Space Weather Highlights 09 June 1997 -15 June 1997

Solar activity was very low. No optical flares were reported.

Solar wind data were received from the WIND spacecraft a few hours per day. Solar wind velocities were around 370 km/sec through 10 June, then decreased to 300 km/sec for the remainder of the period. Particle densities generally ranged 03 - 15 p/cc. However, densities increased to peaks of 30 and 25 p/cc on 11 and 15 June, respectively. Bz hovered about zero during most of the period. Solar sector orientation was mostly toward (phi angle near 315 degrees) through 11 June becoming mostly away (phi angle near 135 degrees) during 12 - 14 June. Orientation became mostly toward on 15 June.

There were no significant proton enhancements observed at satellite altitudes.

The greater than 2 MeV electron flux reached high levels during 09 and 12 - 15 June.

The geomagnetic field was disturbed during 09 June with active to minor storm levels observed at all latitudes and brief periods of major storm levels observed at high latitudes. Mostly quiet conditions prevailed for the remainder of the period.

Space Weather 18 June 1997 - 14 July 1997

Solar activity is expected to be very low.

No significant proton enhancements are expected at satellite altitudes.

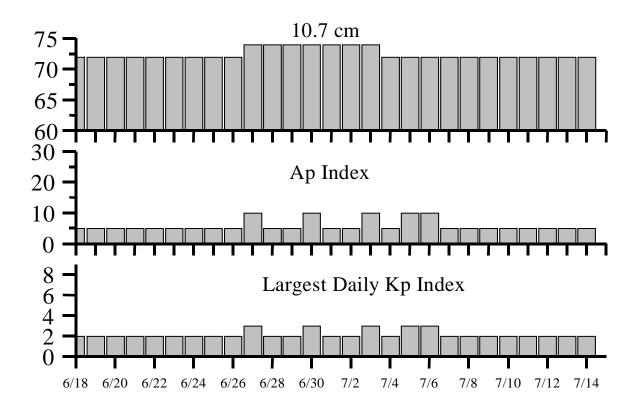
The greater than 2 MeV electron flux is expected to be normal to moderate.

The geomagnetic field is expected to be quiet to unsettled.

Daily Solar Data

	Radio	Sun	Sunspot	X-ray				Flares				
	Flux	spot	Area	Background	X	-ray Fl	ux		Op	tical		
Date	10.7 cm	No. (10 ⁻⁶ hemi.)		C	M	X	S	1	2	3	4
09 June	73	23	20	A1.5	0	0	0	0	0	0	0	0
10 June	72	11	10	A2.3	0	0	0	0	0	0	0	0
11 June	71	11	10	A2.2	0	0	0	0	0	0	0	0
12 June	70	26	40	<a1.0< td=""><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td></a1.0<>	0	0	0	0	0	0	0	0
13 June	70	27	30	A1.0	0	0	0	0	0	0	0	0
14 June	71	31	40	<a1.0< td=""><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td></a1.0<>	0	0	0	0	0	0	0	0
15 June	71	29	30	A1.2	0	0	0	0	0	0	0	0

			Dunyi	much Dam		
		roton Fluence			lectron Fluence	
	(prot	cons/cm ² -day-	sr)	(elec	etrons/cm ² -day-sr)	
Date	>1MeV	>10MeV	>100MeV	>.6MeV	>2MeV >4MeV	
09 June	2.7E + 5	1.8E+4	4.6E + 3		2.4E+7	
10 June	8.2E+4	1.7E+4	4.3E+3		1.5E+7	
11 June	2.5E+5	1.8E+4	4.1E+3		1.9E+7	
12 June	2.2E + 5	1.8E+4	4.5E+3		4.9E+7	
13 June	2.7E + 5	1.8E+4	4.2E+3		6.9E+7	
14 June	5.1E+5	1.8E+4	4.1E+3		7.8E+7	
15 June	2.4E+5	1.7E+4	4.3E+3		1.4E+7	


