Dynamics of Post-Reconnection Magnetic Flux Tubes

Joshua R. Mirth
Advisor: Dr. Dana Longcope

Montana State University Solar Physics REU Program

August 6, 2013
Introduction

- Building off of previous work done by Dr. Longcope and others ([2] [3] [4]).
- My project was to evaluate different sets of initial conditions with upward flows.
- One potential application was to see how this matched Type-II spicules [1].
Background: Flux Tubes

- Flux tubes describe when magnetic field lines occur in field-free environments (like the sun’s corona).
- Plasma conforms to these tubes and travels along them as a propagating wave.
- When the waves are much longer than the width of the tube, we get a nice simplification of their dynamics called the ”thin flux tube” model. This allows us to use the equations of MHD to approximate their motion.
Reconnection

- Flux tubes in the upper regions of the sun's atmosphere can become crossed.
- When this occurs, they can reconnect:
 ![Flux Tubes Reconnection Diagram]
 - These then retract at the Alfvén speed.
 - My project was to see what happens next.
Numerical Model

Initial Conditions:

- One pre-reconnection tube is a large, low-density, high-temperature coronal flux tube approximate by a vertical line.
- The other is a low-lying, high-density, lower-temperature tube.
- We ignore gravitational forces and assume a low β ($\ll 1$).

This gives the following equation of motion[4] which we solve using a Lagrangian numerical method (PREFT):

$$\rho \frac{d\vec{v}}{dt} = -\hat{b} \frac{\partial p}{\partial l} + \frac{B^2}{4\pi} \frac{\partial \hat{b}}{\partial l} - \frac{1}{4\pi} \nabla \perp B^2 + B \frac{\partial}{\partial l} \left(\frac{\mu}{B} \hat{b} \hat{b} \cdot \frac{\partial \vec{v}}{\partial l} \right)$$
Analytic Solution

Derivation:

- Assume we can divide the tube into five regions:
 - The two endpoints
 - The center
 - A point between each end and the center where there is a shock.
- Ignore thermal conduction.
- Numerical model is computationally intensive. This gives us a closed-form solution.
Example Run
Dynamics of Post-Reconnection Magnetic Flux Tubes

Joshua R. Mirth
Advisor: Dr. Dana Longcope

Introduction
Background
Flux Tubes
Reconnection
Numerical Model
Analytic Solution
Example Run

Results
Parameter Studies
Constant Pressure or Temperature?
Magnetic Field Strength

Conclusion
References

Pressure
Temperature

Introduction

Background

Flux Tubes
Reconnection
Numerical Model
Analytic Solution
Example Run

Results

Parameter Studies
Constant Pressure or Temperature?
Magnetic Field Strength

Conclusion

References
Results: Parameter Studies

- Interested in what causes the maximum upflow velocities.
- Conducted runs with angles ranging from 10 to 135 degrees and density ratios from 0.1 to 100
- Also evaluated temperature, pressure, and some other parameters.
Velocity

```
max z-velocity
```

```
density ratio
```

```
angle (degrees)
```

```
40 50 60 70 80 90
```

```
100.0
```

```
10.0
```

```
1.0
```

```
0.1
```

```
Introduction
```

```
Background
Flux Tubes
Reconnection
Numerical Model
Analytic Solution
Example Run
```

```
Results
Parameter Studies
Constant Pressure or Temperature?
Magnetic Field Strength
```

```
Conclusion
References
```
Dynamics of Post-Reconnection Magnetic Flux Tubes

Joshua R. Mirth
Advisor: Dr. Dana Longcope

Introduction

Background
Flux Tubes
Reconnection
Numerical Model
Analytic Solution
Example Run

Results
Parameter Studies
Constant Pressure or Temperature?
Magnetic Field Strength

Conclusion
References

Pressure

![Graph showing max pressure vs angle and density ratio]
Temperature

max temperature

density ratio

angle (degrees)

constant pressure or temperature?
Constant Pressure or Temperature?

- Original code fixed the temperature ratio between the two connecting tubes.
- Modified to hold pressure constant and allow temperature to vary.
- Not much changed.
Images shows $B=100$, 200, and 300.

Alfvén speed changes when B does. Graph compensates for that.

Magnitude of different quantities tend to be proportional to changes in magnetic field.

Stronger fields also cause jagged lines...
Spikes

- Runs were cutting out, returning \(-\text{NaN}\) for all variables after some amount of time.
- Stronger fields caused it to happen sooner.
- Looks like a mathematical error—information outrunning the grid.
- Smoothing out the code didn’t solve it.
Magnetic β

- $\beta = \frac{p}{B^2/4\pi}$
- Tells us the relative importance of tension versus pressure forces.
- $\beta > 2$ means pressure dominates.
- code assumes $\beta \ll 1$.
- Here’s the issue:
Not a numerics problem, actually a physical issue! The assumptions behind our equations quickly become invalid at extreme angles and densities.
Conclusions

What did we learn?

- We now understand the dependence of this model upon various parameters much better.
- We found some physical limits on when the code is useful.

Does this tell us anything about spicules?

- I have no idea.
- It does give a method of launching heating material into the corona.
- Further work should be done here.
De Pontieu et. al. 2007, PASJ, 59, S655-S662