# Space Weather Highlights 23 October – 29 October 2006

Solar activity was at very low levels. Only a few low level B-class flares were observed during the period.

No greater than 10 MeV proton events were observed.

The greater than 2 MeV electron flux at geosynchronous orbit was at high levels on 23 – 27 October.

The geomagnetic field ranged from quiet to active levels at middle latitudes, while high latitudes experienced quiet to major storm conditions. The period began under the tail end of a coronal hole high speed stream. Solar wind speed at ACE was decreasing from a high around 525 km/s while the IMF Bz did not vary much beyond +/- 5 nT. As a result, the geomagnetic field was at quiet to unsettled levels. Wind speed continued to decrease to a low of approximately 300 km/s midday on 27 October. Late on the 27th, density, temperature and wind speed increased, all indicative of a corotating interaction region in advance of a coronal hole high speed stream. Early on 28 October, the IMF Bz began fluctuating between +/- 10 nT and by the end of 28 October, the geomagnetic field had responded with unsettled to active conditions at middle latitudes, and active to major storm conditions at high latitudes. By the end of the summary period, wind speed increased to near 600 km/s and the geomagnetic field remained at similar storm levels.

# Space Weather Outlook 01 November – 27 November 2006

Solar activity is expected to be at very low to low levels.

No greater than 10 MeV proton events are expected.

The greater than 2 MeV electron flux at geosynchronous orbit is expected to be at high levels on 01 - 03 November, 10 - 23 November, and 25 - 26 November.

The geomagnetic field is expected to be mostly quiet to unsettled for the majority of the forecast period. Recurrent coronal hole high speed wind streams are expected to rotate into geoeffective positions on 09 - 11 November, 17 November, and again on 24 - 25 November. Unsettled to minor storm periods are possible on 09 - 11 November and 24 - 25 November, while unsettled to active levels are expected on 17 November.



|            |         |                               |                          | Daily So                                                                                              | ur De      | aa |   |   |    |   |   |   |
|------------|---------|-------------------------------|--------------------------|-------------------------------------------------------------------------------------------------------|------------|----|---|---|----|---|---|---|
|            | Radio   | adio Sun Sunspot X-ray Flares |                          |                                                                                                       |            |    |   |   |    |   |   |   |
|            | Flux    | spot                          | Area Background          |                                                                                                       | X-ray Flux |    |   |   | Op |   |   |   |
| Date       | 10.7 cm | No.                           | (10 <sup>-6</sup> hemi.) | )                                                                                                     | С          | М  | Х | S | 1  | 2 | 3 | 4 |
| 23 October | 76      | 50                            | 210                      | A3.4                                                                                                  | 0          | 0  | 0 | 0 | 0  | 0 | 0 | 0 |
| 24 October | 75      | 35                            | 170                      | A3.0                                                                                                  | 0          | 0  | 0 | 0 | 0  | 0 | 0 | 0 |
| 25 October | 75      | 15                            | 100                      | A2.9                                                                                                  | 0          | 0  | 0 | 0 | 0  | 0 | 0 | 0 |
| 26 October | 72      | 0                             | 0                        | A2.7                                                                                                  | 0          | 0  | 0 | 0 | 0  | 0 | 0 | 0 |
| 27 October | 72      | 14                            | 20                       | <a1.0< td=""><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td></a1.0<> | 0          | 0  | 0 | 0 | 0  | 0 | 0 | 0 |
| 28 October | 75      | 28                            | 170                      | A1.6                                                                                                  | 0          | 0  | 0 | 0 | 0  | 0 | 0 | 0 |
| 29 October | 73      | 0                             | 0                        | A1.5                                                                                                  | 0          | 0  | 0 | 0 | 0  | 0 | 0 | 0 |
|            |         |                               |                          |                                                                                                       |            |    |   |   |    |   |   |   |