Daily Geomagnetic Data

-		F1 1 11 Y 1 1		771 1 7 1 1		n
		Iiddle Latitude		High Latitude		Estimated
	F	Fredericksburg		College		Planetary
Date	A	K-indices	A	K-indices	A	K-indices
09 June	25	4-5-5-4-3-2-3-3	24	3-3-6-3-5-3-1-2	33	5-6-5-5-4-3-3-3
10 June	8	2-3-2-2-2-2	5	0-3-3-2-0-1-0-0	6	2-2-3-1-1-2-2-2
11 June	4	2-1-1-1-1-1-2	1	1-1-0-0-0-0-0-1	3	2-1-0-0-1-1-2-1
12 June	8	3-2-2-2-2-1	3	1-1-1-3-2-0-0-0	6	2-1-1-2-2-2-1
13 June	6	1-1-0-1-2-2-3	0	0-0-0-0-0-0-0	3	1-0-0-0-2-1-1-2
14 June	4	1-0-0-0-2-2-2	0	0-0-0-0-0-0-0	3	0-0-0-0-1-2-2-1
15 June	9	3-2-2-3-2-2-2	3	1-2-0-3-1-0-1-0	6	3-2-1-2-2-2-2

Alerts and Warnings Issued

Date and Time of Issue (U'	Γ) Type of Alert or Warning I	Date and Time of Event (UT)
09 Jun 0308	K = 5 observed	09 Jun 00-03
09 Jun 0605	K = 5 observed	09 Jun 03-06
09 Jun 0901	$A \ge 20$ observed	09 Jun 0901
09 Jun 1821	>2MeV Electron Event ≥ 1000pfu	09 Jun 1816
12 Jun 1832	>2MeV Electron Event ≥ 1000pfu	12 Jun 1747
14 Jun 0009	>2MeV Electron Event in Progress ≥ 100	Opfu 12 Jun
15 Jun 0008	>2MeV Electron Event in Progress ≥ 100	<u>Opfu 14 Jun</u>

			Twenty-sev	en Day Outi	look		
	Radio Flux	Planetary	Largest		Radio Flux	Planetary	Largest
Date	10.7 cm	A Index	Kp Index	Date	10.7 cm	A Index	Kp Index
17 Jun	72	5	2	01 Jul	74	5	2
18	72	5	2	02	74	5	3
19	72	5	2	03	74	10	2
20	72	5	2	04	72	5	3
21	72	5	2	05	72	10	3
22	72	5	2	06	72	10	3
23	72	5	2	07	72	5	2
24	72	5	2	08	72	5	2
25	72	5	2	09	72	5	2
26	72	5	2	10	72	5	2
27	74	10	3	11	72	5	2
28	74	5	2	12	72	5	2
29	74	5	2	13	72	5	2
30	74	10	3	14	72	5	2

Energetic Event

	Time (UT	")	X-ray	Optical Inforn	nation	Peak	Sweep Freq
Date		1/2	Integ	Imp Location	Rgn	Radio Flux	Intensity
	Begin Max	Max	Class Flux	Brtns Lat CMD	#	245 2695	II IV

No Event Observed

	•	•	• .
HI	are	•	ist
	III E.		4.51.

Begin 0934 1416 1715	Time Max 0940 1422	End 0944	X-ray Class. B1.7	Imp / Brtns	ptical Location Lat CMD	Rgn #
0934 1416	Max 0940	0944	Class.	-		_
1416			B1.7			
	1422	1.400				
1715		1429	B5.0			
1/13	1720	1723	B2.1			
2001	2013	2040	B2.0			
2229	2238	2247	B2.3			
No Fla	res Obser	ved				
No Fla	res Obser	ved				
No Fla	res Obser	ved				
0925	0930	0933	B3.1			
No Fla	res Obser	ved				
No Fla	res Obser	ved				
	2001 2229 No Flan No Flan No Flan 0925 No Flan	2001 2013 2229 2238 No Flares Obser No Flares Obser No Flares Obser 0925 0930 No Flares Obser	2001 2013 2040 2229 2238 2247 No Flares Observed No Flares Observed No Flares Observed	2001 2013 2040 B2.0 2229 2238 2247 B2.3 No Flares Observed No Flares Observed No Flares Observed 0925 0930 0933 B3.1 No Flares Observed	2001 2013 2040 B2.0 2229 2238 2247 B2.3 No Flares Observed No Flares Observed No Flares Observed 0925 0930 0933 B3.1 No Flares Observed	2001 2013 2040 B2.0 2229 2238 2247 B2.3 No Flares Observed No Flares Observed No Flares Observed 0925 0930 0933 B3.1 No Flares Observed

