Space Weather Highlights 06 November – 12 November 2006

SEC PRF 1628 14 November 2006

Solar activity was at very low to low levels. Solar activity reached low levels on 06, 07, and 12 November. Multiple C-class flares were observed on these days with the largest being a C8.8 from Region 921 (S06, L=139, class/area, Ehi/370 on 02 November) at 06/1746 UTC. This event had an associated Type II radio sweep and Tenflare with 110 sfu. LASCO C2 imagery showed a CME from the east limb at 06/1854 UTC. On 08 November, Region 923 (S04, L=003, class/area, Hkx/620 on 11 November) rotated onto the east limb. This region appeared as a large, magnetically simple region, yet has been responsible for multiple B and C-class flares.

No greater than 10 MeV proton events were observed.

The greater than 2 MeV electron flux at geosynchronous orbit was at high levels on 11-12 November.

The geomagnetic field ranged from quiet to major storm conditions at middle latitudes while quiet to severe storm periods were observed at high latitudes. The period began with a solar wind speed around 380 km/s while the IMF Bz did not vary much beyond +/- 3 nT. As a result, the geomagnetic field was quiet at all latitudes. By midday on 09 November, density, wind speed, and the IMF Bt increased as a recurrent coronal hole moved into geoeffective position. The IMF Bz began fluctuating between +13 and -15 nT. The geomagnetic field reached unsettled to active levels at middle latitudes while only unsettled levels were observed at high latitudes late on 09 November. By midday on 10 November, solar wind speed reached 630 km/s while the IMF Bz relaxed, not varying much beyond +/- 5 nT. Minor to major storm conditions were observed at middle latitudes with minor to severe storm periods at high latitudes. By midday on 11 November, solar wind speed reached a maximum around 650 km/s, with the IMF Bz not varying much beyond +/- 3 nT. Unsettled to active periods were observed at middle latitudes with active to major storm periods at high latitudes. By late on 11 November, wind speed was in decline and ended the period around 460 km/s. Mostly quiet to unsettled conditions were observed at all latitudes on 12 November.

Space Weather Outlook 15 November – 11 December 2006

Solar activity is expected to be at very low to low levels.

No greater than 10 MeV proton events are expected.

The greater than 2 MeV electron flux at geosynchronous orbit is expected to be at high levels on 15-23 November and 26-30 November, and again on 08-11 December.

The geomagnetic field is expected to be mostly quiet to unsettled for the majority of the forecast period. Recurrent coronal hole high speed wind streams are expected to rotate into geoeffective positions on 17 November, 24-25 November, and again on 07-08 December. Unsettled to active levels are expected on 17 November, while unsettled to minor storm periods are expected on 24-25 November. On 07-08 December, unsettled to major storm periods are expected.

Daily Solar Data

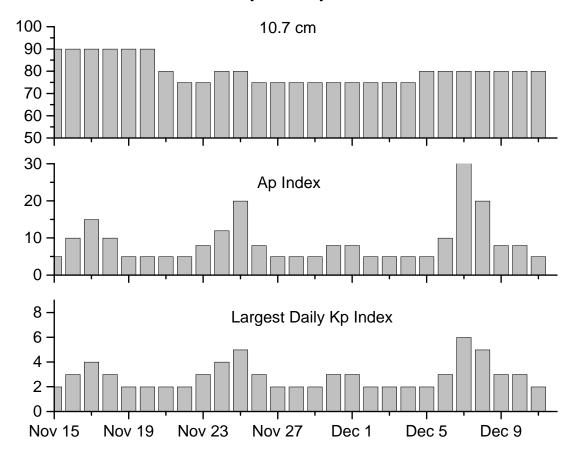
	Radio	Sun	Sunspot	X-ray	_			Flares				
	Flux	spot	Area	Background	X	-ray F	lux		Or	otical		
Date	10.7 cm	No.	<u>(10⁻⁶ hemi.)</u>)	С	M	X	S	1	2	3	4
06 Novembe	r 84	30	160	A7.0	2	0	0	0	0	0	0	0
07 Novembe	r 87	26	90	B1.1	3	0	0	0	0	0	0	0
08 Novembe	r 86	38	390	B1.1	0	0	0	0	0	0	0	0
09 Novembe	r 89	29	520	A9.8	0	0	0	0	0	0	0	0
10 Novembe	r 91	13	530	A8.8	0	0	0	0	0	0	0	0
11 Novembe	r 97	13	620	A9.6	0	0	0	0	0	0	0	0
12 Novembe	r 97	18	610	B1.0	4	0	0	0	0	0	0	0