Daily Solar Data

# Daily Particle Data

|                          | Pro              | oton Fluence                | Electron Fluence |                                     |  |  |  |  |
|--------------------------|------------------|-----------------------------|------------------|-------------------------------------|--|--|--|--|
|                          | (proto           | ons/cm <sup>2</sup> -day-si | •)               | (electrons/cm <sup>2</sup> -day-sr) |  |  |  |  |
| Date                     | >1 MeV           | >10 MeV                     | >100 MeV         | >.6 MeV >2MeV >4 MeV                |  |  |  |  |
| 23 October<br>24 October | 2.3E+6<br>2.6E+6 | 1.6E+4<br>1.7E+4            | 3.5E+3<br>3.5E+3 | 1.2E+8<br>1.4E+8                    |  |  |  |  |
| 25 October               | 1.3E+6           | 1.6E+4                      | 3.6E+3           | 1.2E+8                              |  |  |  |  |
| 26 October               | 1.6E+6           | 1.6E+4                      | 3.6E+3           | 1.7E+8                              |  |  |  |  |
| 27 October               | 2.3E+6           | 1.6E+4                      | 3.8E+3           | 1.3E+8                              |  |  |  |  |
| 28 October               | 1.4E+6           | 1.6E+4                      | 3.6E+3           | 1.1E+7                              |  |  |  |  |
| 29 October               | 1.5E+6           | 1.7E+4                      | 3.6E+3           | 1.6E+7                              |  |  |  |  |

# Daily Geomagnetic Data

|            | Duny Geomagnetic Data |                 |    |                 |           |                 |  |  |  |  |  |  |
|------------|-----------------------|-----------------|----|-----------------|-----------|-----------------|--|--|--|--|--|--|
|            | Μ                     | liddle Latitude | ]  |                 | Estimated |                 |  |  |  |  |  |  |
|            | F                     | redericksburg   |    | College         | ]         | Planetary       |  |  |  |  |  |  |
| Date       | Α                     | K-indices       | А  | K-indices       | Α         | K-indices       |  |  |  |  |  |  |
| 23 October | 2                     | 0-0-0-1-0-1-1-1 | 3  | 2-0-0-2-2-1-1-0 | 3         | 1-0-0-1-1-1-1-1 |  |  |  |  |  |  |
| 24 October | 3                     | 0-0-2-1-1-1-1   | 4  | 0-0-2-1-3-0-1-1 | 4         | 0-1-2-1-1-1-1   |  |  |  |  |  |  |
| 25 October | 4                     | 2-2-2-1-1-1-0-0 | 2  | 0-1-2-1-0-0-0-0 | 4         | 1-2-2-1-0-0-0-0 |  |  |  |  |  |  |
| 26 October | 1                     | 0-0-1-1-1-0-0-0 | 3  | 0-0-1-2-2-1-0-0 | 1         | 0-0-1-0-1-0-0-0 |  |  |  |  |  |  |
| 27 October | 3                     | 1-0-0-1-1-1-2-2 | 2  | 0-0-0-2-1-0-1-1 | 2         | 1-0-0-1-0-0-1-2 |  |  |  |  |  |  |
| 28 October | 12                    | 1-2-3-3-2-3-2-4 | 28 | 1-1-4-6-4-5-2-4 | 14        | 1-2-3-4-2-3-3-4 |  |  |  |  |  |  |
| 29 October | 13                    | 3-3-3-2-3-2-3-3 | 36 | 4-4-6-5-5-4-3-3 | 21        | 3-4-4-3-3-3-4-4 |  |  |  |  |  |  |
|            |                       |                 |    |                 |           |                 |  |  |  |  |  |  |



