## Space Weather Highlights

#### 20 - 26 October 1997

Solar activity was very low to low. Isolated B-class subflares occurred during most of the period. A 22 degree-long filament disappeared from the southeast quadrant late on 20 October. A long-duration B-class X-ray flare and a weak Type II radio sweep were associated with the disappearance. A space-based sensor also detected a partial-halo coronal mass ejection (CME) coincident with the disappearance. Activity rose to low levels on 21 October with the occurrence of a C3/SF flare at 21/1754UT. A halo CME was associated with this flare. Activity declined to very low levels after 21 October.

Solar wind data were received from the WIND spacecraft a few hours per day. Data were unreliable during 21 - 22 October due to spacecraft location within the magnetopause. Velocities were steady at around 300 km/sec early in the period, then gradually increased to 550 km/sec during the rest of the period. Solar wind particle densities were enhanced during 23 - 24 October peaking near 60 p/cc on the 24th. Densities dropped to around 05 p/cc during 25 - 26 October. Bz was in the plus to minus 10 nT range (GSM) during most of the period, but varied from minus 23 to plus 17 nT during 24 October. Solar sector orientation was mostly away (phi angle near 135 degrees) on 20 October, but was not discernible during 23 - 24 October. Orientation was mostly away during 25 - 26 October.

No significant proton enhancements were observed at geosynchronous altitude.

The greater than 2 MeV electron flux at geosynchronous altitude reached high levels late on 26 October.

The geomagnetic field was quiet to unsettled through late 23 October. Activity increased after 23/2100UT with active to minor storm levels observed at all latitudes and isolated major storm periods at high latitudes. The increased activity persisted through the remainder of the interval.

#### Space Weather Forecast 29 October 1997 - 24 November 1997

Solar activity is expected to range from very low to low.

No significant proton enhancements are expected at satellite altitudes.

The greater than 2 MeV electron flux at geosynchronous altitude is expected to be normal to moderate during most of the period.

The geomagnetic field is expected to be mostly quiet to unsettled.



## Daily Solar Data

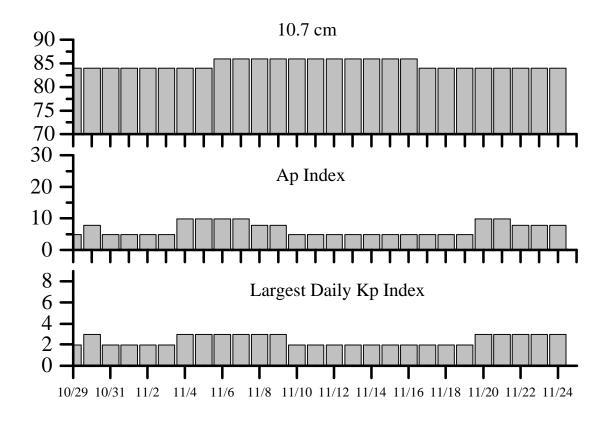
|            | Radio   | Sun    | Sunspot                 | X-ray      |   |        |    | Flares |    |       |   |   |
|------------|---------|--------|-------------------------|------------|---|--------|----|--------|----|-------|---|---|
|            | Flux    | spot   | Area                    | Background | X | ray Fl | ux |        | Op | tical |   |   |
| Date       | 10.7 cm | No. (2 | 10 <sup>-6</sup> hemi.) |            | C | M      | X  | S      | 1  | 2     | 3 | 4 |
| 20 October | 83      | 25     | 60                      | A8.1       | 0 | 0      | 0  | 0      | 0  | 0     | 0 | 0 |
| 21 October | 85      | 27     | 50                      | A5.8       | 1 | 0      | 0  | 1      | 0  | 0     | 0 | 0 |
| 22 October | 81      | 13     | 10                      | A7.2       | 0 | 0      | 0  | 0      | 0  | 0     | 0 | 0 |
| 23 October | 80      | 0      | 0                       | A2.4       | 0 | 0      | 0  | 0      | 0  | 0     | 0 | 0 |
| 24 October | 79      | 11     | 0                       | A2.0       | 0 | 0      | 0  | 0      | 0  | 0     | 0 | 0 |
| 25 October | 81      | 13     | 20                      | A2.3       | 0 | 0      | 0  | 0      | 0  | 0     | 0 | 0 |
| 26 October | 82      | 14     | 30                      | A5.5       | 0 | 0      | 0  | 0      | 0  | 0     | 0 | 0 |

