Inferring Energy Release in Solar Flares

Ben Williams Advisors: Jiong Qiu and Angela Des Jardins Montana State University Solar Physics REU

Outline

- Background
- Method
 - EBTEL Model
- Results
 - Flare
 - Short vs. Long Loops
 - Ebtel Output
 - DEM
 - Energy Released
- Conclusion

Flares

- release of energy
- magnetic field lines reconnecting
- lower energy state

- heats the chromosphere and corona
- structures form e.g. coronal flare loops, bright footpoints
- use satellite imagery and data to calculate energy release in each loop, ${\it Q}$

Basic EBTEL Model

OD Enthalpy Based Thermal Evolution of Loops

$$\frac{\mathrm{d}\bar{n}}{\mathrm{d}t} = -\frac{c_2}{5c_3kL\bar{T}}\left(F_0 + L_t\right)$$

$$\frac{\mathrm{d}\bar{P}}{\mathrm{d}t} \approx \frac{2}{3} \left(\bar{Q} - \frac{1}{L} (R_c + L_t) \right)$$

where
$$R_c = \bar{n}^2 L \Lambda(\bar{T})$$
, $L_t = c_5 \bar{P}$

Q: volumetric heating rate

L: half loop length

- F_0 : thermal conduction flux
- R_c : coronal radiation rate
- L_t : energy loss rate through transition region

EBTEL

- Highly simplified 0D
- two free parameters c_0 and c_1
- c_0 determines heating rates Q and is scaled to footpoint emission
- c_1 determines L_t
- adjust these to find a good fit

EBTEL

- cannot track each individual loop
- model one loop per pixel
 - independent
- spatial average over all loops
- Q is the input
- input an good approximation from observational data

The Flare 17th June 2012 1700 – 1800 UTC

The Flare 17th June 2012 1700 – 1800 UTC

At Higher Resolution

Short vs. Long Loops

Shorter loop:

• 92 Mm

Longer Loop:

• 147 Mm

Shorter loops decay faster than longer loops

Agrees with decay being proportional to <u>1</u>

 $\overline{L^2}$

Density changes always lags behind temperature changes

EBTEL Output

Red – EBTEL output White – Observations

DEM Differential Emission Measure: $\varepsilon = n^2 \frac{dv}{dT}$

- Distribution of amount of plasma as a function of temperature
- RHESSI/GOES and DEM are co-temporal suggesting good fit
- RHESSI/GOES higher perhaps due to their isothermal assumption (cannot be true for many loops)
- In future, use DEM to calculate RHESSI spectrum \Rightarrow temperatures

Energy Released

Hours starting 1700 UTC

Total energy released: $Q = 9.3 \times 10^{29} \text{ erg}$

Conclusion

- EBTEL works remarkably well considering its simplicity
- Works much quicker than more complex models
- Final *Q* is valid for a C-Class flare