Quantifying Magnetic Energy Storage and Release in Active Regions with Emerging Flux Solar Physics REU, Summer 2011

Meg Millhouse

Advisors: Lucas Tarr, Dana Longcope

August 4, 2011

Overview

Ultimately, trying to come up with a baseline estimate for the amount of energy released during a solar flare

Solar flares occur when magnetic reconnection takes place

 \blacksquare Flux emergence plays a part in this

Looking at a set of magnetograms of active regions around the time of a solar flare, break the region up into smaller subregions

Done through a mix of automatic algorithms, and by hand

Estimate free energy build up due to emergence and movement of active regions

Magnetograms

- \Box A way of looking at magnetic fields on the Sun
- \Box By measuring the spectral line splitting, the Zeeman effect can be used to find the magnetic field
- The magnetograms I used came from MDI (SOHO), and HMI (SDO)

Partitioning

- \square Use a downhill tessellation to partition each magnetogram into distinct regions
- \Box A couple different settings that can be changed:
	- \Box Saddle value gives a threshhold value for the difference between two peaks
	- \blacksquare \blacksquare B_{thr} is the minimum value for an individual pixel, usually around $+/-50$ Gauss
	- \blacksquare The **height** is the distance above the photosphere that you view the image–this is basically just a smoothing function
	- **Minimum size** of a region, can be set either by pixels or total flux in that region

Partitioning

Centroids and Time Correlation

- After a time series of magnetograms are masked, we try to associate sub-regions between timesteps
- \blacksquare First, find the flux of each region:

$$
\psi = \int_{\mathcal{R}} B_z(x, y) \, dx \, dy
$$

 \Box Use this to find the location of the centroid (pole) :

$$
\overline{\mathbf{x}} = \psi^{-1} B_z(x, y) \, dx \, dy
$$

 \blacksquare If the distance between two poles is less than the threshold value 10Mm, the two poles are merged

Time Correlation

Infortunately, this doesn't actually work very well.

rmv_flick and rmv_vanish

\blacksquare Two automatic procedures to try to smooth this out: r mv_flick

 \blacksquare rmv_vanish

rmv flick and rmv vanish

 \Box Two automatic procedures to try to smooth this out:

 \Box rmv_flick

- \Box Looks at regions that exist for only a single timestep
- \blacksquare Compares the pixels in single timestep region to those in the timestep before, after and relabels it if there is considerable overlap with another region

rmv vanish

- \Box Looks at regions where the label randomly changes
- Again uses a three timestep window, but looks for regions that disappear in the middle timestep, and compare its area to regions in the timesteps before, after

rmv_flick and rmv_vanish

An improvement, but still not perfect:

rmv_flick and rmv_vanish

An improvement, but still not perfect:

\blacksquare The rest is done manually

The regions I worked on were:

AR10978

- C-class flare in Dec. of 2007
- Data from MDI, at 96 minute cadence
- \blacksquare Threshhold=50G, Height=3Mm, Minimum Size=22 pixels, Saddle=400

AR10978, from Dec. 2007

AR10978, from Dec. 2007

The regions I worked on were:

AR11158

- **X-class flare in Feb.** 2011 (Valentine's Day Flare)
- Data from HMI, at 24 minute cadence
- \blacksquare Threshhold=75G, Height=3Mm, Saddle=700

AR11158, from Feb. 2011

AR10978 and AR11158 AR11158, from Feb. 2011

Potential Field

- \blacksquare There always exists a potential field: a minimum energy configuration
- We assume no current in the corona, so that

$$
\nabla\times\mathbf{B}=0\text{, or }\mathbf{B}=\nabla\phi
$$

■ Combine with $\nabla \cdot \mathbf{B} = 0$ (from Maxwell's Eqns):

$$
\nabla^2 \phi = 0
$$

 \Box So by solving Laplace's equation we can find the (unique) potential field

Potential Field

- So, designate one timestep as being in the potential field configuration, and constrain flux to that arrangement
- Also find the potential field configuration at every timestep after
- Use the poles (flux weighted centroids) from the mask array to figure out the magnetic topology at each timestep

Potential Field

- \Box So, designate one timestep as being in the potential field configuration, and constrain flux to that arrangement
- Also find the potential field configuration at every timestep after
- Use the poles from the mask array to figure out the magnetic topology
- \blacksquare The discrepancy between the "actual" field should hopefully give a lower bound for the energy

Conclusion

- \blacksquare The work I did was just the beginning of a long process
- Compare the free energy estimates to X-ray emission data from flares

[Quantifying Magnetic Energy Storage and Release in Active Regions with Emerging Flux](#page-0-0)

Conclusion

- \Box The work I did was just the beginning of a long process
- Compare the free energy estimates to X-ray emission data from flares

Acknowledgements

Lucas Tarr

Dana Longcope

 \blacksquare The entire MSU Solar Physics Group

 \blacksquare The REU advisors and students

A brief overview of magnetic topology terms

Null Point:

Location (usually on photosphere) where the magnetic field is zero

Seperator:

 \Box Field line connecting two nulls

Pole:

 \blacksquare Estimated point source at the flux weighted cenget of a mask region

Spine:

Field lines connecting a pole to a null

Domain:

 \blacksquare The space connecting two poles