Space Weather Highlights 03 – 09 March 2008

SEC PRF 1697 11 March 2008

Solar activity was very low, no flares were observed during the period. Region 984 (S08, L=251, class/area Bxo/030 on 06 March) was numbered on 05 March. The region rotated beyond the west limb on 07 March.

No proton events were observed at geosynchronous orbit.

The greater than 2 MeV electron flux at geosynchronous orbit reached high levels on 03 – 08 March.

The geomagnetic field was at mostly quiet levels from 03 – 08 March. Activity levels increased to quiet to minor storm levels midday on 08 March due to a recurrent coronal hole high speed stream that rotated into a geoeffective position. Solar wind speed measurements at the ACE spacecraft began the period at about 600 km/s and declined until late on 07 March when speed reached a minimum of approximately 300 km/s. Solar wind speed began increasing late on 07 March and reached a maximum of approximately 700 km/s at 2023 UTC on 09 March. By the end of the summary period solar wind speed was below 650 km/s

Space Weather Outlook 12 March – 07 April 2008

Solar activity is expected to be very low.

No proton events are expected at geosynchronous orbit.

The greater than 2 MeV electron flux at geosynchronous orbit is expected to reach high levels on all days of the forecast period except 26 March and 05 April.

The geomagnetic field is expected to be at quiet to active levels on 12-19 March as the coronal hole high speed stream continues to be geoeffective. On 20-24 March expect mostly quiet levels. On 25-29 March activity levels should increase to unsettled to major storm levels as the next coronal hole rotate into a geoeffective position. From 30 March -07 April activity levels should decline to mostly quiet to unsettled levels as effects from the coronal hole high speed stream subsides.

Daily Solar Data

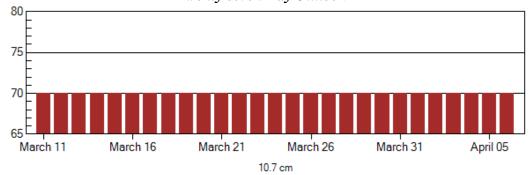
				2000	••••							
•	Radio	Sun	Sunspot	Sunspot X-ray				Flares				
	Flux	spot	Area	Area Background		X-ray Flux			Optical			
Date	10.7 cm	No.	(10 ⁻⁶ hemi.)	С	M	X	S	1	2	3	4
03 March	68	0	0	<a1.0< td=""><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td></a1.0<>	0	0	0	0	0	0	0	0
04 March	68	0	0	<a1.0< td=""><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td></a1.0<>	0	0	0	0	0	0	0	0
05 March	69	13	20	<a1.0< td=""><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td></a1.0<>	0	0	0	0	0	0	0	0
06 March	70	12	30	<a1.0< td=""><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td></a1.0<>	0	0	0	0	0	0	0	0
07 March	71	0	0	<a1.0< td=""><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td></a1.0<>	0	0	0	0	0	0	0	0
08 March	70	0	0	<a1.0< td=""><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td></a1.0<>	0	0	0	0	0	0	0	0
09 March	70	0	0	<a1.0< td=""><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td></a1.0<>	0	0	0	0	0	0	0	0

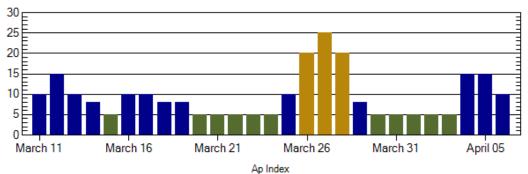
Daily Particle Data

		oton Fluence ons/cm ² -day-sr	•)	Electron Fluence (electrons/cm ² -day-sr)					
Date	>1 MeV	>10 MeV	>100 MeV	>.6 MeV >2MeV >4 MeV					
03 March	1.5E+6	1.7E+4	3.9E+3	1.9E+9					
04 March	1.9E+6	1.8E+4	4.1E+3	2.0E+9					
05 March	3.0E+6	1.8E+4	3.8E + 3	3.6E+8					
06 March	2.5E+6	1.8E+4	3.9E + 3	5.1E+7					
07 March	2.4E+6	1.8E+4	3.9E + 3	8.4E+7					
08 March	2.0E+6	1.8E+4	3.7E + 3	3.8E+7					
09 March	1.2E+6	1.7E+4	3.4E+3	1.8E+6					

Daily Geomagnetic Data

	M	iddle Latitude		High Latitude	I	Estimated
	F	redericksburg		College]	Planetary
Date	A	K-indices	A	K-indices	A	K-indices
03 March	4	2-2-1-1-1-1-0	7	2-2-1-4-1-2-1-0	5	3-2-1-2-1-1-0
04 March	3	1-2-2-0-1-0-0-0	4	0-1-3-2-2-0-0-0	4	1-2-2-1-1-1-0-1
05 March	7	1-2-2-3-2-1-1	19	1-1-3-5-5-4-1-1	8	1-1-2-3-3-2-1-2
06 March	2	0-0-0-0-1-2-0-1	1	1-0-0-0-1-1-0-0	2	0-0-0-0-1-2-0-1
07 March	1	1-0-1-0-1-0-0-0	1	0-0-1-1-0-0-0-0	3	1-1-1-0-1-1-1
08 March	6	0-0-1-1-3-2-3-1	22	0-0-0-3-6-4-5-1	11	0-0-1-1-4-4-3-1
09 March	14	3-4-3-3-2-2-3	41	3-5-6-6-5-4-3-3	25	4-5-5-3-3-2-2-4




