Space Weather Highlights 16 October – 22 October 2006

SEC PRF 1625 24 October 2006

Solar activity was at very low levels. Only a few low level B-class flares were observed during the period. New Region 917 (S05, L=346, class/area, Dac/200 on 22 October) formed on the disk on 19 October. By 22 October, this region grew to 200 millionths in area and was designated a beta gamma magnetic classification.

No greater than 10 MeV proton events were observed.

The greater than 2 MeV electron flux at geosynchronous orbit was at high levels on 16-22 October.

The geomagnetic field ranged from quiet to minor storm levels. The period began under the waning influence of a coronal hole high speed stream. Solar wind speed at ACE was decreasing from approximately 515 km/s while the IMF Bz was fluctuating between +/- 3 nT. The geomagnetic field was quiet to unsettled at middle latitudes while high latitudes observed a few active periods. Solar wind speed continued to decline to a minimum of 300 km/s late on 19 October. Geomagnetic conditions were quiet during this time. Early on 20 October, density, temperature, and wind speed increased; all indicative of a co-rotating interaction region in advance of a coronal hole high speed stream. The IMF Bz began fluctuating between +/- 10 nT and the geomagnetic field responded with quiet to unsettled conditions at middle latitudes with quiet to active conditions at higher latitudes. Solar wind speed continued to increase to approximately 670 km/s by midday on 21 October while the IMF Bz had calmed, not varying much beyond +/- 3 nT. The geomagnetic field at middle latitudes was quiet to unsettled with quiet to minor storm conditions observed at high latitudes on 21 October. By 22 October, solar wind speed was still elevated, but decreasing. Unsettled to active levels were observed at middle latitudes while quiet to minor storm conditions were observed at high latitudes.

Space Weather Outlook 25 October – 20 November 2006

Solar activity is expected to be at very low levels.

No greater than 10 MeV proton events are expected.

The greater than 2 MeV electron flux at geosynchronous orbit is expected to be at high levels on 25 – 26 October, 28 October – 03 November, and 10 – 20 November.

The geomagnetic field is expected to be mostly quiet to unsettled for the majority of the forecast period. Recurrent coronal hole high speed wind streams are expected to rotate into geoeffective positions on 28 October, 09 - 10 November, and again on 17 November. Unsettled to minor storm periods are possible on those dates.

Daily Solar Data

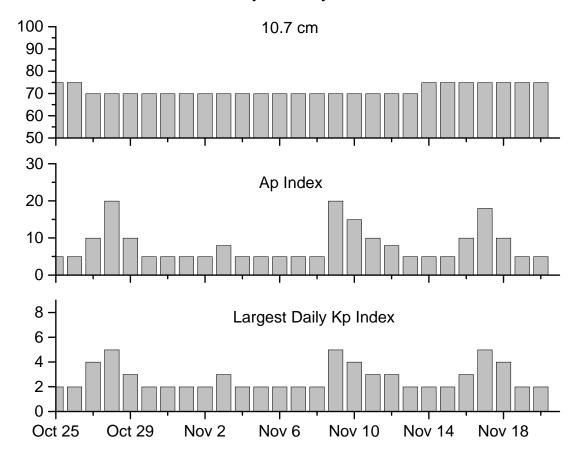
	Dany Sour Dan											
	Radio	Sun	Sunspot	X-ray	_		-	Flares				
	Flux	spot	Area	Area Background		-ray F	lux		Optical			
Date	10.7 cm	No.	(10 ⁻⁶ hemi.)	<u> </u>	С	M	X	S	1	2	3	4
16 October	70	0	0	<a1.0< td=""><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td></a1.0<>	0	0	0	0	0	0	0	0
17 October	70	0	0	<a1.0< td=""><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td></a1.0<>	0	0	0	0	0	0	0	0
18 October	70	0	0	<a1.0< td=""><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td></a1.0<>	0	0	0	0	0	0	0	0
19 October	70	14	30	<a1.0< td=""><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td></a1.0<>	0	0	0	0	0	0	0	0
20 October	71	15	30	<a1.0< td=""><td>0</td><td>0</td><td>0</td><td>1</td><td>0</td><td>0</td><td>0</td><td>0</td></a1.0<>	0	0	0	1	0	0	0	0
21 October	75	16	70	<a1.0< td=""><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td></a1.0<>	0	0	0	0	0	0	0	0
22 October	76	18	200	A3.7	0	0	0	0	0	0	0	0

