MSU Solar Physics REU Jennifer O'Hara

Heating of Flare Loops With Observationally Constrained Heating Functions

Advisors Jiong Qiu, Wenjuan Liu

Contents

Background: Reconnection
Project summary
Method
Data Analysis
Conclusions

Magnetic Reconnection in Solar flares

- Where oppositely directed field lines are brought in close proximity and reconnect
- Become a lower energy state: -> energy release
- Thermal and non-thermal electrons channelled down the loop ->emit hard and soft X rays
- Heat flux along flux tubes heat Chromosphere -> UV

•Heated plasma in Chromosphere can rise into the loop - Chromospheric evaporation

•plasma cools and drains – Chromospheric condensation

Magnetic Reconnection

Reconnection continues, new loops form above old, higher in corona

Loops : 100's of individual strands heated separately

Footpoints move apart

We can measure reconnection rate with

$$\frac{\partial \phi}{\partial t} = \frac{\partial}{\partial t} \left(\int \vec{B} \cdot d\vec{a} \right) \approx \frac{\partial}{\partial t} (\Sigma B_i a_i)$$
$$\oint \vec{E} \cdot d\vec{l} = -\frac{\partial \phi}{\partial t}$$

(Forbes)

Project Summary

Big picture: Understanding the relationship between reconnection and energy release.

- What we know:
 - know flux: can measure reconnection
 - Know radiation (measured by GOES and AIA)
 Want to know link :how this energy is released!
- Specific Question: Link is : HEATING FUNCTION
- Guess that UV pixel observations reflect heating -> know times and place of heating.
- Use model with heating function input to calculate radiation outputs and compare with GOES and AIA observations to see if our assumption is true.

Constructing a heating function

 Model that each flare is made up of hundreds (thousands) of ind. Strands each base is a pixel.

Formed and heated at different times.

 Very bright U.V observations at feet of loops appear almost instantaneously

 So can use U.V to deduce reconnection rate and can also calculate an <u>individual</u> <u>heating function</u> for each strand.

Constructing Heating Function cont'd

0 20 40 60 80 100

- Each pixel has an individual UV light curve and we want individual heating function to model rise time for each.
- Can use different shapes to model UV rise: Gaussian, Linear ect.
- For our purposes we used Gaussian:

0 20 40 60 80 100

Time (minutes after 13.31 UT)

0 20 40 60 60 100

$$H_{i} = Q_{i}L_{i} = \lambda \left[C_{i} \exp\left(-\left(\left|t - t_{i}\right|\right)^{2} / 2\tau_{i}^{2}\right)\right]^{\alpha} \text{ (ergs/s/pixel)}$$

$$\alpha = 1$$

 H_i : discrete energy (heating) flux in each flux tube;

- Q_i : volumetric heating rate (what we want to input in model)
- L_i : loop length;

 C_i : UV peak count rate;

 t_i : peak time; τ_i : rise time;

 λ : Total heating scaler (in ebtel model)

 $C1: R_{tr}/R_c$ (in ebtel model)

Other initial constraints (energy in = energy out):

$$\int H dt = \int (\Sigma H_i) dt = \int (R_c + R_{tr}) dt = (1 + C1) \int R_{GOES} dt \quad (\text{ergs})$$

$$R_c, R_{tr}: \text{ coronal and transition region radiation rates}$$

$$R_{tr} = C1R_c$$

Transition region: Thin region between Chromospere and Corona, where most radiation is emitted.

Resultant Heat Function

March 7th 2011, M1.7 class Flare, 13.45 UT

Theoretical current = energy / mag flux

EBTEL model

- Models evolution of plasma in a single strand.
- 0D model : average T, n, P for each strand.
- Equates the enthalpy flux with excess deficit of heat flux relative to transition region loss rate.

- **Q** volumetric heating rate
- n electron number density
- T Temperature
- P Pressure
- L Length of strand
- $F_0 F_c$ Heat flux

$$\frac{d\bar{P}}{dt} \approx \frac{2}{3} \left[\bar{Q} - \frac{1}{L} \left(\mathcal{R}_c + \mathcal{R}_{\rm tr} \right) \right]$$

$$\frac{d\bar{n}}{dt} = -\frac{c_2}{5c_3kL\bar{T}}(F_0 + \mathcal{R}_{\rm tr}),$$

$$\frac{d\bar{T}}{dt} \approx \bar{T} \left(\frac{1}{\bar{P}} \frac{d\bar{P}}{dt} - \frac{1}{\bar{n}} \frac{d\bar{n}}{dt} \right).$$

EBTEL model cont'd

 $\mathcal{R}_c \approx \bar{n}^2 \Lambda(\bar{T}) L.$ $F_c \approx -\frac{2}{7} \kappa_0 \frac{T_a^{7/2}}{L}, \quad c_1 = \frac{\mathcal{R}_{\mathrm{tr}}}{\mathcal{R}_c}.$

•Inputs:

- initial temp, density and pressure
- scalar parameters c1, and total heating λ
- Loop length (L): interpolated so increases for different strands

•EBTEL: -Calculates initial Rc from equation above -Use C1 to calculate Rtr .

- Sub into 3 diff eq.'s to find rate of change and new average n, P, T, then repeat
- •Output: Average T,n,P at each time for each individual flux tube.

•Use to make calculations and compare with observations

- \rightarrow Greater Rtr to Rc ratio
- → After heating see less density: as less plasma as less evaporation

200

 \rightarrow Less Rc : cools more slowly

Temperature and Density Distribution

- 982 flux tubes
- Ranges are consistent with expected values
- Use T and n for each flux tube to calculate expected radiation and compare with obs.

Conclusions

 Calculated radiation using EBTEL fits reasonably well with observed values

Bupports use of Individual strand Heating Function from UV obs.

- Effect of C1 : Some wavelengths more sensitive
- Effect of Inaccurate Response functions

In the Future?

Physical model to determine how C1 should change

References

Klimchuk, A. J., Patsourakos, S., Cargill, P. J. 2008, ApJ, 682, 1351

Longcope, D., Des Jardins, A., Carranza-Fulmer, T., Qiu, J., 2010, Solar Physics, 267, 107

Acknowledgements

- Jiong Qiu for her patience and guidance
- MSU Physics faculty for their warm welcome
- All the REU Students