Space Weather Highlights 20 November – 26 November 2006

SEC PRF 1630 28 November 2006

Solar activity was very low during the period. Isolated low-level B-class flare activity occurred on most days.

No greater than 10 MeV proton events were observed.

The greater than 2 MeV electron flux at geosynchronous orbit was at high levels on 25-26 November.

Geomagnetic field activity was at quiet levels at all latitudes through 22/1800 UTC, then increased to quiet to unsettled levels. Activity increased to unsettled to minor storm levels during 23 - 24 November with brief localized major storm periods at high latitudes. Activity decreased to quiet to active levels on 25 - 26 December with brief periods of minor storm at high latitudes. This activity was associated with a recurrent coronal hole high-speed stream. ACE RTSW data indicated the high-speed stream (HSS) commenced early on 23 November and continued through the remainder of the period. Peak wind speed associated with the HSS was 677 km/sec around midday on 26 November. Maximum IMF variations associated with the HSS included increased total field intensity with a peak of 18 nT early on 23 November and periods of southward Bz to - 12 nT early on 23 November.

Space Weather Outlook 29 November – 25 December 2006

Solar activity is expected to be at very low levels.

No greater than 10 MeV proton events are expected.

The greater than 2 MeV electron flux at geosynchronous orbit is expected to be at high levels during 29 - 30 November, 08 - 12 December, and 22 - 25 December.

The geomagnetic field is expected to be mostly quiet to unsettled for the majority of the forecast period. However, a recurrent coronal hole HSS is expected to affect the field during 07 - 08 December with active to major storm periods expected. Another recurrent HSS is expected to affect the field during 20 - 22 December with active to minor storm conditions expected.

Daily Solar Data

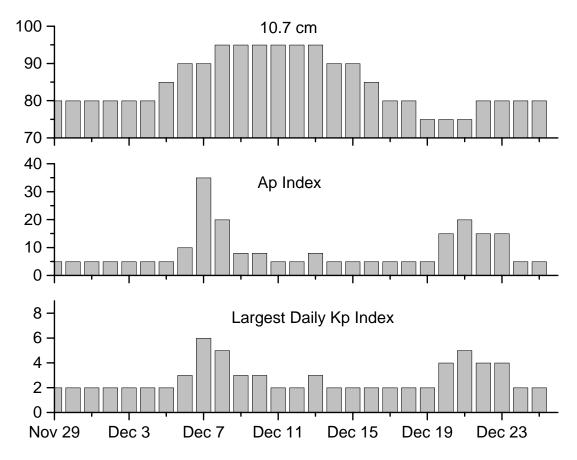
				_ ::::5 ~ :								
	Radio	Sun	Sunspot	X-ray	_			Flares				
	Flux	spot	Area	Background	X	-ray F	lux		Oı	otical		
Date	10.7 cm	No.	<u>(10⁻⁶ hemi.)</u>)	С	M	X	S	1	2	3	4
20 November	81	33	340	A5.9	0	0	0	0	0	0	0	0
21 November	78	11	10	A6.1	0	0	0	0	0	0	0	0
22 November	: 77	0	0	A2.2	0	0	0	0	0	0	0	0
23 November	: 77	0	0	A1.7	0	0	0	0	0	0	0	0
24 November	77	0	0	A4.2	0	0	0	0	0	0	0	0
25 November	79	12	260	A3.9	0	0	0	0	0	0	0	0
26 November	78	12	160	A3.3	0	0	0	0	0	0	0	0

Daily Particle Data

		oton Fluence	Electron Fluence	
	(prote	ons/cm ² -day-sı	·)	(electrons/cm ² -day-sr)
Date	>1 MeV	>10 MeV	>100 MeV	>.6 MeV >2MeV >4 MeV
20 November	3.7E + 5	1.8E+4	4.3E+3	2.9E+7
21 November	7.8E + 5	1.7E+4	4.1E+3	3.8E+7
22 November	1.3E+6	1.7E+4	4.0E+3	4.2E+7
23 November	7.2E + 5	1.6E+4	3.8E+3	2.1E+6
24 November	1.4E+6	1.6E+4	3.8E+3	2.4E+7
25 November	3.6E+6	1.6E+4	3.6E+3	1.6E+8
26 November	1.6E+6	1.6E+4	3.6E+3	2.0E+8