Daily Particle Data

		oton Fluence ons/cm ² -day-si	Electron Fluence (electrons/cm ² -day-sr)	
Date	>1 MeV	>10 MeV	>100 MeV	>.6 MeV >2MeV >4 MeV
16 October	9.7E+5	1.7E+4	4.2E+3	9.0E+8
17 October	7.3E + 5	1.6E+4	4.3E+3	7.0E + 8
18 October	7.5E + 5	1.7E+4	4.2E+3	7.5E+8
19 October	9.6E + 5	1.7E+4	4.4E+3	7.7E+8
20 October	1.1E+6	1.8E+4	4.1E+3	9.1E+7
21 October	5.8E+6	1.6E+4	3.3E+3	1.8E+7
22 October	1.9E+6	1.6E+4	3.7E+3	9.0E+7

Daily Geomagnetic Data

	Duny Geomagnette Duna										
Middle Latitude]	High Latitude	I	Estimated					
	Fredericksburg			College]	Planetary					
Date	A	K-indices	A	A K-indices		K-indices					
16 October	7	3-1-2-1-2-1-1-3	13	1-1-2-3-4-3-1-4	8	3-2-2-1-1-1-2-3					
17 October	2	2-0-0-1-1-0-1-0	2	1-0-1-2-1-1-0-0	2	1-0-0-1-0-0-1-0					
18 October	2	2-2-1-0-0-0-1-0	3	0-1-1-2-2-0-0-0	4	1-2-1-0-0-0-1-1					
19 October	1	0-1-0-1-1-0-0-0	1	0-0-0-2-0-0-0	2	0-1-0-1-1-0-0-1					
20 October	9	2-0-2-2-3-2-3	10	2-0-1-3-4-3-2-2	10	2-0-1-2-3-3-3					
21 October	10	3-2-3-2-2-3-2-2	25	3-3-3-5-5-5-2-2	15	3-2-3-3-3-4-3-2					
22 October	12	2-4-2-2-3-2-2-3	19	3-3-5-1-4-4-2-2	13	2-5-3-1-2-2-3-3					



Alerts and Warnings Issued

Date & Time of Issue	Type of Alert or Warning	Date & Time of Event UTC
16 Oct 0504	ALERT: Electron 2MeV Integral Flux >1000pfu	16 Oct 0500
	ALERT: Electron 2MeV Integral Flux >1000pfu	17 Oct 0500
	ALERT: Electron 2MeV Integral Flux >1000pfu	18 Oct 0500
	ALERT: Electron 2MeV Integral Flux >1000pfu	19 Oct 0500
20 Oct 0103	WARNING: Geomagnetic K=4	20 Oct 0200 – 1600
20 Oct 0513	ALERT: Electron 2MeV Integral Flux >1000pfu	20 Oct 0500
20 Oct 1522	EXTENDED WARNING: Geomagnetic K-=4	20 Oct 0200 – 21/1600
20 Oct 1639	ALERT: Geomagnetic K=4	20 Oct 1639
21 Oct 1543	EXTENDED WARNING: Geomagnetic K=4	20 Oct 0200 – 22/1600
21 Oct 1846	ALERT: Electron 2MeV Integral Flux >1000pfu	21 Oct 1825
	ALERT: Geomagnetic K=5	22 Oct 0445
	ALERT: Electron 2MeV Integral Flux >1000pfu	22 Oct 1020

Twenty-seven Day Outlook

	Radio Flux	Planetary	Largest		Radio Flux	R Planetary	Largest
Date	10.7 cm	A Index	Kp Index	Date	10.7 cm	A Index	Kp Index
25 Oct	75	5	2	08 Nov	70	5	2
26	75	5	2	09	70	20	5
27	70	10	4	10	70	15	4
28	70	20	5	11	70	10	3
29	70	10	3	12	70	8	3
30	70	5	2	13	70	5	2
31	70	5	2	14	75	5	2
01 Nov	70	5	2	15	75	5	2
02	70	5	2	16	75	10	3
03	70	8	3	17	75	18	5
04	70	5	2	18	75	10	4
05	70	5	2	19	75	5	2
06	70	5	2	20	75	5	2
07	70	5	2				

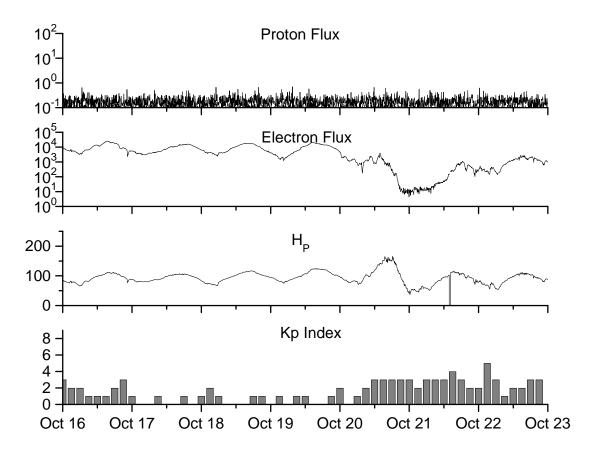
Energetic Events

				Litergei	ic Evenis				
	Time		X-ray	Optical Information			Peak	Sweep Freq	
Date	te ½		Integ	Imp/	Location	Rgn	Radio Flux	Intensity	
	Begin Ma	x Max	Class Flux	Brtns	Lat CMD	#	245 2695	II IV	
No Eve	ents Observed	!							