Daily Particle Data

|            |          |                                              | Dany Far | ucie Daia |                                            |       |  |  |  |  |
|------------|----------|----------------------------------------------|----------|-----------|--------------------------------------------|-------|--|--|--|--|
|            |          | Proton Fluence<br>otons/cm <sup>2</sup> -day |          |           | Electron Fluence<br>(electrons/cm²-day-sr) |       |  |  |  |  |
| Date       | >1MeV    | >10MeV                                       | >100MeV  | >.6MeV    | >2MeV                                      | >4MeV |  |  |  |  |
| 20 October | 6.2E + 5 | 1.9E + 4                                     | 5.0E+3   |           | 1.7E+6                                     |       |  |  |  |  |
| 21 October | 1.1E+6   | 1.9E + 4                                     | 5.2E+3   |           | 1.9E+6                                     |       |  |  |  |  |
| 22 October | 6.7E + 5 | 2.1E+4                                       | 4.8E+3   |           | 4.2E + 5                                   |       |  |  |  |  |
| 23 October | 7.5E + 5 | 1.9E + 4                                     | 4.6E + 3 |           | 2.9E + 5                                   |       |  |  |  |  |
| 24 October | 1.6E + 5 | 1.7E + 4                                     | 4.0E + 3 |           | 1.2E + 5                                   |       |  |  |  |  |
| 25 October | 3.8E + 5 | 1.6E+4                                       | 3.6E+3   |           | 2.9E+6                                     |       |  |  |  |  |
| 26 October | 6.1E+5   | 1.6E+4                                       | 3.5E+3   |           | 4.6E+7                                     |       |  |  |  |  |

Daily Geomagnetic Data

|            | M  | Iiddle Latitude | I  | High Latitude   |    | Estimated       |
|------------|----|-----------------|----|-----------------|----|-----------------|
|            | F  | Fredericksburg  |    | College         |    | Planetary       |
| Date       | A  | K-indices       | A  | K-indices       | A  | K-indices       |
| 20 October | 5  | 2-1-3-1-1-1-1   | 2  | 0-0-3-0-1-0-0-0 | 6  | 2-1-3-1-1-2-1-1 |
| 21 October | 3  | 1-1-1-1-1-1     | 2  | 0-0-2-3-0-0-0   | 4  | 1-0-1-2-2-2-1-1 |
| 22 October | 7  | 3-3-1-1-1-2-2   | 0  | 0-0-0-0-0-0-0   | 5  | 2-2-1-1-2-2-2   |
| 23 October | 6  | 0-1-2-2-1-2-2-3 | 3  | 0-0-1-0-0-1-1-3 | 6  | 0-0-1-2-2-2-3   |
| 24 October | 18 | 2-3-3-4-4-3-2-4 | 14 | 1-2-4-5-3-1-1-2 | 25 | 2-3-3-5-6-3-2-3 |
| 25 October | 14 | 4-4-2-3-2-2-3   | 14 | 3-3-2-4-4-3-1-1 | 19 | 5-5-2-4-3-3-2-3 |
| 26 October | 15 | 4-3-1-1-3-3-3-4 | 12 | 3-1-0-0-4-5-2-1 | 14 | 4-3-0-1-3-4-3-4 |
|            |    |                 |    |                 |    |                 |




Alerts and Warnings Issued

| Date and Time of Issue (UT) | Type of Alert or Warning          | Date and Time of Event (UT) |
|-----------------------------|-----------------------------------|-----------------------------|
| 20 Oct 0904                 | K=4 observed                      | 20 Oct 06-09                |
| 21 Oct 1446                 | Type II Radio Emission            | 21 Oct 0107                 |
| 22 Oct 1650                 | $A \ge 20$ Watch                  | 25 Oct                      |
| 23 Oct 0903                 | Sudden Impulse observed at Boulde | r 23 Oct 0830               |
| 23 Oct 1813                 | $A \ge 30$ Watch                  | 26 Oct                      |
| 24 Oct 1512                 | K = 4 Observed                    | 24 Oct 12-15                |
| 24 Oct 1740                 | $A \ge 20$ Watch                  | 24 Oct                      |
| 25 Oct 0338                 | K= 4 Observed                     | 25 Oct 00-03                |
| 25 Oct 0605                 | K= 5 Observed                     | 25 Oct 03-06                |
| 25 Oct 0607                 | $A \ge 20$ Observed               | 25 Oct 0600                 |
| 26 Oct 0304                 | K= 4 Observed                     | 26 Oct 00-03                |
| 26 Oct 1637                 | > 2MeV Electron Event ≥ 1000pfu   | 26 Oct 1628                 |



