Space Weather Highlights 13 November – 19 November 2006

SEC PRF 1629 21 November 2006

Solar activity was at very low to low levels. Solar activity reached low levels on 13 and 15 November. On 15 November, Region 923 (S05, L=002, class/area, Cko/660 on 14 November) produced the largest event of the period, an impulsive C1.8/sf at 15/1901 UTC.

No greater than 10 MeV proton events were observed.

The greater than 2 MeV electron flux at geosynchronous orbit was at high levels on 13 - 15 November.

The geomagnetic field ranged from quiet to isolated active levels at middle latitudes while quiet to isolated minor storm periods were observed at high latitudes. The period began with wind speed elevated at approximately 465 km/s while the IMF Bz did not vary much beyond +/-2 nT. By late on 14 November, solar wind speed decreased to a low of around 320 km/s. The geomagnetic field was mostly quiet on 13 and 14 November. By late on 15 November, density increased while the IMF Bz was around -6 nT for a prolonged period. In response, an isolated active period was observed at middle latitudes early on 16 November. By midday on 16 November, solar wind briefly increased to a round 450 km/s. By 17 November, another prolonged period of southward Bz at around -4 nT was observed. Isolated active and minor storm periods were observed at high latitudes on 17 November. On 18 and 19 November, solar wind speed was around 350 – 450 km/s with the IMF Bz not varying much beyond +/- 5 nT. The geomagnetic field at all latitudes was quiet.

Space Weather Outlook 22 November – 18 December 2006

Solar activity is expected to be at very low to low levels.

No greater than 10 MeV proton events are expected.

The greater than 2 MeV electron flux at geosynchronous orbit is expected to be at high levels on 22 - 23 November, 26 - 30 November, and again on 08 - 12 December.

The geomagnetic field is expected to be mostly quiet to unsettled for the majority of the forecast period. Recurrent coronal hole high speed wind streams are expected to rotate into geoeffective positions on 24 - 25 November, and again on 07 - 08 December. Unsettled to minor storm periods are expected on 24 - 25 November. On 07 - 08 December, unsettled to major storm periods are expected.

	Daily Solar Dala											
	Radio	Sun	Sunspot X-ray			Flares						
	Flux	spot	Area	Area Background		X-ray Flux			Optical			
Date	10.7 cm	No.	(10 ⁻⁶ hemi.)	С	М	Χ	S	1	2	3	4
13 November	r 95	30	710	A7.5	1	0	0	1	0	0	0	0
14 November	r 95	41	800	A5.7	0	0	0	0	0	0	0	0
15 November	r 96	50	680	A5.5	1	0	0	1	0	0	0	0
16 November	r 94	42	690	A6.3	0	0	0	0	0	0	0	0
17 November	r 90	38	570	A4.3	0	0	0	2	0	0	0	0
18 November	r 89	39	580	A4.3	0	0	0	2	0	0	0	0
19 November	r 85	38	550	A4.3	0	0	0	1	0	0	0	0

Daily Solar Data

Daily Particle Data

	Pr	oton Fluence	Electron Fluence								
	(prote	ons/cm ² -day-si	<i>:</i>)	(electrons/cm ² -day-sr)							
Date	>1 MeV	>10 MeV	>100 MeV	>.6 MeV $>2 MeV$ $>4 MeV$							
13 November	1.8E+6	1.5E+4	3.3E+3	7.6E+8							
14 November	2.1E+6	1.6E+4	3.3E+3	7.3E+8							
15 November	1.7E+6	1.6E+4	3.2E+3	2.0E+8							
16 November	7.1E+5	1.6E+4	3.3E+3	1.3E+7							
17 November	5.7E+5	1.6E+4	3.5E+3	2.2E+7							
18 November	2.9E+5	1.7E+4	3.9E+3	1.9E+7							
19 November	4.1E+5	1.6E+4	3.8E+3	2.8E+7							