Daily Particle Data

		oton Fluence	Electron Fluence (electrons/cm ² -day-sr)	
Date	>1 MeV	>10 MeV	>100 MeV	>.6 MeV >2MeV >4 MeV
06 November	5.8E+5	1.8E+4	3.8E+3	8.5E+6
07 November	5.5E+5	1.9E+4	4.1E+3	1.1E+7
08 November	6.5E + 5	1.8E + 4	4.1E+3	1.3E+7
09 November	1.4E+6	1.8E + 4	3.9E + 3	1.6E+7
10 November	4.9E+6	1.9E+4	3.4E+3	2.7E+6
11 November	5.7E+6	1.7E + 4	3.3E+3	2.2E+8
12 November	1.8E+6	1.6E+4	3.4E+3	6.3E+8

Daily Geomagnetic Data

	M	iddle Latitude]	High Latitude	I	Estimated
	F	redericksburg		College]	Planetary
Date	Α	K-indices	A	K-indices	A	K-indices
06 November	1	0-0-2-0-0-0-1-0	2	0-0-2-2-0-0-0	1	0-0-1-0-0-0-1
07 November	0	0-0-0-0-1-0-0-0	0	0-0-0-0-0-0-0	0	0-0-0-0-0-0-0
08 November	0	0-0-0-0-0-0-0	0	0-0-0-0-0-0-0	1	0-0-0-0-1-0-0-0
09 November	7	0-0-0-0-1-2-3-4	5	0-0-0-0-2-3-3	10	0-0-0-1-3-4-4
10 November	29	3-5-4-6-4-3-3-2	45	3-5-4-7-6-4-3-2	36	4-6-4-6-5-3-3-2
11 November	20	3-4-4-4-3-3-2	41	3-4-6-6-6-4-3-2	20	3-4-4-4-3-3-2
12 November	9	2-3-3-3-2-2-1-1	9	2-2-3-4-3-1-0-0	7	2-3-2-2-2-1-1



Alerts and Warnings Issued

Date & Time of Issu	ue Type of Alert or Warning	Date & Time of Event UTC
06 Nov 1749	SUMMARY: 10cm Radio Burst	06 Nov 1741
06 Nov 1801	ALERT: Type II Radio Emission	06 Nov 1742
08 Nov 0606	ALERT: Type IV Radio Emission	08 Nov 0435
09 Nov 1701	WARNING: Geomagnetic K=4	09 Nov 1659 - 2359
09 Nov 2323	ALERT: Geomagnetic K=4	09 Nov 2322
09 Nov 2354	EXTENDED WARNING: Geomagnetic K=4	09 Nov 1659 – 10/16
10 Nov 0008	WARNING: Geomagnetic K=5	10 Nov 0010 - 1600
10 Nov 0514	ALERT: Geomagnetic K=5	10 Nov 0514
10 Nov 1003	WARNING: Geomagnetic K= 6	10 Nov 1005 - 1600
10 Nov 1010	ALERT: Geomagnetic K=6	10 Nov 1010
10 Nov 1555	EXTENDED WARNING: Geomagnetic K=4	09 Nov 1659 – 10/23
10 Nov 2355	EXTENDED WARNING: Geomagnetic K=4	09 Nov 1659 – 11/16
11 Nov 0755	WARNING: Geomagnetic K=5	11 Nov 0800 - 1600
11 Nov 0804	ALERT: Geomagnetic K=5	11 Nov 0802
11 Nov 1044	ALERT: Electron 2MeV Integral Flux >1000pfu	11 Nov 1025
11 Nov 1555	WARNING: Geomagnetic K=4	11 Nov 1600 - 2359
11 Nov 2354	EXTENDED WARNING: Geomagnetic K=4	11 Nov 1600 – 12/16
12 Nov 0501	ALERT: Electron 2MeV Integral Flux >1000pfu	12 Nov 0500

Twenty-seven Day Outlook

	Radio Flux	Planetary	Largest		Radio Flux	Planetary	Largest
Date	10.7 cm	A Index	Kp Index	Date	10.7 cm	A Index	Kp Index
15 Nov	90	5	2	29 Nov	75	5	2
16	90	10	3	30	75	8	3
17	90	15	4	01 Dec	75	8	3
18	90	10	3	02	75	5	2
19	90	5	2	03	75	5	2
20	90	5	2	04	75	5	2
21	80	5	2	05	80	5	2
22	75	5	2	06	80	10	3
23	75	8	3	07	80	35	6
24	80	12	4	08	80	20	5
25	89	20	5	09	80	8	3
26	75	8	3	10	80	8	3
27	75	5	2	11	80	5	2
28	75	5	2				