## Twenty-seven Day Outlook



|        | Radio Flux | Planetary | Largest  |        | Radio Flux | Planetary | Largest  |
|--------|------------|-----------|----------|--------|------------|-----------|----------|
| Date   | 10.7 cm    | A Index   | Kp Index | Date   | 10.7 cm    | A Index   | Kp Index |
| 29 Oct | 84         | 5         | 2        | 11 Nov | 86         | 5         | 2        |
| 30     | 84         | 8         | 3        | 12     | 86         | 5         | 2        |
| 31     | 84         | 5         | 2        | 13     | 86         | 5         | 2        |
| 01 Nov | 84         | 5         | 2        | 14     | 86         | 5         | 2        |
| 02     | 84         | 5         | 2        | 15     | 86         | 5         | 2        |
| 03     | 84         | 5         | 2        | 16     | 86         | 5         | 2        |
| 04     | 84         | 10        | 3        | 17     | 84         | 5         | 2        |
| 05     | 84         | 10        | 3        | 18     | 84         | 5         | 2        |
| 06     | 86         | 10        | 3        | 19     | 84         | 5         | 2        |
| 07     | 86         | 10        | 3        | 20     | 84         | 10        | 3        |
| 08     | 86         | 8         | 3        | 21     | 84         | 10        | 3        |
| 09     | 86         | 8         | 3        | 22     | 84         | 8         | 3        |
| 10     | 86         | 5         | 2        | 23     | 84         | 8         | 3        |
|        |            |           |          | 24     | 84         | 8         | 3        |



Energetic Event

|      | Time (UT)     | X-ray      | Optical Inform | nation | Peak       | Sweep Freq |
|------|---------------|------------|----------------|--------|------------|------------|
| Date | 1/2           | Integ      | Imp Location   | Rgn    | Radio Flux | Intensity  |
|      | Begin Max Max | Class Flux | Brtns Lat CMD  | #      | 245 2695   | II IV      |

#### No Event Observed

Flare List

|            |        |           |      | Flare List |       |          |      |
|------------|--------|-----------|------|------------|-------|----------|------|
|            |        |           |      | _          | О     | ptical   |      |
|            |        | Time      |      | X-ray      | Imp / | Location | Rgn  |
| Date       | Begin  | Max       | End  | Class.     | Brtns | Lat CMD  | #    |
|            |        |           |      |            |       |          |      |
| 20 October | 0219   | 0222      | 0226 | B1.2       |       |          |      |
|            | 0330   | 0335      | 0338 | B5.1       |       |          |      |
|            | 1110   | 1117      | 1132 | B1.7       |       |          |      |
|            | 1213   | 1216      | 1219 | B1.2       |       |          |      |
|            | 1350   | 1355      | 1402 | B1.9       |       |          |      |
| 21 October | 0045   | 0236      | 0247 | B3.4       |       |          |      |
|            | 1733   | 1750      | 1819 | C3.3       | SF    | N16E07   | 8097 |
| 22 October | No Fla | res Obser | ved  |            |       |          |      |
| 23 October | No Fla | res Obser | ved  |            |       |          |      |
| 24 October | No Fla | res Obser | ved  |            |       |          |      |
| 25 October | 2035   | 2041      | 2058 | B1.7       |       |          |      |
| 26 October | 0221   | 0227      | 0232 | B1.3       |       |          |      |
|            | 2245   | 2249      | 2251 | B1.9       |       |          |      |
| •          |        |           |      |            |       |          |      |