Daily Geomagnetic Data

	M	liddle Latitude		High Latitude	I	Estimated
	Fredericksburg			College]	Planetary
Date	Α	K-indices	A	K-indices	A	K-indices
20 November	1	0-0-0-0-1-1-1-0	1	0-1-0-0-0-0-1	2	0-0-0-0-1-1-0-1
21 November	1	1-0-0-0-1-0-0-0	0	0-0-0-0-0-0-0	1	0-0-0-0-0-0-1
22 November	3	0-0-0-1-2-1-1-2	4	2-1-0-0-0-0-2-3	4	0-0-0-1-1-3-3
23 November	8	0-1-3-3-2-1-2-3	34	4-1-5-6-5-4-3-4	18	1-1-4-5-4-3-3-3
24 November	10	3-3-3-2-2-2-2	32	2-5-5-5-6-2-2-2	21	3-5-5-3-3-2-2-2
25 November	10	1-3-1-1-2-3-3-3	21	3-2-1-4-5-5-3-2	15	2-4-2-2-3-4-4-3
26 November	9	2-3-3-2-3-1-2-2	17	3-2-3-4-5-2-2-2	15	3-4-4-3-2-1-3-3



Alerts and Warnings Issued

Date & Time of Issue	Type of Alert or Warning	Date & Time of Event UTC
23 Nov 0739	WARNING: Geomagnetic $K = 4$	23 Nov 0740 – 2359
23 Nov 1039	ALERT: Geomagnetic $K = 4$	23 Nov 1039
23 Nov 1049	WARNING: Geomagnetic $K = 5$	23 Nov 1047 – 1600
23 Nov 1056	ALERT: Geomagnetic $K = 5$	23 Nov 1051
23 Nov 1558	EXTENDED WARNING: Geomagnetic $K = 5$	23 Nov 1047 – 2359
24 Nov 0332	WARNING: Geomagnetic $K = 4$	23 Nov 0332 – 1600
24 Nov 0335	ALERT: Geomagnetic $K = 4$	23 Nov 0334
24 Nov 0345	WARNING: Geomagnetic $K = 5$	24 Nov 0344 – 1600
24 Nov 0838	ALERT: Geomagnetic $K = 5$	24 Nov 0837
24 Nov 1557	EXTENDED WARNING: Geomagnetic $K = 4$	24 Nov 0332 – 2359
24 Nov 2354	EXTENDED WARNING: Geomagnetic $K = 4$	24 Nov 0332 – 25/1600
25 Nov 0841	ALERT: Electron 2MeV Integral Flux ≥1000pf	u 25 Nov 0835
25 Nov 1555	EXTENDED WARNING: Geomagnetic $K = 4$	24 Nov 0332 – 25/2359
26 Nov 0337	WARNING: Geomagnetic $K = 4$	26 Nov 0336 – 1600
26 Nov 0338	ALERT: Geomagnetic $K = 4$	26 Nov 0337
26 Nov 0754	ALERT: Electron 2MeV Integral Flux \geq 1000pf	u 26 Nov 0735

Twenty-seven Day Outlook

	Radio Flux	Planetary	Largest		Radio Flux	R Planetary	Largest
Date	10.7 cm	A Index	Kp Index	Date	10.7 cm	A Index	Kp Index
29 Nov	80	5	2	13 Dec	95	8	3
30	80	5	2	14	90	5	2
01 Dec	80	5	2	15	90	5	2
02	80	5	2	16	85	5	2
03	80	5	2	17	80	5	2
04	80	5	2	18	80	5	2
05	85	5	2	19	75	5	2
06	90	10	3	20	75	15	4
07	90	35	6	21	75	20	5
08	95	20	5	22	80	15	4
09	95	8	3	23	80	15	4
10	95	8	3	24	80	5	2
11	95	5	2	25	80	5	2
12	95	5	2				

Energetic Events

						31101 801	te zarents					
	Time			X-ray		Opt	1	Pe	eak	Sweep Freq		
Date		1/2	Integ		Imp/	Location	Rgn	Radi	o Flux	Intensity		
	Begin	Max	Max	Class	Flux	Brtns	Lat CMD	#	245	2695	II IV	
No Ever	ıts Obse	erved										

Flare List – continued.