Energetic Events

					Litergei	ic Evenis				_
•	T	ime		X-ray	Opt	ical Information	1	Peak	Sweep Freq	
Date	Date ½			Integ	Imp/	Location	Rgn	Radio Flux	Intensity	
	Begin	Max	Max	Class Flux	Brtns	Lat CMD	#	245 2695	II IV	_
No Eve	nts Obse	erved								

Flare List Optical Time X-ray Imp/ Location Rgn Date Begin Max End Class. **Brtns** Lat CMD 06 November B8.5 B3.4 B2.2 C2.4 C8.8 B5.8 07 November C1.2 B2.9 B2.3 C3.0C6.5 B5.8 08 November B4.4 B6.4 B4.3 B4.5 B1.9 B6.6 B3.1 B4.3 B1.9 B2.8 B2.3

Flare List-Continued

				Optical			
_		Time		X-ray	Imp /	Location	Rgn
Date	Begin	Max	End	Class.	Brtns	Lat CMD	
09 November	0206	0212	0215	B2.3			
	0425	0429	0432	B1.8			
	0825	0830	0833	B4.7			923
	0940	0943	0945	B1.8			
	0952	0955	0957	B2.0			
	1016	1020	1024	B1.6			923
	1058	1104	1108	B4.3			
	1135	1140	1145	B2.8			923
	1926	1937	1939	B2.9			
	2033	2039	2043	B2.6			
10 November	0120	0123	0126	B1.3			
	0135	0138	0143	B1.7			
	0207	0211	0214	B1.6			
	0307	0310	0312	B1.4			
10 November	2307	2313	2318	B6.8			
11 November	0052	0056	0059	B1.9			
	0736	0741	0743	B7.8			923
	0833	0836	0843	B1.9			923
	1010	1016	1023	B3.0			923
	1121	1125	1131	B2.1			
	1132	1136	1140	B3.2			923
	1310	1315	1319	B2.6			923
	1401	1404	1406	B2.4			923
	1430	1437	1445	B1.9			923
	1737	1744	1746	B1.7			923
	1842	1846	1848	B3.5			923
	2040	2043	2046	B1.9			923
	2252	2256	2300	B8.5			923
12 November	0015	0018	0021	B1.8			
	0138	0151	0158	B2.4			923
	0237	0240	0243	B2.6			923
	0732	0738	0742	C1.0			923
	0939	0946	0952	C1.0			923
	1038	1047	1054	C1.1			923
	2115	2118	2120	B1.2			
	2145	2155	2203	C3.3			923

Region Summary

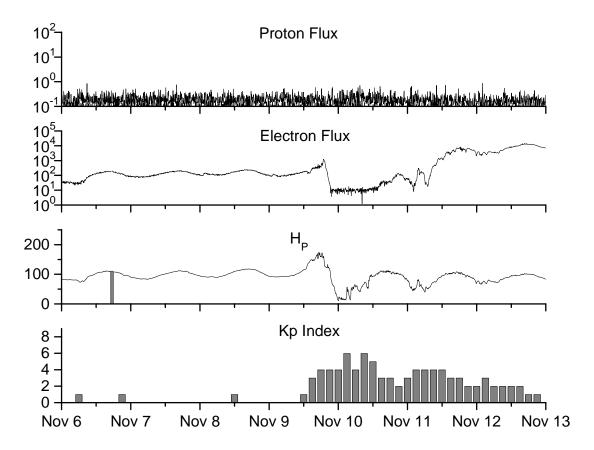
				gion Su		y									
Location	on		Sunspot	Characte Flares	ristics										
	Helio	Area	Extent	Spot	Spot	Mag		X-ra	ıV	_		Ontio	cal	_	
Date (° Lat ° CMD)			(helio)	Class	Count	Class	\overline{C}		X	S	1	2	3	4	
Re	egion 92	21													
30 Oct S06E58	137	0050	05	Cro	005	В				1					
31 Oct S07E44	138	0120	08	Dai	012	Bg									
01 Nov S07E30	139	0270	13	Eai	022	Bg									
02 Nov S06E16	139	0370	14	Ehi	031	Bg									
03 Nov S06E02	140	0250	14	Esi	026	Bg									
04 Nov S06W11	140	0320	14	Eai	022	Bg									
05 Nov S08W24	140	0290	13	Eso	026	Bg	2			2					
06 Nov S06W39	142	0140	12	Eao	009	Bg	1								
07 Nov S07W52	142	0800	10	Dso	004	В									
08 Nov S06W66	142	0100	09	Dso	006	В									
09 Nov S06W79	142	0070	09	Dso	003	В									
							3	0	0	3	0	0	0	0	
Crossed West Lin	ıb.														
Absolute heliogra	phic lon	gitude: 140													
Re	egion 92	22													
31 Oct S15E58	124	0030	05	Cro	002	В									
01 Nov S14E44	125	0040	06	Cso	004	В									
02 Nov S14E31	124	0090	07	Dso	008	В	1								
03 Nov S13E18	124	0070	07	Dso	011	В									
04 Nov S14E03	126	0080	08	Dso	010	В									
05 Nov S09W13	129	0090	10	Cao	016	В									
06 Nov S08W24	127	0020	00	Axx	001	A									
07 Nov S13W37	127	0010	07	Hsx	002	A									
08 Nov S12W50	126	0010	01	Axx	001	A									
09 Nov S12W63	126														
10 Nov S12W76	126														
11 Nov S12W89	126														
							1	0	0	0	0	0	0	0	