## Region Summary

|      | Location       |                         | Sunspot | Characte | ristics |       |       | F | lares |       |    |   |
|------|----------------|-------------------------|---------|----------|---------|-------|-------|---|-------|-------|----|---|
|      | Helio          | Area                    | Extent  | Spot     | Spot    | Mag   | X-ray |   | (     | Optic | al |   |
| Date | (°Lat°CMD) Lon | (10 <sup>-6</sup> hemi) | (helio) | Class    | Count   | Class | C M X | S | 1     | 2     | 3  | 4 |

#### Region 8095

12 Oct N33E42 215 0010 03 BXO 002 B 13 Oct N33E32 212 0000 01 AXX 002 A

14 Oct N33E19 212

15 Oct N33E06 212

16 Oct N33W07 212

17 Oct N33W20 212

0 0 0 0 0 0 0 0

Died on Disk.

Absolute heliographic longitude: 212



|          | Location               | 1             |                        | Sunspot ( | Sunspot Characteristics |       |       |          |       |   | Flares |   |       |   | _        |
|----------|------------------------|---------------|------------------------|-----------|-------------------------|-------|-------|----------|-------|---|--------|---|-------|---|----------|
| <b>D</b> | 0.T 0.GP. (TD.)        | Helio         | Area                   | Extent    | Spot                    | Spot  | Mag   |          | X-ray |   | _      |   | ptica |   | _        |
| Date (   | ° Lat ° CMD)<br>Region | Lon<br>n 8096 | (10 <sup>-6</sup> hemi | ) (helio) | Class                   | Count | Class | <u>C</u> | M     | X | S      | 1 | 2     | 3 | <u>4</u> |
| 14 Oct   | N14E62                 | 169           | 0020                   | 04        | BXO                     | 003   | В     |          |       |   | 1      |   |       |   |          |
|          | N15E47                 | 171           | 0050                   | 06        | CSO                     | 006   | В     |          |       |   |        |   |       |   |          |
|          | N14E34                 | 171           | 0030                   | 06        | BXO                     | 005   | В     |          |       |   |        |   |       |   |          |
|          | N13E21                 | 171           | 0040                   | 07        | BXO                     | 010   | В     |          |       |   |        |   |       |   |          |
|          | N13E08                 | 170           | 0030                   | 06        | CSO                     | 007   | В     |          |       |   |        |   |       |   |          |
|          | N13W03                 | 167           | 0030                   | 04        | CSO                     | 004   | В     |          |       |   |        |   |       |   |          |
|          | N13W16                 | 167           | 0020                   | 02        | HSX                     | 004   | Ā     |          |       |   |        |   |       |   |          |
|          | N13W29                 | 167           | 0010                   | 03        | BXO                     | 003   | В     |          |       |   |        |   |       |   |          |
|          | N13W43                 | 168           | 0000                   | 02        |                         |       | _     |          |       |   |        |   |       |   |          |
|          | N13W56                 | 168           |                        |           |                         |       |       |          |       |   |        |   |       |   |          |
|          | N13W69                 | 168           |                        |           |                         |       |       |          |       |   |        |   |       |   |          |
|          | N13W82                 | 168           |                        |           |                         |       |       |          |       |   |        |   |       |   |          |
|          |                        |               |                        |           |                         |       |       | 0        | 0     | 0 | 1      | 0 | 0     | 0 | 0        |
| Crossec  | l West Lim             | b.            |                        |           |                         |       |       |          |       |   |        |   |       |   |          |
| Absolut  | te heliograp           | hic long      | itude: 10              | 57        |                         |       |       |          |       |   |        |   |       |   |          |
|          | <i>C</i> 1             |               | ,                      |           |                         |       |       |          |       |   |        |   |       |   |          |
|          | Region                 | ı             | 8097                   |           |                         |       |       |          |       |   |        |   |       |   |          |
| 15 Oct   | N18E77                 | 141           | 0060                   | 02        | HSX                     | 002   | A     |          |       |   |        |   |       |   |          |
| 16 Oct   | N16E69                 | 136           | 0060                   | 08        | CSO                     | 002   | В     |          |       |   | 1      |   |       |   |          |
| 17 Oct   | N17E57                 | 135           | 0080                   | 08        | CSO                     | 003   | В     |          |       |   |        |   |       |   |          |
| 18 Oct   | N17E43                 | 135           | 0060                   | 08        | CSO                     | 003   | В     |          |       |   |        |   |       |   |          |
| 19 Oct   | N17E26                 | 138           | 0030                   | 02        | HSX                     | 001   | A     |          |       |   |        |   |       |   |          |
| 20 Oct   | N16E13                 | 138           | 0040                   | 02        | HSX                     | 001   | A     |          |       |   |        |   |       |   |          |
| 21 Oct   | N16W01                 | 139           | 0040                   | 03        | CRO                     | 004   | В     | 1        |       |   | 1      |   |       |   |          |
| 22 Oct   | N16W14                 | 139           | 0010                   | 02        | BXO                     | 003   | В     |          |       |   |        |   |       |   |          |
| 23 Oct   | N16W27                 | 139           |                        |           |                         |       |       |          |       |   |        |   |       |   |          |
| 24 Oct   | N16W40                 | 139           |                        |           |                         |       |       |          |       |   |        |   |       |   |          |
| 25 Oct   | N16W53                 | 139           |                        |           |                         |       |       |          |       |   |        |   |       |   |          |
| 26 Oct   | N16W66                 | 139           |                        |           |                         |       |       |          |       |   |        |   |       |   |          |
|          |                        |               |                        |           |                         |       |       | 1        | 0     | 0 | 2      | 0 | 0     | 0 | 0        |
| Still on |                        |               |                        |           |                         |       |       |          |       |   |        |   |       |   |          |
| Absolut  | te heliograp           | _             |                        | 39        |                         |       |       |          |       |   |        |   |       |   |          |
|          |                        | gion 80:      |                        |           |                         |       |       |          |       |   |        |   |       |   |          |
|          | S26W03                 | 101           | 0000                   | 00        | AXX                     | 001   | A     |          |       |   |        |   |       |   |          |
|          | S26W16                 | 101           |                        |           |                         |       |       |          |       |   |        |   |       |   |          |
| 26 Oct   | S26W29                 | 101           |                        |           |                         |       |       | _        | -     | _ | _      | _ | _     | - |          |
| a        | D. 1                   |               |                        |           |                         |       |       | 0        | 0     | 0 | 0      | 0 | 0     | 0 | 0        |
| Still on |                        |               | • •                    | 24        |                         |       |       |          |       |   |        |   |       |   |          |
| Absolut  | te heliograp           | hic long      | gitude: 10             | 01        |                         |       |       |          |       |   |        |   |       |   |          |



