Quantifying Magnetic Energy Storage and Release in Active Regions with Emerging Flux Solar Physics REU, Summer 2011

Meg Millhouse

Advisors: Lucas Tarr, Dana Longcope

August 4, 2011

Overview

 Ultimately, trying to come up with a baseline estimate for the amount of energy released during a solar flare

Solar flares occur when magnetic reconnection takes place

Flux emergence plays a part in this

 Looking at a set of magnetograms of active regions around the time of a solar flare, break the region up into smaller subregions

Done through a mix of automatic algorithms, and by hand

 Estimate free energy build up due to emergence and movement of active regions

Magnetograms

- A way of looking at magnetic fields on the Sun
- By measuring the spectral line splitting, the Zeeman effect can be used to find the magnetic field
- The magnetograms I used came from MDI (SOHO), and HMI (SDO)

Partitioning

- Use a downhill tessellation to partition each magnetogram into distinct regions
- A couple different settings that can be changed:
 - Saddle value gives a threshold value for the difference between two peaks
 - **B**_{thr} is the minimum value for an individual pixel, usually around +/-50 Gauss
 - The height is the distance above the photosphere that you view the image-this is basically just a smoothing function
 - Minimum size of a region, can be set either by pixels or total flux in that region

Partitioning

Centroids and Time Correlation

- After a time series of magnetograms are masked, we try to associate sub-regions between timesteps
- First, find the flux of each region:

$$\psi = \int_{\mathcal{R}} B_z(x, y) \, dx \, dy$$

Use this to find the location of the centroid (pole) :

$$\overline{\mathbf{x}} = \psi^{-1} B_z(x, y) \, dx \, dy$$

If the distance between two poles is less than the threshold value 10Mm, the two poles are merged

Time Correlation

Unfortunately, this doesn't actually work very well.

Two automatic procedures to try to smooth this out: rmv_flick

rmv_vanish

Two automatic procedures to try to smooth this out: rmv_flick

- Looks at regions that exist for only a single timestep
- Compares the pixels in single timestep region to those in the timestep before, after and relabels it if there is considerable overlap with another region

rmv_vanish

- Looks at regions where the label randomly changes
- Again uses a three timestep window, but looks for regions that disappear in the middle timestep, and compare its area to regions in the timesteps before, after

An improvement, but still not perfect:

An improvement, but still not perfect:

The rest is done manually

The regions I worked on were:

- AR10978
 - C-class flare in Dec. of 2007
 - Data from MDI, at 96 minute cadence
 - Threshhold=50G,
 Height=3Mm,
 Minimum Size=22
 pixels, Saddle=400

Quantifying Magnetic Energy Storage and Release in Active Regions with Emerging Flux

AR10978 and AR11158

AR10978, from Dec. 2007

AR10978, from Dec. 2007

AR10978, from Dec. 2007

(ロ > 〈 冔 > 〈 臣 > 〈 臣 > 〉 臣 - つへで

The regions I worked on were:

AR11158

- X-class flare in Feb.
 2011 (Valentine's Day Flare)
- Data from HMI, at 24 minute cadence
- Threshhold=75G, Height=3Mm, Saddle=700

Quantifying Magnetic Energy Storage and Release in Active Regions with Emerging Flux

AR10978 and AR11158

AR11158, from Feb. 2011

AR10978 and AR11158 AR11158, from Feb. 2011

n a ra

Potential Field

- There always exists a potential field: a minimum energy configuration
- We assume no current in the corona, so that

$$abla imes {f B}=0$$
, or ${f B}=
abla \phi$

Combine with $\nabla \cdot \mathbf{B} = 0$ (from Maxwell's Eqns):

$$\nabla^2 \phi = 0$$

 So by solving Laplace's equation we can find the (unique) potential field

Potential Field

- So, designate one timestep as being in the potential field configuration, and constrain flux to that arrangement
- Also find the potential field configuration at every timestep after
- Use the poles (flux weighted centroids) from the mask array to figure out the magnetic topology at each timestep

Potential Field

- So, designate one timestep as being in the potential field configuration, and constrain flux to that arrangement
- Also find the potential field configuration at every timestep after
- Use the poles from the mask array to figure out the magnetic topology
- The discrepancy between the "actual" field should hopefully give a lower bound for the energy

Quantifying Magnetic Energy Storage and Release in Active Regions with Emerging Flux

Conclusion

- The work I did was just the beginning of a long process
- Compare the free energy estimates to X-ray emission data from flares

Quantifying Magnetic Energy Storage and Release in Active Regions with Emerging Flux

Conclusion

- The work I did was just the beginning of a long process
- Compare the free energy estimates to X-ray emission data from flares

Acknowledgements

Lucas Tarr

- Dana Longcope
- The entire MSU Solar Physics Group
- The REU advisors and students

A brief overview of magnetic topology terms

Null Point:

 Location (usually on photosphere) where the magnetic field is zero

Seperator:

Field line connecting two nulls

Pole:

 Estimated point source at the flux weighted cenget of a mask region

Spine:

Field lines connecting a pole to a null

Domain:

The space connecting two poles