				Optical			
		Time		X-ray	Imp/	Location	Rgn
Date	Begin	Max	End	Class.	Brtns	Lat CMD	
25 November	0836	0840	0842	B4.5			926
	2023	2028	2032	B1.2			926
	2116	2123	2129	B1.4			926
26 November	0452	0455	0458	B1.5			926
	2137	2142	2146	B1.1			926

Region Summary

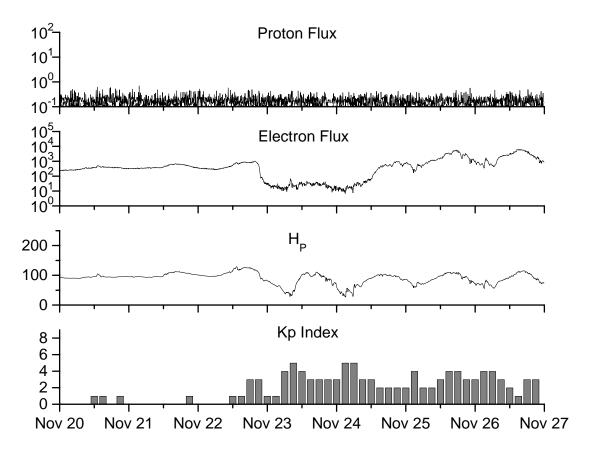
				Neg	zwn su	mma	<u>y</u>									
	Location	on		Sunspot	Character	ristics										
			Flares													
		Helio	Area	Extent	Spot	Spot	Mag	_	X-ra		. —	(Optio	cal		
Date	(°Lat°CMD)	Lon	(10 ⁻⁶ hemi) (helio)	Class	Count	Class	С	M	X	S	1	2	3	4	
	Re	egion 92	3													
08 N	ov S05E71	005	0280	04	Hkx	001	A									
09 N	ov S06E59	004	0450	05	Hkx	006	A									
10 N	ov S05E46	004	0530	06	Hkx	003	A									
11 N	ov S04E34	003	0620	06	Hkx	003	A									
12 N	ov S04E22	003	0610	07	Dki	008	В	3								
13 N	ov S05E07	003	0640	06	Cko	007	В									
14 N	ov S05W05	002	0660	08	Cko	007	В									
15 N	ov S05W20	004	0610	06	Cko	011	В									
16 N	ov S05W33	003	0580	06	Cko	005	В									
17 N	ov S05W48	006	0510	05	Cho	002	В				2					
18 N	ov S05W61	006	0510	05	Cko	004	В				2					
19 N	ov S05W74	005	0510	05	Hkx	002	A				1					
20 N	ov S06W88	006	0310	06	Hhx	001	A									
								3	0	0	5	0	0	0	0	

Crossed West Limb.

Absolute heliographic longitude: 002

Region Summary – continued.