Daily Geomagnetic Data

	Middle Latitude		I	High Latitude		Estimated
	Fredericksburg			College]	Planetary
Date	Α	K-indices	А	K-indices	Α	K-indices
13 November	1	0-0-2-0-0-1-0-0	0	0-0-1-0-0-0-0-0	2	0-0-1-0-0-0-0-1
14 November	3	0-1-1-1-1-1-2	4	0-0-1-3-2-1-1-1	4	0-1-1-1-1-1-2
15 November	6	2-3-1-1-2-1-2	7	2-1-1-3-2-0-3-1	5	2-2-0-1-1-0-0-2
16 November	5	4-1-1-0-1-1-0-0	4	3-1-2-1-1-0-0-0	8	5-2-1-0-1-1-0-1
17 November	3	1-2-1-1-2-1-0-0	15	1-2-3-2-5-2-2-4	5	2-2-1-1-2-1-0-1
18 November	0	0-0-0-0-0-0-0-0	1	0-0-0-2-0-0-0-1	2	0-0-0-1-0-0-1
19 November	2	0-2-1-1-0-0-0-0	3	2-1-2-1-0-0-0-0	3	1-1-1-1-0-0-0

Alerts and Warnings Issued

Date & Time of Issue	e Type of Alert or Warning	Date & Time of Event UTC
13 Nov 0501	ALERT: Electron 2MeV Integral Flux >1000pfu	13 Nov 0500
14 Nov 0503	ALERT: Electron 2MeV Integral Flux >1000pfu	14 Nov 0500
15 Nov 0911	ALERT: Electron 2MeV Integral Flux >1000pfu	15 Nov 0850
16 Nov 0107	WARNING: Geomagnetic $K = 4$	16 Nov 0107 – 1600
16 Nov 0112	ALERT: Geomagnetic $K = 4$	16 Nov 0109
16 Nov 0204	WARNING: Geomagnetic $K = 5$	16 Nov 0205 – 1600
16 Nov 0208	ALERT: Geomagnetic $K = 5$	16 Nov 0208

Twenty-seven Day Outlook

	Radio Flux	Planetary	Largest		Radio Flux	A Planetary	Largest
Date	10.7 cm	A Index	Kp Index	Date	10.7 cm	A Index	Kp Index
22 Nov	70	5	2	06 Dec	80	10	4
23	70	15	4	07	75	35	6
24	75	20	5	08	75	20	5
25	75	15	4	09	75	8	3
26	75	15	3	10	75	8	3
27	75	5	2	11	75	5	2
28	75	5	2	12	75	5	2
29	75	5	2	13	75	8	3
30	75	8	3	14	75	5	2
01 Dec	75	8	3	15	75	5	2
02	75	5	2	16	75	5	2
03	75	5	2	17	75	5	2
04	80	5	2	18	70	10	3
05	80	5	2				

Energetic Events													
	Time		X-ray	Optio	cal Information	n	Pe	eak	Sweep Freq				
Date		1⁄2	Integ	Imp/ Location		Rgn	Radio Flux		Intensity				
Begi	n Max	Max	Class Flux	Brtns	Lat CMD	#	245	2695	ĪI IV				
No Events Ob	served												
				Flare	e List								
Optical													
		Time		Х	K-ray	Imp /	Lo	cation	Rgn				
Date	Begin	Max	End	0	lass.	Brtns	La	t CMD					
13 November	0009	0012	2 0014	E	33.1								
	0559	0604	0608	E	86.8								
	B0640	0640) 0645	C	C1.0	Sf	SC	6E19					
	1259	1305	5 1312	E	31.5								
	1409	1415	5 1420	E	81.6								
	1535	1541	1548	B2.5									
14 November	0000	0004	l 0007	E	31.2								
	0059	0102	2 0110	E	81.0								
	0123	0130	0134	E	32.7								
	0804	0809	0814	E	81.1								
	1610	1613	3 1617	E	81.1								
15 November	0219	0230) 0241	E	81.5								
	1057	1100) 1102	E	81.0								
	1339	1343	3 1347	E	81.1								
	1848	1901	1934	C	C1.8	Sf	S 1	0E29	924				
16 November	2120	2124	2128	E	81.0								
17 November	1627	1630) 1637	E	33.4	Sf	S 0	9W47	923				
	2231	2233	3 2244	Ē	32.4	Sf	SO	7W50	923				
18 November	0816	0822	2 0831	F	32.1	Sf	SO	5W48	923				
	0927	0928	3 0933	F	33.7	Sf	S06W56		923				
19 November	1457	1513	3 1525	F	81.4		20						
	2229	2229	2233	-	· ·	Sf	S0	5W74	923				