| Date & Time of Is | ssue Type of Alert or Warning               | Date & Time of Event UTC |
|-------------------|---------------------------------------------|--------------------------|
| 23 Oct 0903       | ALERT: Electron 2MeV Integral Flux >1000pfu | 23 Oct 0845              |
| 24 Oct 0923       | ALERT: Electron 2MeV Integral Flux >1000pfu | 24 Oct 0905              |
| 25 Oct 0834       | ALERT: Geomagnetic K=4                      | 25 Oct 0833              |
| 25 Oct 0942       | ALERT: Electron 2MeV Integral Flux >1000pfu | 25 Oct 0920              |
| 26 Oct 0532       | ALERT: Electron 2MeV Integral Flux >1000pfu | 26 Oct 0500              |
| 27 Oct 1452       | ALERT: Electron 2MeV Integral Flux >1000pfu | 27 Oct 0900              |
| 28 Oct 1044       | WARNING: Geomagnetic K=4                    | 28 Oct 1100 – 1600       |
| 28 Oct 1055       | ALERT: Geomagnetic K=4                      | 28 Oct 1055              |
| 28 Oct 1555       | EXTENDED WARNING: Geomagnetic K=4           | 28 Oct 1100 – 2359       |
| 28 Oct 2301       | EXTENDED WARNING: Geomagnetic K=4           | 28 Oct 1100 – 29/1600    |
| 29 Oct 1933       | WARNING: Geomagnetic K=4                    | 29 Oct 1933 - 2359       |
| 29 Oct 1946       | ALERT: Geomagnetic K=4                      | 29 Oct 1940              |
| 29 Oct 2337       | EXTENDED WARNING: Geomagnetic K=4           | 29 Oct 1933 – 30/1600    |



# Twenty-seven Day Outlook



|        | Radio Flux | Planetary | Largest  |        | Radio Fluz | x Planetary | Largest  |
|--------|------------|-----------|----------|--------|------------|-------------|----------|
| Date   | 10.7 cm    | A Index   | Kp Index | Date   | 10.7 cm    | A Index     | Kp Index |
| 01 Nov | 80         | 5         | 2        | 15 Nov | 75         | 5           | 2        |
| 02     | 85         | 5         | 2        | 16     | 75         | 10          | 3        |
| 03     | 85         | 8         | 3        | 17     | 75         | 15          | 4        |
| 04     | 85         | 8         | 3        | 18     | 75         | 10          | 3        |
| 05     | 85         | 5         | 2        | 19     | 75         | 5           | 2        |
| 06     | 85         | 5         | 2        | 20     | 75         | 5           | 2        |
| 07     | 85         | 5         | 2        | 21     | 75         | 5           | 2        |
| 08     | 85         | 5         | 2        | 22     | 75         | 5           | 2        |
| 09     | 85         | 20        | 5        | 23     | 75         | 8           | 3        |
| 10     | 85         | 15        | 4        | 24     | 75         | 12          | 4        |
| 11     | 80         | 12        | 3        | 25     | 75         | 20          | 5        |
| 12     | 75         | 10        | 3        | 26     | 80         | 8           | 3        |
| 13     | 75         | 8         | 3        | 27     | 80         | 5           | 2        |
| 14     | 75         | 5         | 2        |        |            |             |          |