			Re				tinued.									
	Location Sunspot Characteristics															
	-	Helio	Area	Extent	Flares Spot	Spot	Mag		X-ra	v		()ntic	al	_	
Date	(°Lat°CMD)		(10 ⁻⁶ hemi)		Class	Count	Class	$\overline{\mathbf{C}}$		X	S	1	2	3	4	
	Ro	gion 92	24													
13 N	ov S07E59	311	0070	11	Cao	003	В									
	ov S08E44	313	0040	06	Dso	003	В									
	ov S08E28	316	0030	04	Dso	005	В	1			1					
	ov S08E16	315	0050	05	Dao	005	В									
	ov S08E00	318	0040	05	Cao	004	В									
	ov S09W15	320	0030	05	Cao	002	A									
19 N	ov S09W30	321	0020	01	Cso	002	В									
20 N	ov S09W43	321	0020	01	Hrx	001	A									
21 N	ov S09W56	321	0010	01	Axx	001	A									
22 N	ov S09W69	321														
23 N	ov S09W82	321														
24 N	ov S09W95	321								•						
Cross	sed West Lim	ıh						1	0	0	1	0	0	0	0	
	olute heliogra		gitude: 318													
		-														
4 4 3 7		gion 92		0.2	**	001										
	ov S06E52	305	0100	03	Hax	001	A									
	ov S05E38	306	0040	03	Cao	004	В									
	ov S05E26	305	0060	03	Hsx	002	A									
	ov S05E11	307	0020	02	Hrx	002	A									
	ov S07E00	305	0040	05	Cso	003	В									
	ov S09W13	305	0020	03	Cso	004	A									
	ov S07W27	305	0010	01	Axx	001	A									
	ov S07W40	305														
	ov S07W53	305														
	ov S07W66	305														
	ov S07W79	305														
25 N	ov S07W92	305						0	0	0	0	0	0	0	0	
Cross	sed West Lim	ıb.						J	J	U	J	J	J	J	v	
Abso	olute heliograp	phic lon	gitude: 305													
	Region 926															
25 N	ov S08E73	140	0260	04	Hkx	002	A									
26 N	ov S08E60	140	0160	04	Hkx	002	A									
		-	-					0	0	0	0	0	0	0	0	
Still	on Disk.															
Abso	olute heliograj	phic lon	gitude: 140													
	· .	-	_													



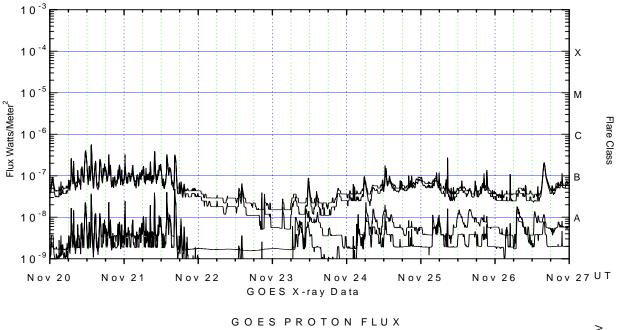
Recent Solar Indices (preliminary) of the observed monthly mean values

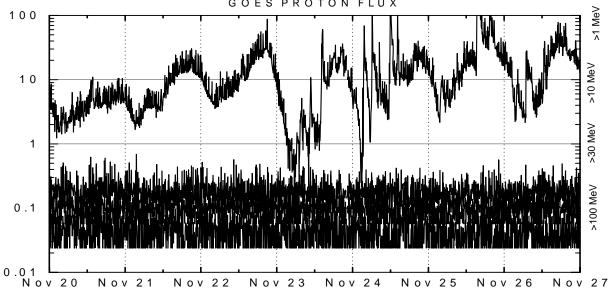
		Sunsn	ot Number		noning i	Radio	Flux	Geomagne	etic
	Observed	_		Smooth	values	*Penticton	Smooth	_	
Month	SEC	RI	RI/SEC	SEC	RI	10.7 cm	Value	Ap	Value
TVIOILII	BLC	- 1(1	Tu/bLc			10.7 CIII	<u> </u>		v arac
				-	2004				
NT 1	70.5	42.7	0.60	60.0	25.4	112.0	101.5	26	1 / 1
November	70.5	43.7	0.62	60.0	35.4	113.2	101.5	26	14.1
December	34.7	17.9	0.52	58.8	35.3	94.6	101.3	11	14.8
					2005				
January	52.0	31.3	0.60	57.3	34.7	102.4	100.3	22	14.7
February	45.4	29.1	0.64	56.4	34.0	97.3	98.5	11	14.6
March	41.0	24.8	0.60	55.8	33.6	90.0	97.2	12	15.3
Ai1	41.5	24.4	0.50	52.6	31.7	85.9	95.5	10	15.7
April Max	41.5	24.4	0.59	32.6 48.3		83.9 99.5	93.3	12	13.7
May	65.4	42.6	0.65		29.0			20	
June	59.8	39.6	0.66	47.9	28.9	93.7	91.9	13	13.9
July	71.0	39.9	0.56	48.1	29.2	96.6	90.9	16	13.1
August	65.6	36.4	0.55	45.4	27.5	90.7	89.3	16	12.2
September		22.1	0.56	42.9	25.9	90.8	87.8	21	11.8
Septemeer	<i>5</i> , .2		0.00	.2.,	20.9	70.0	07.0	-1	11.0
October	13.0	8.5	0.65	42.6	25.5	76.7	87.4	7	11.6
November	32.2	18.0	0.56	42.1	24.9	86.3	86.7	8	11.1
December	62.6	41.2	0.66	40.1	23.0	90.8	85.4	7	10.4
				,	2006				
				•	2000				
January	28.0	15.4	0.55	37.2	20.8	83.8	84.0	6	9.9
February	5.3	4.7	0.89	33.4	18.7	76.6	82.6	6	9.2
March	21.3	10.8	0.51	31.0	17.4	75.5	81.6	8	8.4
April	55.2	30.2	0.55	30.6	17.1	89.0	80.9	11	7.9
May	39.6	22.2	0.56			81.0		8	
June	37.7	13.9	0.37			80.1		8	
т 1	22.5	10.0	0.54			77.0		7	
July	22.6	12.2	0.54			75.8		7	
August	22.8	12.9	0.57			79.0		9	
September	25.2	14.5	0.58			77.8		8	
October	15.7	10.4	0.66			74.3		7	