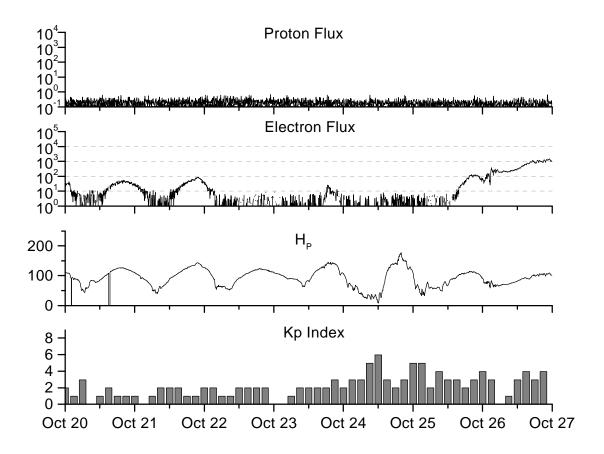
## Region Summary-continued.

|                                      | Extent (helio) | Spot<br>Class | Spot<br>Count | Mag<br>Class | C | X-ray<br>M | X   | S     | 1       | ptica<br>2 | al<br>3     | 4             |
|--------------------------------------|----------------|---------------|---------------|--------------|---|------------|-----|-------|---------|------------|-------------|---------------|
| 8099                                 | (helio)        | Class         | Count         | Class        | С | M          | X   | S     | 1       | 2          | 3           | 4             |
|                                      |                |               |               |              |   |            |     |       |         |            |             | <u> </u>      |
| 1 0000                               |                | Region 8099   |               |              |   |            |     |       |         |            |             |               |
| 1 0020                               | 04             | CRO           | 003           | В            |   |            |     |       |         |            |             |               |
| 0030                                 | 06             | CSO           | 004           | В            |   |            |     |       |         |            |             |               |
|                                      |                |               |               |              | 0 | 0          | 0   | 0     | 0       | 0          | 0           | 0             |
|                                      |                |               |               |              |   |            |     |       |         |            |             |               |
| Absolute heliographic longitude: 020 |                |               |               |              |   |            |     |       |         |            |             |               |
|                                      |                |               |               |              |   | 0          | 0 0 | 0 0 0 | 0 0 0 0 | 0 0 0 0 0  | 0 0 0 0 0 0 | 0 0 0 0 0 0 0 |