|           |        |        |         |                             | j     | Energet                   | ic Events |       |      |        |            |  |
|-----------|--------|--------|---------|-----------------------------|-------|---------------------------|-----------|-------|------|--------|------------|--|
|           | Time   |        |         |                             |       | X-ray Optical Information |           |       |      |        | Sweep Free |  |
| Date      |        |        | 1/2     | ]                           | Integ | Imp/                      | Location  | Rgn   | Radi | o Flux | Intensity  |  |
|           | Begin  | Max    | Max     | Class                       | Flux  | Brtns                     | Lat CMD   | #     | 245  | 2695   | II IV      |  |
| No Even   | ts Obs | erved  |         |                             |       |                           |           |       |      |        |            |  |
|           |        |        |         |                             |       | Flar                      | e List    |       |      |        |            |  |
|           |        |        |         |                             |       | C                         | Optical   |       |      |        |            |  |
|           |        |        | Time    | •                           |       | 2                         | X-ray     | Imp / | Lo   | cation | Rgn        |  |
| Date      |        | Begin  | Max     | E                           | ind   | (                         | Class.    | Brtns | Lat  | CMD    | _          |  |
| 23 Octobe | r      | 0003   | 000     | 7 0                         | 014   | I                         | 31.9      |       |      |        |            |  |
| 24 Octobe | r      | No Fla | ares Ob | served                      |       |                           |           |       |      |        |            |  |
| 25 Octobe | r      | 1859   | 190     | 6 1                         | 913   | ]                         | B1.3      |       |      |        |            |  |
|           |        | 1930   | 193     | 7 1                         | 943   | ]                         | B1.3      |       |      |        |            |  |
| 26 Octobe | r      | No Fla | ares Ob | served                      |       |                           |           |       |      |        |            |  |
| 27 Octobe | r      | No Fla | ares Ob | served                      |       |                           |           |       |      |        |            |  |
| 28 Octobe | r      | 0526   | 053     | 2 0.                        | 534   | ]                         | B1.4      |       |      |        |            |  |
|           |        | 0654   | 065     | 8 0                         | 700   | ]                         | B1.2      |       |      |        |            |  |
|           |        | 1920   | 192     | 4 19                        | 930   | 1                         | B1.0      |       |      |        |            |  |
|           |        | 2109   | 211     | 3 2                         | 115   | 1                         | 32.5      |       |      |        |            |  |
| 29 Octobe | r      | 0436   | 044     | $\frac{1}{1}$ $\frac{1}{0}$ | 450   | 1                         | B1.2      |       |      |        |            |  |
|           | -      | 0.00   | 0.1     | - 0                         |       |                           |           |       |      |        |            |  |