Region Summary

Location	1		Sunspot	Characteris	stics				F	lares			
	Helio	Area	Extent	Spot	Spot	Mag		X-ray		(Optic	al	
Date (° Lat ° CMD)	Lon	(10 ⁻⁶ hemi)	(helio)	Class	Count	Class	С	M X	S	1	2	3	4
Region	8047												
27 May N26E68	214	0010	07	BXO	004	В							
28 May N26E55	214	0020	07	BXO	004	В							
29 May N26E44	212	0050	09	CRO	006	В							
30 May N27E31	211	0030	08	CRO	003	В							
31 May N27E19	210	0020	08	CRO	003	В							
01 Jun N26E08	208	0020	05	CRO	003	В							
02 Jun N26W04	206	0000	01	AXX	002	A							
03 Jun N26W17	206												
04 Jun N26W30	206												
05 Jun N26W43	206												
06 Jun N26W56	206												
07 Jun N26W69	206												
08 Jun N26W82	206												

Crossed West Limb.

Absolute heliogaphic longitude: 206

 $0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0$

	Location	1		Sunspot 6	Characteri	stics					Fla	ares			
		Helio	Area	Extent	Spot	Spot	Mag		X-ray				ptica		
Date	(° Lat ° CMD)	Lon	(10 ⁻⁶ hemi)	(helio)	Class	Count	Class	С	M	X	S	1	2	3	4
	Re	gion 80	48												
30 Ma	y S28E55	187	0000	00	AXX	001	A								
	y S29E41	188	0030	06	BXO		В								
	S29E28	188	0050	06	CRO	010	В				2				
	n S28E15	187	0120	07	DSO	013	В								
	n S28E03	186	0150	09	DSO	010	В								
04 Jur	n S28W13	188	0110	10	DSO	006	В								
	n S27W24	186	0120	10	DAO		В								
	n S28W37	186	0110	10	DAO		В								
	n S28W50	186	0090	10	DSO	007	В								
08 Jur	n S28W65	188	0030	11	CSO	004	В								
09 Jur	n S28W80	190	0020	05	CRO	002	В								
10 Jur	n S28W93	190													
								0	0	0	2	0	0	0	0
Crosse	ed West Lim	b.													
Absolı	ite heliogap	hic long	gitude: 18	6											
	0 1														
Region	ı 8050														
08 Jur	n N27E56	067	0000	01	AXX	001	A								
09 Jur	n N27E43	067	0000	00	AXX	001	A								
10 Jur	n N28E30	066	0010	00	AXX	001	A								
11 Jur	n N28E17	065	0010	00	AXX	001	A								
12 Jur	n N29E03	066	0020	04	BXO	003	В								
13 Jur	n N29W10	066	0000	00	AXX	001	A								
14 Jur	n N29W22	065	0010	03	BXO	003	В								
15 Jur	n N28W34	063	0000	00	AXX	001	A								
								0	0	0	0	0	0	0	0
Still or	n Disk.														
Absolu	ute heliogap	hic long	gitude: 06	6											
	Re	gion 80	051												
08 Jur	n N21W09	132	0000	00	AXX	001	A								
09 Jur	n N21W22	132													
10 Jur	n N21W35	132													
11 Jur	n N21W48	132													
								0	0	0	0	0	0	0	0
Died o	n Disk.														
Absolu	ate heliogap	hic long	gitude: 13	2											

