1086/173903
http://adsabs.harvard.edu/abs/1994ApJ...424..459W
http://adsabs.harvard.edu/abs/1994ApJ...424..459W
http://dx.doi.org/10.1086/167567
http://adsabs.harvard.edu/abs/1989ApJ...341.1088W
http://adsabs.harvard.edu/abs/1989ApJ...341.1088W
http://dx.doi.org/10.1086/165919
http://adsabs.harvard.edu/abs/1988ApJ...324..582Z
http://adsabs.harvard.edu/abs/1988ApJ...324..582Z


Queries

Page 2
Q1
Author: Please confirm whether edits made to the sentence “On
the other hand, some...” retain the intended sense.

Q2
Author: Please confirm whether edits made to the sentence “As
shown in Figure 1, the flare...” retain the intended sense.

Page 7
Q3
Author: Please confirm whether edits made to the sentence
“These few stages are...” retain the intended sense.

Page 9
Q4
Author: Please confirm whether edits made to the sentence
“Assuming that the observed...” retain the intended sense.

Q5
Author: Please check the details for any journal references that
do not have a pale purple link (CrossRef doi) or a blue link
(NASA ADS or arXiv e-print) in the two-column proof (article-
style layout). A journal reference with no links may contain
some incorrect information.

Q6
Author: Please provide volume and page numbers in references
“Hock et al. (2013)” and “Liu et al. (2013).”

Online-only colour figures

This proof PDF is identical in specification to the PDF file that will be published in the online journal. To view any online-only color
figures as they will appear in the printed journal, we recommend that this color PDF file be printed on a black & white printer.


	1. INTRODUCTION
	2. OBSERVATIONS
	3. UV AND EUV EMISSIONS AT THE FOOTPOINTS OF FLARING LOOPS
	3.1. UV Emissions
	3.2. EUV Emissions

	4. FOOTPOINT UVEUV EMISSION AS A CORONAL PRESSURE GAUGE
	4.1. Transition Region Differential Emission Measure
	4.2. Comparison with Observations

	5. CONCLUSIONS AND DISCUSSIONS
	REFERENCES