|          |                          |           |                         | Reg     | gion Su             | mmary  | y     |   |      |   |   |   |       |    |   |   |
|----------|--------------------------|-----------|-------------------------|---------|---------------------|--------|-------|---|------|---|---|---|-------|----|---|---|
|          | Locatio                  | n         |                         | Sunspot | Character<br>Flares | istics |       |   |      |   |   |   |       |    |   |   |
|          |                          | Helio     | Area                    | Extent  | Spot                | Spot   | Mag   |   | X-ra | y |   | ( | Optic | al |   |   |
| Date     | (°Lat°CMD)               | Lon       | (10 <sup>-6</sup> hemi) | (helio) | Class               | Count  | Class | C | М    | Х | S | 1 | 2     | 3  | 4 |   |
|          | Re                       | gion 917  | 7                       |         |                     |        |       |   |      |   |   |   |       |    |   |   |
| 19 Oct   | S05W04                   | 344       | 0030                    | 04      | Bxo                 | 004    | В     |   |      |   |   |   |       |    |   |   |
| 20 Oct   | S05W20                   | 347       | 0030                    | 04      | Bxo                 | 005    | В     |   |      |   | 1 |   |       |    |   |   |
| 21 Oct   | S05W33                   | 347       | 0070                    | 04      | Cso                 | 006    | В     |   |      |   |   |   |       |    |   |   |
| 22 Oct   | S05W46                   | 346       | 0200                    | 08      | Dac                 | 008    | Bg    |   |      |   |   |   |       |    |   |   |
| 23 Oct   | S05W60                   | 347       | 0160                    | 10      | Dai                 | 024    | Bg    |   |      |   |   |   |       |    |   |   |
| 24 Oct   | S05W73                   | 347       | 0140                    | 11      | Cao                 | 013    | B     |   |      |   |   |   |       |    |   |   |
| 25 Oct   | S05W86                   | 347       | 0100                    | 10      | Cao                 | 005    | В     |   |      |   |   |   |       |    |   |   |
|          |                          |           |                         |         |                     |        |       | 0 | 0    | 0 | 1 | 0 | 0     | 0  | 0 |   |
| Crosse   | d West Lim               | ıb.       |                         |         |                     |        |       |   |      |   |   |   |       |    |   |   |
| Absolu   | ite heliogra             | ohic long | gitude: 344             |         |                     |        |       |   |      |   |   |   |       |    |   |   |
|          | Re                       | gion 918  | 3                       |         |                     |        |       |   |      |   |   |   |       |    |   |   |
| 23 Oct   | S04W72                   | 359       | 0050                    | 04      | Cro                 | 006    | В     |   |      |   |   |   |       |    |   |   |
| 24 Oct   | S04W85                   | 359       | 0030                    | 02      | Hrx                 | 002    | А     |   |      |   |   |   |       |    |   |   |
|          |                          |           |                         |         |                     |        |       | 0 | 0    | 0 | 0 | 0 | 0     | 0  | 0 |   |
| Crosse   | d West Lim               | ıb.       |                         |         |                     |        |       |   |      |   |   |   |       |    |   |   |
| Absolu   | ite heliogra             | ohic long | gitude: 359             |         |                     |        |       |   |      |   |   |   |       |    |   |   |
|          | Re                       | gion 919  | <b>)</b>                |         |                     |        |       |   |      |   |   |   |       |    |   |   |
| 27 Oct   | S15W01                   | 236       | 0020                    | 04      | Bvo                 | 004    | B     |   |      |   |   |   |       |    |   |   |
| 27 Oct   | S15W01                   | 230       | 0020                    | 04      | Bxo                 | 004    | B     |   |      |   |   |   |       |    |   |   |
| 20 Oct   | S15W15                   | 236       | 0020                    | 04      | DAO                 | 005    | D     |   |      |   |   |   |       |    |   |   |
| 27 000   | 515 1 20                 | 230       |                         |         |                     |        |       | 0 | 0    | 0 | 0 | 0 | 0     | 0  | 0 |   |
| Still or | Dick                     |           |                         |         |                     |        |       | 0 | 0    | 0 | 0 | 0 | U     | U  | 0 |   |
| Absolu   | i Disk.<br>ite helioarai | phic long | ritude 236              |         |                     |        |       |   |      |   |   |   |       |    |   |   |
| Auson    | ne nenograj              |           | situae. 250             |         |                     |        |       |   |      |   |   |   |       |    |   |   |
|          | Re                       | gion 920  | )                       |         |                     |        |       |   |      |   |   |   |       |    |   |   |
| 28 Oct   | S07W82                   | 303       | 0150                    | 12      | Eso                 | 005    | В     | 0 | 0    | 0 | 0 | 0 | 0     | 0  | 0 |   |
| Still or | n Diek                   |           |                         |         |                     |        |       | U | U    | U | U | U | U     | 0  | 0 |   |
| Absolu   | ite helioara             | hic lone  | ritude: 302             |         |                     |        |       |   |      |   |   |   |       |    |   |   |
| AUSUI    | ne nenograj              |           | 51100C. 303             |         |                     |        |       |   |      |   |   |   |       |    |   | _ |