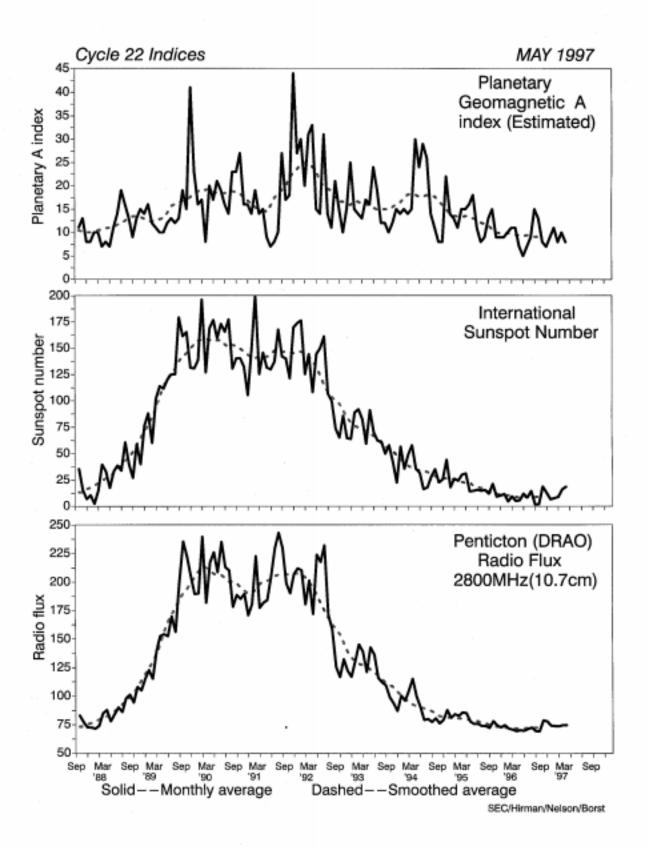
Region Summary - continued.

Locatio	n		Sunspot (Characteri	stics				Fla	ares			
	Helio	Area	Extent	Spot	Spot	Mag	X-ra	ıy	_	O	otical		
Date (° Lat ° CMD)	Lon	(10 ⁻⁶ hemi) (helio)	Class	Count	Class	C M	X	S	1	2	3 4	
Re	gion 80	52											
12 Jun N17E40	029	0020	03	CRO	003	В							
13 Jun N17E27	029	0030	05	BXO	006	В							
14 Jun N18E14	029	0030	05	CRO	008	В							
15 Jun N18E02	027	0030	05	CRO	008	В							
10000	ŭ = ,	0000	0.0	2110	000	_	0 0	0	0	0	0	0 0	

Still on Disk.