Crossed West Limb.

Absolute heliographic longitude: 126

Region Summary-Continued

	Locatio	n		Sunspot	Character	ristics									
			-		Flares										
		Helio	Area	Extent	Spot	Spot	Mag	_	X-ra	ıy	. —	(Optic	al	
Date	(° Lat° CMD)	Lon	(10 ⁻⁶ hem	ii) (helio)	Class	Count	Class	С	M	X	S	1	2	3	4
	Re	gion 92	3												
08 No	v S05E71	005	0280	04	Hkx	001	A								
09 No	v S06E59	004	0450	05	Hkx	006	A								
10 No	v S05E46	004	0530	06	Hkx	003	A								
11 No	v S04E34	003	0620	06	Hkx	003	A								
12 No	v S04E22	003	0610	07	Dki	008	В	3							
								3	0	0	0	0	0	0	0
Still o	n Disk.														
Absol	ute heliograj	phic lone	gitude: 00	3											



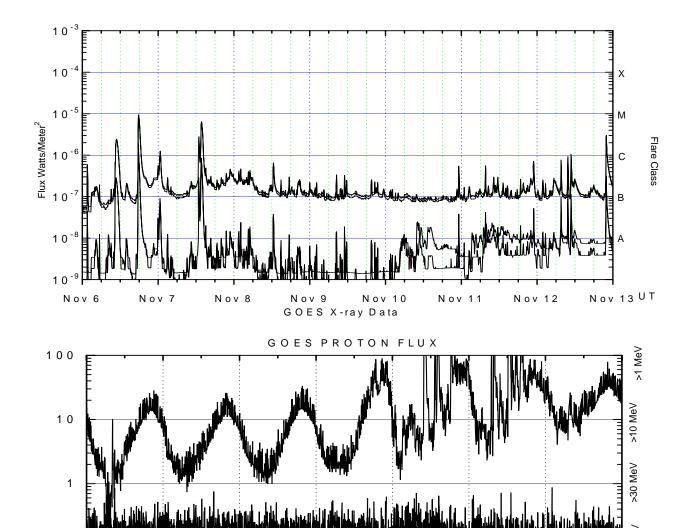
Recent Solar Indices (preliminary) of the observed monthly mean values