| Sunspot Numbers Radio Flux Geomagnetic |              |                                 |        |                              |              |            |        |                           |        |  |  |
|----------------------------------------|--------------|---------------------------------|--------|------------------------------|--------------|------------|--------|---------------------------|--------|--|--|
| (                                      | Theoryad     | values                          | Ratio  | Smooth                       | values       | *Penticton | Smooth | Planetary                 | Smooth |  |  |
| Month                                  | SEC          |                                 | RI/SEC | SEC                          | PI           | 10.7  cm   | Value  | <u>Γ Tanctal y</u><br>Δ n | Value  |  |  |
| wionui                                 | JEC          | <u>IXI</u>                      | MOLU   | JLC                          | 1/1          | 10.7 011   | v aluc | - Ар                      | v and  |  |  |
|                                        |              |                                 |        |                              | 2004         |            |        |                           |        |  |  |
|                                        |              | 10.1                            | 0.60   | <i>(</i> <b>1 0</b>          | 25.0         | 1055       | 100.1  | 0                         | 10 5   |  |  |
| October                                | 77.9         | 48.4                            | 0.62   | 61.3                         | 35.9         | 105.7      | 102.1  | 9                         | 13.5   |  |  |
| November                               | 70.5         | 43.7                            | 0.62   | 60.0                         | 35.4         | 113.2      | 101.5  | 26                        | 14.1   |  |  |
| December                               | 34.7         | 17.9                            | 0.52   | 58.8                         | 35.3         | 94.6       | 101.3  | 11                        | 14.8   |  |  |
|                                        |              |                                 |        |                              | 2005         |            |        |                           |        |  |  |
|                                        |              |                                 |        |                              |              |            |        |                           |        |  |  |
| January                                | 52.0         | 31.3                            | 0.60   | 57.3                         | 34.7         | 102.4      | 100.3  | 22                        | 14.7   |  |  |
| February                               | 45.4         | 29.1                            | 0.64   | 56.4                         | 34.0         | 97.3       | 98.5   | 11                        | 14.6   |  |  |
| March                                  | 41.0         | 24.8                            | 0.60   | 55.8                         | 33.6         | 90.0       | 97.2   | 12                        | 15.3   |  |  |
| April                                  | <i>A</i> 1 5 | 24.4                            | 0 59   | 52.6                         | 31.7         | 85.9       | 95 5   | 12                        | 157    |  |  |
| May                                    | -1.J<br>65 / | <u>2</u> <del>т.т</del><br>Л2 б | 0.55   | <i>J</i> 2.0<br><i>I</i> 8.3 | 20.0         | 00.5       | 03.2   | $\frac{12}{20}$           | 1/1 8  |  |  |
| June                                   | 50.8         | 42.0<br>30.6                    | 0.05   | 40.5                         | 29.0<br>28.0 | 03.7       | 01.0   | 13                        | 13.0   |  |  |
| June                                   | 39.0         | 39.0                            | 0.00   | 47.7                         | 20.9         | 95.7       | 91.9   | 15                        | 13.9   |  |  |
| July                                   | 71.0         | 39.9                            | 0.56   | 48.1                         | 29.2         | 96.6       | 90.9   | 16                        | 13.1   |  |  |
| August                                 | 65.6         | 36.4                            | 0.55   | 45.4                         | 27.5         | 90.7       | 89.3   | 16                        | 12.2   |  |  |
| September                              | 39.2         | 22.1                            | 0.56   | 42.9                         | 25.9         | 90.8       | 87.8   | 21                        | 11.8   |  |  |
|                                        |              |                                 |        |                              |              |            |        |                           |        |  |  |
| October                                | 13.0         | 8.5                             | 0.65   | 42.6                         | 25.5         | 76.7       | 87.4   | 7                         | 11.6   |  |  |
| November                               | 32.2         | 18.0                            | 0.56   | 42.1                         | 24.9         | 86.3       | 86.7   | 8                         | 11.1   |  |  |
| December                               | 62.6         | 41.2                            | 0.66   | 40.1                         | 23.0         | 90.8       | 85.4   | 7                         | 10.4   |  |  |
|                                        |              |                                 |        |                              | 2006         |            |        |                           |        |  |  |
|                                        |              |                                 |        |                              |              |            |        |                           |        |  |  |
| January                                | 28.0         | 15.4                            | 0.55   | 37.2                         | 20.8         | 83.8       | 84.0   | 6                         | 9.9    |  |  |
| February                               | 5.3          | 4.7                             | 0.89   | 33.4                         | 18.7         | 76.6       | 82.6   | 6                         | 9.2    |  |  |
| March                                  | 21.3         | 10.8                            | 0.51   | 31.0                         | 17.4         | 75.5       | 81.6   | 8                         | 8.4    |  |  |
| 1                                      | 55.0         | 20.0                            | 0.55   |                              |              | 00.0       |        | 11                        |        |  |  |
| April                                  | 55.2<br>20.6 | 30.2                            | 0.55   |                              |              | 89.0       |        | 11                        |        |  |  |
| May                                    | 39.6<br>07.7 | 22.2                            | 0.56   |                              |              | 81.0       |        | 8                         |        |  |  |
| June                                   | 31.1         | 13.9                            | 0.37   |                              |              | 80.1       |        | 8                         |        |  |  |
| Julv                                   | 22.6         | 12.2                            | 0.54   |                              |              | 75.8       |        | 7                         |        |  |  |
| August                                 | 22.8         | 12.9                            | 0.57   |                              |              | 79.0       |        | 9                         |        |  |  |
| September                              | 25.2         | 14.5                            | 0.58   |                              |              | 77.8       |        | 8                         |        |  |  |