Absolute heliogaphic longitude: 27

Recent Solar Indices (preliminary) of the observed monthly mean values


		C			monthly i	mean values	o Eluw	Cosmon	nti o	
	Observed values		oot Numbers Ratio Smooth		valuec	**Penticton	o Flux Smooth	Geomagne Planetary	Smooth	
Month	SWO	RI	RI/SWO	SWO	RI	10.7 cm	Value	Ap	Value	
Wionui	5110	KI	Mbwo	5110	1995	10.7 CIII	varue	7 1 p	varue	
June	27.8	15.6	0.56	29.9	18.2	75.7	77.7	11	12.7	
July	23.8	14.5	0.61	28.1	17.0	73.9	76.9	08	12.4	
August	25.1	14.3	0.57	25.4	15.4	73.8	76.0	09	12.1	
September	16.5	11.8	0.72	22.0	13.4	72.0	74.8	13	11.8	
October	31.6	21.1	0.67	19.7	12.1	77.9	73.8	16	11.4	
November	15.7	09.0	0.57	18.5	11.4	74.2	73.2	09	10.7	
December	16.2	10.0	0.62	17.6	10.8	72.6	72.8	09	10.0	
2 *************************************	10.2	10.0	0.02	17.0	1996	, =	, =	0,	10.0	
January	17.6	11.5	0.55	16.8	10.4	74.5	72.4	09	09.8	
February	09.1	04.4	0.48	16.2	10.1	71.5	72.2	10	09.8	
March	12.1	09.2	0.76	15.4	09.7	70.7	72.1	11	09.9	
April	08.5	04.8	0.60	13.6	08.5*	69.3	71.6	11	09.7*	
May	11.8	05.5	0.47	12.9	08.1*	70.1	71.4	07	09.5*	
June	18.8	11.8	0.63	13.5	08.6*	69.6	71.8	05	09.4*	
July	13.2	08.2	0.67	13.4	08.5*	71.2	72.0	07	09.3*	
August	20.5	14.4	0.68	13.1	08.4*	72.4	72.1	09	09.4*	
September	02.9	01.6	0.62	13.3	08.5*	69.4	72.3	15	09.3*	
October	02.3	01.8*	0.78*	14.0	09.0*	69.2	72.6	13	09.1*	
November	26.7	18.6*	0.70*	15.4	10.0*	78.7	73.0	08	09.1*	
December	21.1	12.7*	0.60*	10	10.0	77.8	70.0	07	07.1	
2 *************************************		120,	0.00		1997	,,,,		0,		
January	09.0	06.5*	0.72*			74.0		09		
February	11.3	07.6*	0.67*			73.8		11		
March	14.4	08.8*	0.61*			73.5		08		
April	24.5	15.8*	0.64*			74.5		10		
May	28.6	18.5	0.64			74.6		08		

^{*}Preliminary estimates.

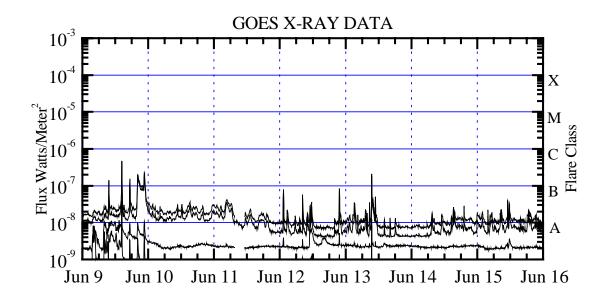
The lowest smoothed sunspot indices number for Cycle 21, RI = 12.3, occurred September 1986. The highest smoothed sunspot number for Cycle 22, RI=158.5, occurred July 1989.

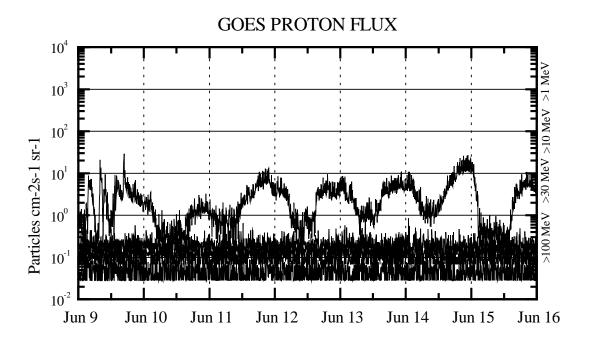
^{**} From June 1991 onward, the 10.7 cm radio flux data source is Penticton, B.C. Canada. Prior to that, it was Ottawa.