Flare List Optical Time Variant Leasting Personal Properties										
Date	Begin	Time Max	End	X-ray Class.	Imp / Brtns	Location Lat CMD	Rgn			
16 October	No Fla	res Obser	ved							
17 October	No Fla	res Obser	ved							
18 October	No Fla	res Obser	ved							
19 October	No Fla	res Obser	ved							
20 October	1920	1921	1931		Sf	S06W16	917			
21 October	No Fla	res Obser	ved							
22 October	0654	0701	0718	B6.5						
	0841	0844	0846	B1.6						
	1107	1110	1112	B1.0						
	1319	1326	1332	B2.9						
	1743	1749	1756	B2.8						
	1809	1812	1815	B1.0						

T	C
R₽OI∩n	Summary

					gion Su		<u>y</u>								
	Location	on	<u> </u>		Character	ristics									
		Helio	Flares Area Extent Spot Spot Mag				_	X-ra	13.7			Optic	al	_	
Date	(° Lat° CMD)		(10 ⁻⁶ hemi)		Class	Count	Class	C		X	S	1	дис 2	3	4
	Re	egion 91	6												
10 O	ct S13W08	107	0010	01	Axx	001	A								
11 O	ct S13W21	107													
12 O	ct S13W34	107													
13 O	ct S13W47	107													
14 O	ct S13W60	107													
15 O	ct S13W73	107													
16 O	ct S13W86	107													
								0	0	0	0	0	0	0	0
Cross	sed West Lin	ıb.						U	Ü	U	O	O	U	U	U
	lute heliogra		gitude: 107												
	Re	egion 91	7												
19 O	ct S05W04	344	0030	04	Bxo	004	В								
20 O	ct S05W20	347	0030	04	Bxo	005	В				1				
21 O	ct S05W33	347	0070	04	Cso	006	В								
22 O	ct S05W46	346	0200	08	Dac	008	Bg								
							J	0	0	0	1	0	0	0	0
Still	on Disk.							J	Ü	J	•		Ü	Ü	Ŭ
Abso	lute heliogra	phic lon	gitude: 344												
	\boldsymbol{c}		_												



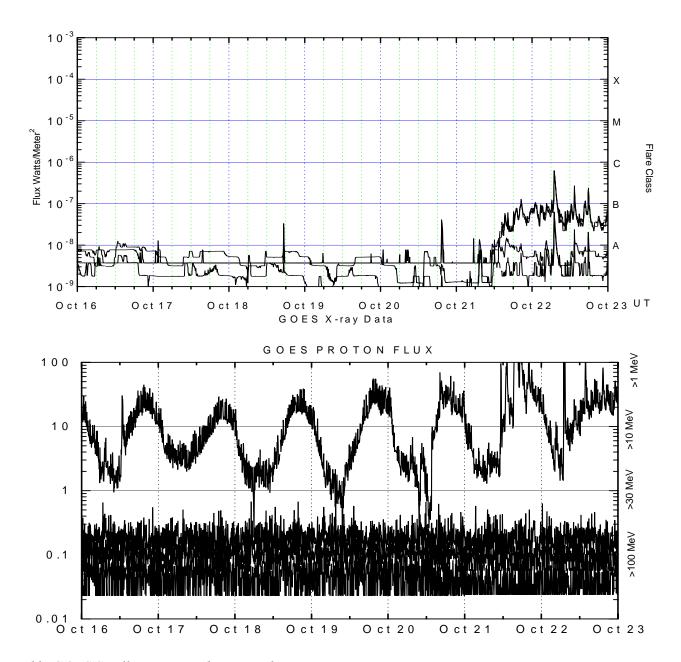
Recent Solar Indices (preliminary) of the observed monthly mean values