# Recent Solar Indices (preliminary) of the observed monthly mean values

|           |          |       |            |        | monthly .   | mean value   |          |             |       |  |
|-----------|----------|-------|------------|--------|-------------|--------------|----------|-------------|-------|--|
|           |          |       | ot Numbers |        |             |              | lio Flux | Geomagnetic |       |  |
| -         | Observed |       | Ratio      | Smooth |             | Penticton    | Smooth   | -           |       |  |
| Month     | SWO      | RI    | RI/SWO     | SWO    | RI          | 10.7 cm      | Value    | Ap          | Value |  |
|           |          |       |            |        | 400=        |              |          |             |       |  |
|           |          |       |            |        | 1995        |              |          |             |       |  |
| October   | 31.6     | 21.1  | 0.67       | 19.7   | 12.1        | 77.9         | 73.8     | 16          | 11.5  |  |
| November  | 15.7     | 09.0  | 0.57       | 18.5   | 11.4        | 74.2         | 73.2     | 09          | 10.8  |  |
| December  | 16.2     | 10.0  | 0.62       | 17.6   | 10.8        | 72.6         | 72.8     | 09          | 10.0  |  |
|           |          |       |            |        | 1996        |              |          |             |       |  |
| January   | 17.6     | 11.5  | 0.65       | 16.8   | 10.4        | 74.5         | 72.4     | 09          | 09.8  |  |
| February  | 09.1     | 04.4  | 0.48       | 16.2   | 10.1        | 71.5         | 72.2     | 10          | 09.8  |  |
| March     | 12.1     | 09.2  | 0.76       | 15.4   | 09.7        | 70.7         | 72.1     | 11          | 09.9  |  |
| April     | 08.5     | 04.8  | 0.56       | 13.6   | 08.5        | 69.3         | 71.6     | 11          | 09.7  |  |
| May       | 11.8     | 05.5  | 0.47       | 12.9   | 08.0        | 70.1         | 71.4     | 07          | 09.5  |  |
| June      | 18.8     | 11.8  | 0.63       | 13.5   | 08.5        | 69.6         | 71.8     | 05          | 09.4  |  |
| July      | 13.2     | 08.2  | 0.62       | 13.4   | 08.4*       | 71.2         | 72.0     | 07          | 09.3  |  |
| August    | 20.5     | 14.4  | 0.70       | 13.1   | 08.3*       | 72.4         | 72.1     | 09          | 09.4  |  |
| September | 02.9     | 01.6  | 0.55       | 13.3   | 08.5*       | 69.4         | 72.3     | 15          | 09.3  |  |
| October   | 02.3     | 00.9  | 0.39       | 14.0   | 08.9*       | 69.2         | 72.6     | 13          | 09.1  |  |
| November  | 26.7     | 17.9  | 0.59       | 15.4   | 09.9*       | 78.7         | 73.0     | 08          | 09.1  |  |
| December  | 21.1     | 13.3  | 0.63       | 16.2   | 10.5*       | 78.7<br>77.8 | 73.0     | 08          | 09.1  |  |
| December  | 21.1     | 13.3  | 0.03       |        | 10.5 · 1997 | 11.0         | 13.3     | 07          | 09.3  |  |
| January   | 09.0     | 06.5* | 0.72*      | 16.5   | 10.6*       | 74.0         | 73.4     | 09          | 09.3* |  |
| February  | 11.3     | 07.6* | 0.67*      | 17.4   | 11.2*       | 73.8         | 73.7     | 11          | 09.2* |  |
| March     | 14.4     | 08.8* | 0.61*      | 20.4   | 13.7*       | 73.5         | 75.1*    | 08          | 09.0* |  |
| April     | 24.5     | 15.8* | 0.64*      |        |             | 74.5         |          | 10          |       |  |
| May       | 28.6     |       | 0.65*      |        |             | 74.6         |          | 08          |       |  |
| June      | 22.1     | 13.1* | 0.59*      |        |             | 71.7         |          | 07          |       |  |
| July      | 17.0     | 10.5* | 0.62*      |        |             | 71.1         |          | 06*         |       |  |
| August    | 36.7     | 24.7* | 0.67*      |        |             | 79.0         |          | 08*         |       |  |
| September | 58.2     | 51.3* | 0.88*      |        |             | 96.2*        |          | 10*         |       |  |
| 1         |          |       | -          |        |             |              |          |             |       |  |