NOTE: All smoothed values after September 2002 and monthly values after March 2003 are preliminary estimates. The lowest smoothed sunspot index number for Cycle 22, RI = 8.0, occurred in May 1996. The highest smoothed sunspot number for Cycle 23, RI = 120.8, occurred April 2000. *After June 1991, the 10.7 cm radio flux data source is Penticton, B.C. Canada. Prior to that, it was Ottawa.

Weekly Geosynchronous Satellite Environment Summary Week Beginning 20 November 2006

Protons plot contains the five-minute averaged integral proton flux (protons/cm²-sec -sr) as measured by GOES-11 (W135) for each of three energy thresholds: greater than 10, 50, and 100 MeV.


Electrons plot contains the five-minute averaged integral electron flux (electrons/cm² –sec –sr) with energies greater than 2 MeV at GOES-12 (W075).


Hp plot contains the five minute averaged magnetic field H - component in nanoteslas (nT) as measured by GOES-12. The H component is parallel to the spin axis of the satellite, which is nearly parallel to the Earth's rotation axis.

Kp plot contains the estimated planetary 3-hour K-index (derived by the Air Force Weather Agency) in real time from magnetometers at Meanook, Canada; Sitka, AK; Glenlea, Canada; St. Johns, Canada; Ottawa, Canada; Newport, WA; Fredericksburg, VA; Boulder, CO; Fresno, CA and Hartland, UK. These data are made available through cooperation from the Geological Survey of Canada (GSC), British Geological Survey (BGS) and the US Geological Survey. These may differ from the final Kp values derived from a more extensive network of magnetometers.

The data included here are those now available in real time at the SEC and are incomplete in that they do not include the full set of parameters and energy ranges known to cause satellite operating anomalies. The proton and electron fluxes and Kp are "global" parameters that are applicable to a first order approximation over large areas. H parallel is subject to more localized phenomena and the measurements generally are applicable to within a few degrees of longitude of the measuring satellite.

Weekly GOES Satellite X-ray and Proton Plots

X-ray plot contains five-minute averaged x-ray flux (watts/ m^2) as measured by GOES 12 (W075) and GOES 11 (W135) in two wavelength bands, .05 - .4 and .1 - .8 nm. The letters A, B, C, M and X refer to x-ray event levels for the .1 - .8 nm band.

Proton plot contains the five-minute averaged integral proton flux (protons/cm² –sec-sr) as measured by GOES-11 (W135) for each of the energy thresholds: >1, >10, >30 and >100 MeV. P10 event threshold is 10 pfu (protons/cm²-sec-sr) at greater than 10 MeV.