	Sunspot Numbers Radio Flux Geomagnetic											
	Obacowa	-			volves			_				
Month	Observed			Smooth		*Penticton		Planetary				
Month	SEC	RI	RI/SEC	SEC	RI	10.7 cm	Value	Ap	Value			
				,	2004							
October	77.9	48.4	0.62	61.3	35.9	105.7	102.1	9	13.5			
November		43.7	0.62	60.0	35.4	113.2	101.5	26	14.1			
December	34.7	17.9	0.52	58.8	35.3	94.6	101.3	11	14.8			
2005												
January	52.0	31.3	0.60	57.3	34.7	102.4	100.3	22	14.7			
February	45.4	29.1	0.64	56.4	34.7	97.3	98.5	11	14.7			
March	41.0	24.8	0.60	55.8	33.6	90.0	97.2	12	15.3			
March	41.0	24.0	0.00	33.0	33.0	70.0	71.2	12	13.3			
April	41.5	24.4	0.59	52.6	31.7	85.9	95.5	12	15.7			
May	65.4	42.6	0.65	48.3	29.0	99.5	93.2	20	14.8			
June	59.8	39.6	0.66	47.9	28.9	93.7	91.9	13	13.9			
July	71.0	39.9	0.56	48.1	29.2	96.6	90.9	16	13.1			
August	65.6	36.4	0.55	45.4	27.5	90.7	89.3	16	12.2			
September	39.2	22.1	0.56	42.9	25.9	90.8	87.8	21	11.8			
October	13.0	8.5	0.65	42.6	25.5	76.7	87.4	7	11.6			
November		18.0	0.56	42.1	24.9	86.3	86.7	8	11.1			
December	62.6	41.2	0.66	40.1	23.0	90.8	85.4	7	10.4			
				2	2006							
January	28.0	15.4	0.55	37.2	20.8	83.8	84.0	6	9.9			
February	5.3	4.7	0.89	33.4	18.7	76.6	82.6	6	9.2			
March	21.3	10.8	0.51	31.0	17.4	75.5	81.6	8	8.4			
1,101,011		10.0	0.01	01.0	2,	, 616	0110	· ·				
April	55.2	30.2	0.55			89.0		11				
May	39.6	22.2	0.56			81.0		8				
June	37.7	13.9	0.37			80.1		8				
July	22.6	12.2	0.54			75.8		7				
August	22.8	12.9	0.57			79.0		9				
September	25.2	14.5	0.58			77.8		8				

NOTE: All smoothed values after September 2002 and monthly values after March 2003 are preliminary estimates. The lowest smoothed sunspot index number for Cycle 22, RI = 8.0, occurred in May 1996. The highest smoothed sunspot number for Cycle 23, RI= 120.8, occurred April 2000. *After June 1991, the 10.7 cm radio flux data source is Penticton, B.C. Canada. Prior to that, it was Ottawa.

Weekly Geosynchronous Satellite Environment Summary Week Beginning 16 October 2006

Protons plot contains the five-minute averaged integral proton flux (protons/cm² –sec –sr) as measured by GOES-11 (W135) for each of three energy thresholds: greater than 10, 50, and 100 MeV.


Electrons plot contains the five-minute averaged integral electron flux (electrons/cm² –sec –sr) with energies greater than 2 MeV at GOES-12 (W075).

Hp plot contains the five minute averaged magnetic field H - component in nanoteslas (nT) as measured by GOES-12. The H component is parallel to the spin axis of the satellite, which is nearly parallel to the Earth's rotation axis.

Kp plot contains the estimated planetary 3-hour K-index (derived by the Air Force Weather Agency) in real time from magnetometers at Meanook, Canada; Sitka, AK; Glenlea, Canada; St. Johns, Canada; Ottawa, Canada; Newport, WA; Fredericksburg, VA; Boulder, CO; Fresno, CA and Hartland, UK. These data are made available through cooperation from the Geological Survey of Canada (GSC), British Geological Survey (BGS) and the US Geological Survey. These may differ from the final Kp values derived from a more extensive network of magnetometers.

The data included here are those now available in real time at the SEC and are incomplete in that they do not include the full set of parameters and energy ranges known to cause satellite operating anomalies. The proton and electron fluxes and Kp are "global" parameters that are applicable to a first order approximation over large areas. H parallel is subject to more localized phenomena and the measurements generally are applicable to within a few degrees of longitude of the measuring satellite.

Weekly GOES Satellite X-ray and Proton Plots

X-ray plot contains five-minute averaged x-ray flux (watts/m²⁾ as measured by GOES 12 (W075) and GOES 11 (W135) in two wavelength bands, .05 - .4 and .1 - .8 nm. The letters A, B, C, M and X refer to x-ray event levels for the .1 - .8 nm band.

Proton plot contains the five-minute averaged integral proton flux (protons/cm² –sec-sr) as measured by GOES-11 (W135) for each of the energy thresholds: >1, >10, >30 and >100 MeV. P10 event threshold is 10 pfu (protons/cm²-sec-sr) at greater than 10 MeV.