Weekly Geosynchronous Satellite Environment Summary

Week Beginning 09 June 1997

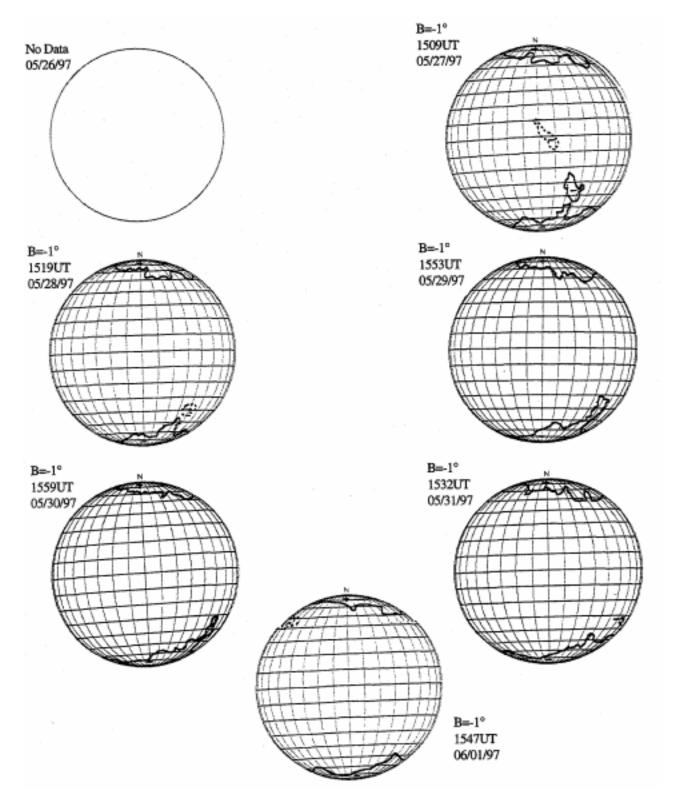
Protons plot contains the five minute averaged integral proton flux (protons/ cm²-sec-sr) as measured by GOES-9 (W135) for each of three energy thresholds: greater than 10, 50, and 100 MeV.


Electrons plot contains the five minute averaged integral electron flux (electrons/ cm²-sec-sr) with energies greater than 2 MeV at GOES-9.


Hp plot contains the five minute averaged magnetic field H component in nanoteslas (nT) as measured by GOES-9. The H component is parallel to the spin axis of the satellite, which is nearly parallel to the Earth's rotation axis.

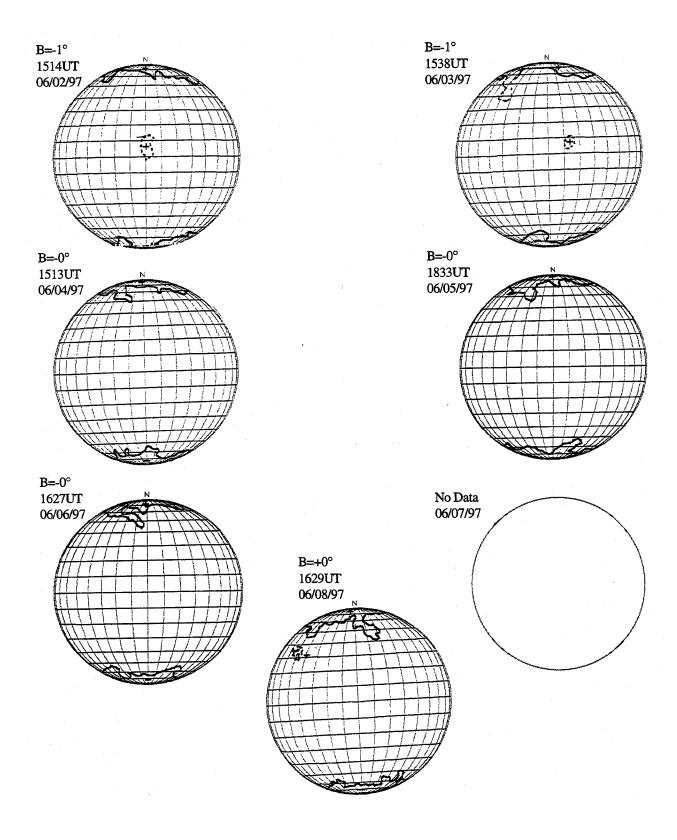
Kp plot contains the estimated planetary 3-hour K-index (derived by the USAF 55th Space Weather Squadron) in real time from magnetometers at Meanook, Canada; Sitka, AK; Glenlea, Canada; St. Johns, Canada; Ottawa, Canada; Newport, WA; Fredericksburg, VA; Boulder, CO; Fresno, CA. These data are made available through cooperation from the Geological Survey of Canada (GSC) and the US Geological Survey. These may differ from the final Kp values derived from a more extensive network of magnetometers.