				Re	gion Su	mmar	y									
	Locatio	on		Sunspot	Character Flares	ristics										
Helio Area Extent Spot Spot Mag X-ray Optical																
Date	(°Lat°CMD)	Lon	(10 ⁻⁶ hemi) (helio)	Class	Count	Class	C	М	Х	S	1	2	3	4	
	Re	egion 92	3													
08 N	ov S05E71	005	0280	04	Hkx	001	А									
09 N	ov S06E59	004	0450	05	Hkx	006	А									
10 N	ov S05E46	004	0530	06	Hkx	003	А									
11 N	ov S04E34	003	0620	06	Hkx	003	А									
12 N	ov S04E22	003	0610	07	Dki	008	В	3								
13 N	ov S05E07	003	0640	06	Cko	007	В									
14 N	ov S05W05	002	0660	08	Cko	007	В									
15 N	ov S05W20	004	0610	06	Cko	011	В									
16 N	ov S05W33	003	0580	06	Cko	005	В									
17 N	ov S05W48	006	0510	05	Cho	002	В				2					
18 N	ov S05W61	006	0510	05	Cko	004	В				2					
19 N	ov S05W74	005	0510	05	Hkx	002	А				1					
								3	0	0	5	0	0	0	0	
Still	on Disk.															
Absc	olute heliogra	phic lon	gitude: 002	, ,												
	Re	gion 92	94													
13 N	ov S07E59	311	0070	11	Cao	003	В									
14 N	ov S08E44	313	0040	06	Dso	003	В									
15 N	ov S08E28	316	0030	04	Dso	005	В	1			1					
16 N	ov S08E16	315	0050	05	Dao	005	В									
17 N	ov S08E00	318	0040	05	Cao	004	В									
18 N	ov S09W15	320	0030	05	Cao	002	А									
19 N	ov S09W30	321	0020	01	Cso	002	В			_				_	-	
~								1	0	0	1	0	0	0	0	
Still	on Disk.															
Absc	olute heliogra	phic lon	gitude: 318													
	Re	egion 92	5													
14 N	ov S06E52	305	0100	03	Hax	001	А									
15 N	ov S05E38	306	0040	03	Cao	004	В									
16 N	ov S05E26	305	0060	03	Hsx	002	А									
17 N	ov S05E11	307	0020	02	Hrx	002	А									
18 N	ov S07E00	305	0040	05	Cso	003	В									
19 N	ov S09W13	305	0020	03	Cso	004	А									
	-							0	0	0	0	0	0	0	0	
Still	on Disk.															
Absc	olute heliogra	phic lon	gitude: 305													