#### *Recent Solar Indices (preliminary) of the observed monthly mean values*

**<u>NOTE</u>**: All smoothed values after September 2002 and monthly values after March 2003 are preliminary estimates. The lowest smoothed sunspot index number for Cycle 22, RI = 8.0, occurred in May 1996. The highest smoothed sunspot number for Cycle 23, RI = 120.8, occurred April 2000. \*After June 1991, the 10.7 cm radio flux data source is Penticton, B.C. Canada. Prior to that, it was Ottawa.





Weekly Geosynchronous Satellite Environment Summary Week Beginning 23 October 2006

*Protons* plot contains the five-minute averaged integral proton flux (protons/cm<sup>2</sup>-sec -sr) as measured by GOES-11 (W135) for each of three energy thresholds: greater than 10, 50, and 100 MeV.

*Electrons* plot contains the five-minute averaged integral electron flux (electrons/cm<sup>2</sup>-sec -sr) with energies greater than 2 MeV at GOES-12 (W075).

Hp plot contains the five minute averaged magnetic field H - component in nanoteslas (nT) as measured by GOES-12. The H component is parallel to the spin axis of the satellite, which is nearly parallel to the Earth's rotation axis.

*Kp* plot contains the estimated planetary 3-hour K-index (derived by the Air Force Weather Agency) in real time from magnetometers at Meanook, Canada; Sitka, AK; Glenlea, Canada; St. Johns, Canada; Ottawa, Canada; Newport, WA; Fredericksburg, VA; Boulder, CO; Fresno, CA and Hartland, UK. These data are made available through cooperation from the Geological Survey of Canada (GSC), British Geological Survey (BGS) and the US Geological Survey. These may differ from the final Kp values derived from a more extensive network of magnetometers.

The data included here are those now available in real time at the SEC and are incomplete in that they do not include the full set of parameters and energy ranges known to cause satellite operating anomalies. The proton and electron fluxes and Kp are "global" parameters that are applicable to a first order approximation over large areas. H parallel is subject to more localized phenomena and the measurements generally are applicable to within a few degrees of longitude of the measuring satellite.





### Weekly GOES Satellite X-ray and Proton Plots

*X-ray* plot contains five-minute averaged x-ray flux (watts/ $m^{2}$ ) as measured by GOES 12 (W075) and GOES 11 (W135) in two wavelength bands, .05 - . 4 and .1 - .8 nm. The letters A, B, C, M and X refer to x-ray event levels for the .1 - .8 nm band.

Proton plot contains the five-minute averaged integral proton flux (protons/cm<sup>2</sup> –sec-sr) as measured by GOES-11 (W135) for each of the energy thresholds: >1, >10, >30 and >100 MeV. P10 event threshold is 10 pfu (protons/cm<sup>2</sup>-sec-sr) at greater than 10 MeV.