The data included here are those now available in real time at the SWO and are incomplete in that they do not include the full set of parameters and energy ranges known to cause satellite operating anomalies. The proton and electron fluxes and Kp are "global" parameters that are applicable to a first order approximation over large areas. Hparallel is subject to a more localized phenomena and the measurements generally are applicable to within a few degrees of longitude of the measuring satellite.

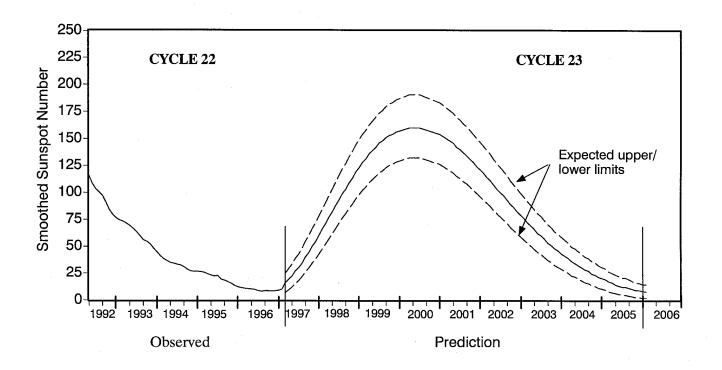


Weekly GOES Satellite X-ray and Proton Plots

Proton plot contains the five minute averaged integral proton flux (protons/cm 2 -sec-sr) as measured by GOES-9 (W135) for each of the energy thresholds: >1, >10, >30 and >100 MeV. P10 event threshold is 10 pfu (protons/cm 2 -sec-sr) at greater than 10 MeV.


X-ray plot contains five minute averaged x-ray flux (watts/m²) as measured by GOES 8 and 9 in two wavelength bands, .05 -.4 and .1 - .8 nm. The letters A, B, C, M and X refer to x-ray event levels for the .1 - .8 nm band.

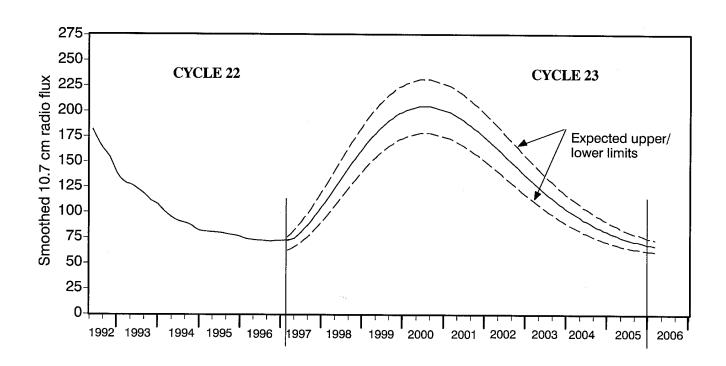
Coronal hole maps from the National Solar Observatory, Kitt Peak, Arizona
These maps are reproductions of the coronal hole contours as derived from the Kitt Peak 1083 nm raw data images. These are preliminary data, where solid (and dashed) lines are used to indicate more (and less) confidence in an inference and are printed whenever they are available at SWO.



Coronal hole maps from the National Solar Observatory, Kitt Peak, Arizona

These maps are reproductions of the coronal hole contours as derived from the Kitt Peak 1083 nm raw data images. These are preliminary data, where solid (and dashed) lines are used to indicate more (and less) confidence in an inference and are printed whenever they are available at SWO.