<sup>\*</sup>Preliminary estimates.

October 1996 has been selected as the start of Solar Cycle 23.

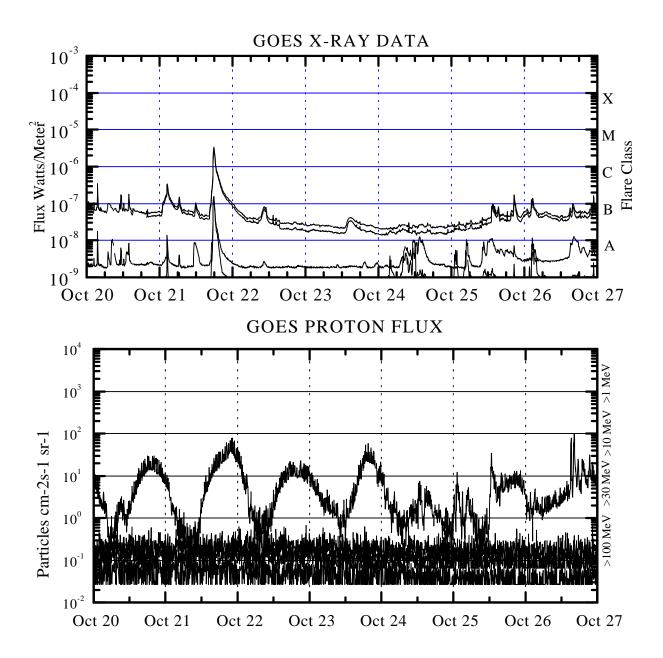
The highest smoothed sunspot number for Solar Cycle 22, RI=158.5, occurred in July 1989.

The highest smoothed 10.7cm Radio Flux value for Solar Cycle 22, of 213.1, occurred in June 1989.





Weekly Geosynchronous Satellite Environment Summary Week Beginning 20 October 1997

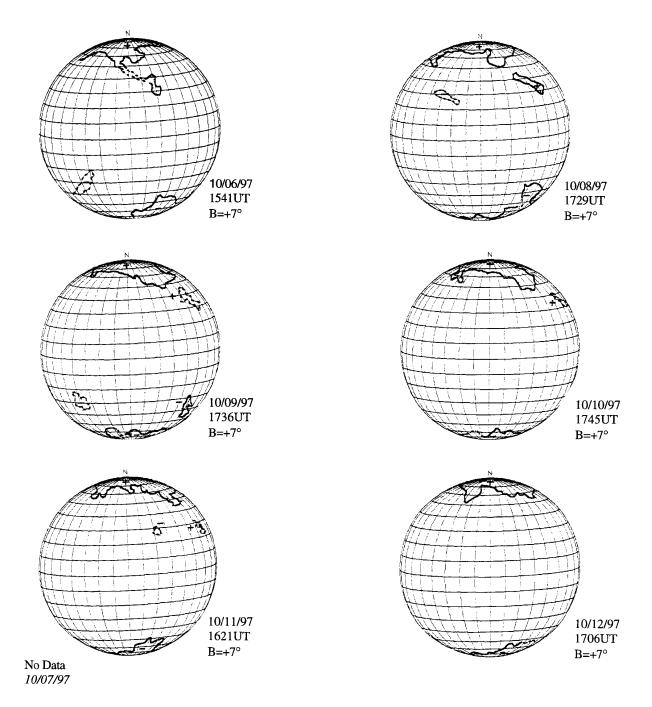

*Protons* plot contains the five-minute averaged integral proton flux (protons/ cm<sup>2</sup>-sec-sr) as measured by GOES-9 (W135) for each of three energy thresholds: greater than 10, 50, and 100 MeV.