	Sunspot Numbers Radio Flux Geomagnetic													
	Obacii 1	_			volves									
	Observed		RI/SEC	Smooth	RI	*Penticton								
Month	SEC	RI	RI/SEC	SEC	KI	10.7 cm	Value	Ap	Value					
					2004									
November		43.7	0.62	60.0	35.4	113.2	101.5	26	14.1					
December	34.7	17.9	0.52	58.8	35.3	94.6	101.3	11	14.8					
				,	2005									
January	52.0	31.3	0.60	57.3	34.7	102.4	100.3	22	14.7					
February	45.4	29.1	0.64	56.4	34.0	97.3	98.5	11	14.6					
March	41.0	24.8	0.60	55.8	33.6	90.0	97.2	12	15.3					
	44 =	24.4	0.70	70 -	21.5	0.7.0	07.7	10	4.5.5					
April	41.5	24.4	0.59	52.6	31.7	85.9	95.5	12	15.7					
May	65.4	42.6	0.65	48.3	29.0	99.5	93.2	20	14.8					
June	59.8	39.6	0.66	47.9	28.9	93.7	91.9	13	13.9					
July	71.0	39.9	0.56	48.1	29.2	96.6	90.9	16	13.1					
August	65.6	36.4	0.55	45.4	27.5	90.7	89.3	16	12.2					
September		22.1	0.56	42.9	25.9	90.8	87.8	21	11.8					
September	37.2	22,1	0.50	12.7	23.7	70.0	07.0	21	11.0					
October	13.0	8.5	0.65	42.6	25.5	76.7	87.4	7	11.6					
November	32.2	18.0	0.56	42.1	24.9	86.3	86.7	8	11.1					
December	62.6	41.2	0.66	40.1	23.0	90.8	85.4	7	10.4					
				,	2006									
				•	2000									
January	28.0	15.4	0.55	37.2	20.8	83.8	84.0	6	9.9					
February	5.3	4.7	0.89	33.4	18.7	76.6	82.6	6	9.2					
March	21.3	10.8	0.51	31.0	17.4	75.5	81.6	8	8.4					
April	55.2	30.2	0.55	30.6	17.1	89.0	80.9	11	7.9					
May	39.6	22.2	0.56			81.0		8						
June	37.7	13.9	0.37			80.1		8						
July	22.6	12.2	0.54			75.8		7						
August	22.8	12.2	0.54			79.0		9						
September		14.5	0.57			77.8		8						
September	23.2	17.5	0.50			77.0		U						
October	15.7	10.4	0.66			74.3		7						

NOTE: All smoothed values after September 2002 and monthly values after March 2003 are preliminary estimates. The lowest smoothed sunspot index number for Cycle 22, RI = 8.0, occurred in May 1996. The highest smoothed sunspot number for Cycle 23, RI= 120.8, occurred April 2000. *After June 1991, the 10.7 cm radio flux data source is Penticton, B.C. Canada. Prior to that, it was Ottawa.

Weekly Geosynchronous Satellite Environment Summary Week Beginning 06 November 2006

Protons plot contains the five-minute averaged integral proton flux (protons/cm²-sec -sr) as measured by GOES-11 (W135) for each of three energy thresholds: greater than 10, 50, and 100 MeV.


Electrons plot contains the five-minute averaged integral electron flux (electrons/cm² –sec –sr) with energies greater than 2 MeV at GOES-12 (W075).

Hp plot contains the five minute averaged magnetic field H - component in nanoteslas (nT) as measured by GOES-12. The H component is parallel to the spin axis of the satellite, which is nearly parallel to the Earth's rotation axis.

Kp plot contains the estimated planetary 3-hour K-index (derived by the Air Force Weather Agency) in real time from magnetometers at Meanook, Canada; Sitka, AK; Glenlea, Canada; St. Johns, Canada; Ottawa, Canada; Newport, WA; Fredericksburg, VA; Boulder, CO; Fresno, CA and Hartland, UK. These data are made available through cooperation from the Geological Survey of Canada (GSC), British Geological Survey (BGS) and the US Geological Survey. These may differ from the final Kp values derived from a more extensive network of magnetometers.

The data included here are those now available in real time at the SEC and are incomplete in that they do not include the full set of parameters and energy ranges known to cause satellite operating anomalies. The proton and electron fluxes and Kp are "global" parameters that are applicable to a first order approximation over large areas. H parallel is subject to more localized phenomena and the measurements generally are applicable to within a few degrees of longitude of the measuring satellite.

Weekly GOES Satellite X-ray and Proton Plots

Nov 7

Nov8

X-ray plot contains five-minute averaged x-ray flux (watts/m²⁾ as measured by GOES 12 (W075) and GOES 11 (W135) in two wavelength bands, .05 - .4 and .1 - .8 nm. The letters A, B, C, M and X refer to x-ray event levels for the .1 - .8 nm band.

Nov 9

Nov 10

Nov 11

Nov 12

Proton plot contains the five-minute averaged integral proton flux (protons/cm² –sec-sr) as measured by GOES-11 (W135) for each of the energy thresholds: >1, >10, >30 and >100 MeV. P10 event

0.1

0.01 L Nov

6

Nov 13