SEC Prediction of Smoothed Sunspot Number



	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ОСТ	NOV	DEC
1996	10 (***)	10 (***)	10 (***)	9 (***)	8 (***)	9 (***)	9 (***)	8 (***)	9 (***)	9 (***)	10 (***)	16 (9)
1997	19 (10)	22 (11)	27 (12)	30 13)	34 (14)	40 (15)	44 (16)	50 (17)	54 (18)	60 (19)	66 (20)	71 (20)
1998	77 (21)	82 (22)	88 (22)	93 (23)	99 (24)	103 (24)	109 (25)	113 (25)	119 (26)	123 (26)	128 (27)	131 (27)
1999	136 (27)	1 39 (28)	142 (28)	146 (28)	148 (29)	151 (29)	153 (29)	154 (29)	156 (29)	157 (29)	158 (29)	159 (29)
2000	160 (30)	160 (30)	160 (30)	160 (30)	159 (29)	158 (29)	157 (29)	156 (29)	155 (29)	154 (29)	152 (29)	1 50 (28)
2001	148 (28)	146 (28)	142 (28)	140 (27)	137 (27)	134 (27)	131 (27)	128 (26)	124 (26)	121 (26)	118 (25)	114 (25)
2002	111 (24)	107 (24)	103 (24)	100 (23)	97 (23)	93 (22)	89 (22)	86 (21)	82 (21)	79 (21)	76 (20)	72 (20)
2003	69 (19)	66 (19)	62 (18)	60 (18)	57 (17)	53 (17)	51 (17)	48 (16)	46 (16)	43 (15)	41 (15)	39 (14)
2004	36 (14)	34 (14)	32 (13)	30 (13)	28 (12)	27 (12)	24 (11)	23 (11)	21 (11)	20 (10)	19 (10)	17 (9)
2005	16 (9)	14 (9)	13 (8)	12 (8)	12 (8)	11 (8)	10 (7)	9 (7)	9 (7)	8 (6)	** (***)	(***)

(##) indicates possible variations from the predictions of Solar Cycle 23's values SEC/Nelson/Borst

SEC Prediction of Smoothed 10.7 cm Radio Flux

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ОСТ	NOV	DEC
1996	72	72	72	72	71	72	72	72	72	73	73	74
	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(8)
1997	77	80	84	87	91	96	100	105	109	114	119	124
	(9)	(10)	(11)	(11)	(12)	(13)	(14)	(15)	(15)	(16)	(17)	(18)
1998	129	134	139	144	149	153	158	162	167	171	175	178
	(18)	(19)	(20)	(20)	(21)	(21)	(22)	(22)	(23)	(23)	(24)	(24)
1999	182	185	188	191	193	196	198	199	201	202	203	204
	(24)	(25)	(25)	(25)	(25)	(26)	(26)	(26)	(27)	(27)	(28)	(28)
2000	205	205	205	205	204	203	202	201	200	199	197	195
	(30)	(30)	(30)	(30)	(28)	(28)	(27)	(27)	(26)	(26)	(26)	(26)
2001	193	191	188	186	183	181	178	175	172	169	166	163
	(25)	(25)	(25)	(25)	(24)	(24)	(24)	(24)	(23)	(23)	(23)	(22)
2002	160	156	153	150	147	144	140	137	134	131	128	125
	(22)	(22)	(21)	(21)	(21)	(20)	(20)	(19)	(19)	(19)	(18)	(18)
2003	122	119	116	114	111	108	106	103	101	99	97	95
	(17)	(17)	(17)	(16)	(16)	(15)	(15)	(14)	(14)	(14)	(13)	(13)
2004	92	91	89	87	85	84	82	81	79	78	77	75
	(12)	(12)	(12)	(11)	(11)	(11)	(10)	(10)	(10)	(9)	(9)	(9)
2005	74	73	72	71	71	70	69	68	68	67	**	**
	(8)	(8)	(8)	(7)	(7)	(7)	(7)	(6)	(6)	(6)	(***)	(***)

(##) indicates possible variations from the predictions of Solar Cycle 23's values SEC/Nelson/Borst