*Electrons* plot contains the five-minute averaged integral electron flux (electrons/  $cm^2$  -sec-sr) with energies greater than 2 MeV at GOES-9.

*Hp* plot contains the five minute averaged magnetic field H component in nanoteslas (nT) as measured by GOES-9. The H component is parallel to the spin axis of the satellite, which is nearly parallel to the Earth's rotation axis. *Kp* plot contains the estimated planetary 3-hour K-index (derived by the USAF 55<sup>th</sup> Space Weather Squadron) in real time from magnetometers at Meanook, Canada; Sitka, AK; Glenlea, Canada; St. Johns, Canada; Ottawa, Canada; Newport, WA; Fredericksburg, VA; Boulder, CO; Fresno, CA and Heartland, UK. These data are made available through cooperation from the Geological Survey of Canada (GSC) and the US Geological Survey. These may differ from the final Kp values derived from a more extensive network of magnetometers.

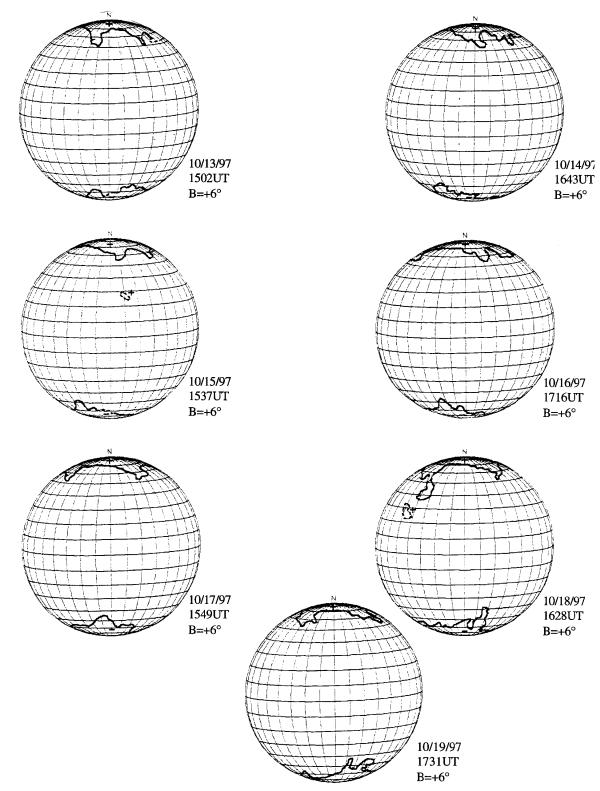
The data included here are those now available in real time at the SWO and are incomplete in that they do not include the full set of parameters and energy ranges known to cause satellite operating anomalies. The proton and electron fluxes and Kp are "global" parameters that are applicable to a first order approximation over large areas. Hparallel is subject to a more localized phenomena and the measurements generally are applicable to within a few degrees of longitude of the measuring satellite.






#### Weekly GOES Satellite X-ray and Proton Plots

Proton plot contains the five minute averaged integral proton flux (protons/cm $^2$ -sec-sr) as measured by GOES-9 (W135) for each of the energy thresholds: >1, >10, >30 and >100 MeV. P10 event threshold is 10 pfu (protons/cm $^2$ -sec-sr) at greater than 10 MeV.


*X-ray* plot contains five minute averaged x-ray flux (watts/m²) as measured by GOES 8 and 9 in two wavelength bands, .05 -.4 and .1 - .8 nm. The letters A, B, C, M and X refer to x-ray event levels for the .1 - .8 nm band.





Coronal hole maps from the National Solar Observatory, Kitt Peak, Arizona
These maps are reproductions of the coronal hole contours as derived from the Kitt Peak 1083 nm raw data images. These are preliminary data, where solid (and dashed) lines are used to indicate more (and less) confidence in an inference and are printed whenever they are available at SWO.





Coronal hole maps from the National Solar Observatory, Kitt Peak, Arizona
These maps are reproductions of the coronal hole contours as derived from the Kitt Peak 1083 nm raw data images. These are preliminary data, where solid (and dashed) lines are used to indicate more (and less) confidence in an inference and are printed whenever they are available at SWO.

