Analyzing High-Speed Phenomena in the Solar Atmosphere

Isabel Lipartito Dr. Philip Judge

What Interests Us?

Sheets?

Flux Tubes?

Speckle VS. MFBD

The Debate At Hand

Flux Tube Picture

Basic Claims

•Type II spicules are plasma propagating through a tube of flux from photosphere to corona •Motion includes field-aligned flows, torsional motion, and transverse swaying

Supporting Evidence

Spicules of type II certainly appear tube or straw-like in nature
Type I spicules are compatible with field-aligned flows (Hansteen and colleagues)

Unresolved Issues

- Model of tubes generally ignore 'weak' solutions to MHD equations and the resultant tangential discontinuities that can result in sheet structures
- Wave reflection or highly oblique waves are required to account for observed very high phase speeds
- Generally, there is lack of evidence for (1) steep thermal gradients at transition region to ensure wave reflection,
- and (2) for oblique waves.

The Debate At Hand

Plasma Sheet Picture

Basic Claims

- Many, if not a majority, of the spicules we are observing are actually optical manifestations of plasma sheets moving around like partially opaque (lace) curtains in the wind
- •The observed motions appear fast because of optical superposition effects. The question of plasma acceleration is neither required nor rejected.

Supporting Evidence

- •The equations of MHD have weak solutions which result in tangential discontinuities that can in principle produce sheets of plasma
- Sheets might more readily explain the high aspect ratio (length/radius) and collective behavior (movies) seen in many fibril groups
- They appear the only reasonable explanation compatible with the data we have analyzed (Judge et al. 2012)
- •Occam's Razor: is this picture then the simplest compatible with the data?

Unresolved Issues

- •Detecting solid evidence of sheets in the chromosphere (stereoscopy not possible)
- •Can tangential discontinuities produce sheets with the right characteristic scales an behavior?
- •Proportions of tubes compared to sheets

Statistical Analysis

We wanted the average number of fibrils per frame for images taken about the H-Alpha line. We analyzed 40 blue frames; 56 red frames.

Conclusions

- Average number of fibrils per blue image: 48
- Average number of fibrils per red image: 74
- The area of the Solar disk in these images is about 100 square degrees (in heliographic coordinates) or about 0.03 steradians.
- This means that at any time we might find about 30,000 of them on the Sun.

Red VS. Blue

• We compared fibrils within several simultaneous blue and red H-Alpha images. Below is an one example of many: left is blue, right is red

• The fibrils seen in the red images are consistently longer and higher than the ones in the blue images. Near-simultaneous red and blue fibrils almost never overlap

Wavelength Scans

Wavelength Scans

Calcium VS. H-Alpha

- We compared Ca II and H-Alpha images taken close in time, searching for evidence of acceleration along flux tubes. Ca II images were taken at +/- .06 nm (21 km/s) and H-Alpha images were taken at +/- 0.11 nm (50 km/s).
- We subtracted Ca images from H-Alpha images. If acceleration were common we should observe multiple connected fibrils in the resultant image like thus

- The circled fibril is one example of a signal of plasma being accelerated within a flux tube. Significantly, this was the only clear example of acceleration we could find in 20 samples over this large field of view.
- And there is a chance that this is not even a valid example!

Ca VS. Ha Cont.

Coronal Connection

Curtain Models

Conclusions and Implications

- Red fibrils vary from blue fibrils.
- Apparent motion becoming an Occam's Razor
- Potential alternative explanation for coronal heating
- Neglected theoretical implications being appreciated
- Understanding the chromosphere a bit better
- Or at least gaining a greater realization of its complexities!!

Future Progress

- Publish a paper detailing discoveries
- Continue to challenge De Pontieu and associates with further analysis of this data
- Magnetic field/flux measurements
- Continue to explore sheet model; draw upon basic physics as a guide
- Maintain 'good science', follow scientific method.

Any Questions?

Tuesday, August 6, 2013