Sunspot Numbers Radio Flux Geomagnetic										
<u>(</u>	Observed	values	<u>Ratio</u>	Smooth	values	*Penticton	Smooth	Planetary	Smooth	
Month	SEC	RI	RI/SEC	SEC	RI	10.7 cm	Value	Ap	Value	
					2004					
November	70.5	43.7	0.62	60.0	35.4	113.2	101.5	26	14.1	
December	34.7	17.9	0.52	58.8	35.3	94.6	101.3	11	14.8	
					2005					
					2000					
January	52.0	31.3	0.60	57.3	34.7	102.4	100.3	22	14.7	
February	45.4	29.1	0.64	56.4	34.0	97.3	98.5	11	14.6	
March	41.0	24.8	0.60	55.8	33.6	90.0	97.2	12	15.3	
April	41.5	24.4	0.59	52.6	31.7	85.9	95.5	12	15.7	
May	65.4	42.6	0.65	48.3	29.0	99.5	93.2	20	14.8	
June	59.8	39.6	0.66	47.9	28.9	93.7	91.9	13	13.9	
Inly	71.0	30.0	0.56	/8 1	20.2	06.6	00.0	16	13.1	
Δugust	65.6	36.4	0.50	$\frac{+0.1}{45 A}$	27.2	90.7	90.9 89 3	16	12.1	
September	39.2	20. 4 22.1	0.55	42 9	27.5	90.8	87.8	21	12.2	
Beptember	57.2	22.1	0.50	72.7	23.7	70.0	07.0	21	11.0	
October	13.0	8.5	0.65	42.6	25.5	76.7	87.4	7	11.6	
November	32.2	18.0	0.56	42.1	24.9	86.3	86.7	8	11.1	
December	62.6	41.2	0.66	40.1	23.0	90.8	85.4	7	10.4	
					2006					
					_000					
January	28.0	15.4	0.55	37.2	20.8	83.8	84.0	6	9.9	
February	5.3	4.7	0.89	33.4	18.7	76.6	82.6	6	9.2	
March	21.3	10.8	0.51	31.0	17.4	75.5	81.6	8	8.4	
April	55.2	30.2	0.55	30.6	17.1	89.0	80.9	11	7.9	
May	39.6	22.2	0.56			81.0		8		
June	37.7	13.9	0.37			80.1		8		
Iulv	22.6	12.2	0 54			75 8		7		
August	22.8	12.9	0.57			79.0		, 9		
September	25.2	14.5	0.58			77.8		8		
October	15.7	10.4	0.66			74.3		7		

Recent Solar Indices (preliminary) of the observed monthly mean values

NOTE: All smoothed values after September 2002 and monthly values after March 2003 are preliminary estimates. The lowest smoothed sunspot index number for Cycle 22, RI = 8.0, occurred in May 1996. The highest smoothed sunspot number for Cycle 23, RI= 120.8, occurred April 2000. *After June 1991, the 10.7 cm radio flux data source is Penticton, B.C. Canada. Prior to that, it was Ottawa.

Weekly Geosynchronous Satellite Environment Summary Week Beginning 13 November 2006

Protons plot contains the five-minute averaged integral proton flux (protons/cm²-sec -sr) as measured by GOES-11 (W135) for each of three energy thresholds: greater than 10, 50, and 100 MeV.

Electrons plot contains the five-minute averaged integral electron flux (electrons/cm²-sec -sr) with energies greater than 2 MeV at GOES-12 (W075).

Hp plot contains the five minute averaged magnetic field H - component in nanoteslas (nT) as measured by GOES-12. The H component is parallel to the spin axis of the satellite, which is nearly parallel to the Earth's rotation axis.

Kp plot contains the estimated planetary 3-hour K-index (derived by the Air Force Weather Agency) in real time from magnetometers at Meanook, Canada; Sitka, AK; Glenlea, Canada; St. Johns, Canada; Ottawa, Canada; Newport, WA; Fredericksburg, VA; Boulder, CO; Fresno, CA and Hartland, UK. These data are made available through cooperation from the Geological Survey of Canada (GSC), British Geological Survey (BGS) and the US Geological Survey. These may differ from the final Kp values derived from a more extensive network of magnetometers.

The data included here are those now available in real time at the SEC and are incomplete in that they do not include the full set of parameters and energy ranges known to cause satellite operating anomalies. The proton and electron fluxes and Kp are "global" parameters that are applicable to a first order approximation over large areas. H parallel is subject to more localized phenomena and the measurements generally are applicable to within a few degrees of longitude of the measuring satellite.

Weekly GOES Satellite X-ray and Proton Plots

X-ray plot contains five-minute averaged x-ray flux (watts/ m^{2}) as measured by GOES 12 (W075) and GOES 11 (W135) in two wavelength bands, .05 - . 4 and .1 - .8 nm. The letters A, B, C, M and X refer to x-ray event levels for the .1 - .8 nm band.

Proton plot contains the five-minute averaged integral proton flux (protons/cm² –sec-sr) as measured by GOES-11 (W135) for each of the energy thresholds: >1, >10, >30 and >100 MeV. P10 event threshold is 10 pfu (protons/cm²-sec-sr) at greater than 10 MeV.