Alerts and Warnings Issued


Date & Time of Issue	e Type of Alert or Warning	Date & Time of Event UTC
03 Mar 0501	ALERT: Electron 2MeV Integral Flux ≥1000pf	u 03 Mar 0500
04 Mar 0503	ALERT: Electron 2MeV Integral Flux ≥1000pf	u 04 Mar 0500
05 Mar 0525	ALERT: Electron 2MeV Integral Flux ≥1000pf	u 05 Mar 0500
06 Mar 1600	ALERT: Electron 2MeV Integral Flux ≥1000pf	u 06 Mar 1540
07 Mar 1152	ALERT: Electron 2MeV Integral Flux ≥1000pf	u 07 Mar 1135
07 Mar 2155	WATCH: Geomagnetic $A \ge 20$	09 Mar
08 Mar 1216	ALERT: Electron 2MeV Integral Flux ≥1000pf	u 08 Mar 1200
08 Mar 1255	WARNING: Geomagnetic $K = 4$	08 Mar 1300 – 1600
08 Mar 1309	ALERT: Geomagnetic $K = 4$	08 Mar 1308
08 Mar 1745	WARNING: Geomagnetic $K = 4$	08 Mar 1746 – 10/1600
08 Mar 1753	ALERT: Geomagnetic $K = 4$	08 Mar 1752
09 Mar 0247	WARNING: Geomagnetic $K = 5$	09 Mar 0250 – 1600
09 Mar 0711	ALERT: Geomagnetic $K = 5$	09 Mar 0710

Twenty-seven Day Outlook

	D. P. Fl.	DI	T		D . 1' . El	DI	T
	Radio Flux	•	Largest		Radio Flux		_
Date	10.7 cm	A Index	Kp Index	Date	10.7 cm	A Index	Kp Index
12 Mar	70	15	4	26 Mar	70	20	5
13	70	10	3	27	70	25	6
14	70	8	3	28	70	20	5
15	70	5	2	29	70	8	3
16	70	10	3	30	70	5	2
17	70	10	3	31	70	5	2
18	70	8	3	01 Apr	70	5	2
19	70	8	3	02	70	5	2
20	70	5	2	03	70	5	2
21	70	5	2	04	70	15	3
22	70	5	2	05	70	15	3
23	70	5	2	06	70	10	2
24	70	5	2	07	70	10	2
25	70	10	3				

Energetic Events

			-	<u> </u>	te zirents					
•	Time		X-ray	Opt	ical Information	1	Peak	Sweep Freq		
Date	1/2		Integ	Imp/ Location		Rgn	Radio Flux	Intensity		
	Begin Max	Max	Class Flux	Brtns	Lat CMD	#	245 2695	II IV		
No E	No Events Observed									

Flare List

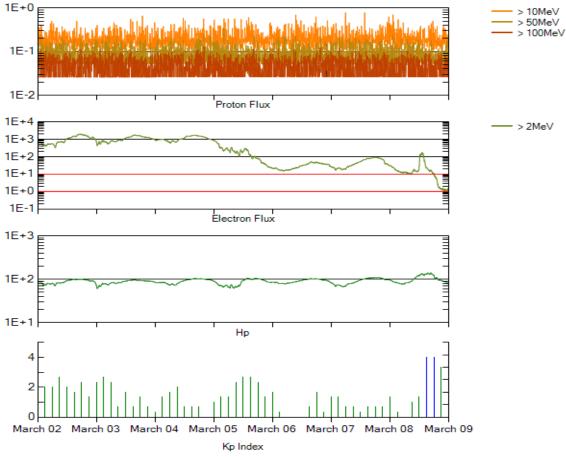
		ruire List			
_		Optical			
	Time	X-ray	Imp/	Location	Rgn
Date	Begin Max End	Class.	Brtns	Lat CMD	
03 March	No Flares Observed				
04 March	No Flares Observed				
05 March	No Flares Observed				
06 March	No Flares Observed				
07 March	No Flares Observed				
08 March	No Flares Observed				
09 March	No Flares Observed				

Region Summary

	200 Summary															
	Locatio		Sunspot	Character	ristics											
				Flares												
		Helio	Area	Extent	Spot	Spot	Mag		X-ra	y		(Optic	al		
Date	(°Lat°CMD)	Lon	(10 ⁻⁶ hemi) (helio)	Class	Count	Class	C	M	X	S	1	2			
	$R\epsilon$	gion 98	4													
05 Ma	ar S05W69	253	0020	03	Bxo	003	В									
06 Ma	ar S08W80	251	0030	01	Bxo	002	В									
07 Ma	ar S08W93	251														
								0	0	0	0	0	0	0	0	

Crossed West Limb.

Absolute heliographic longitude: 253



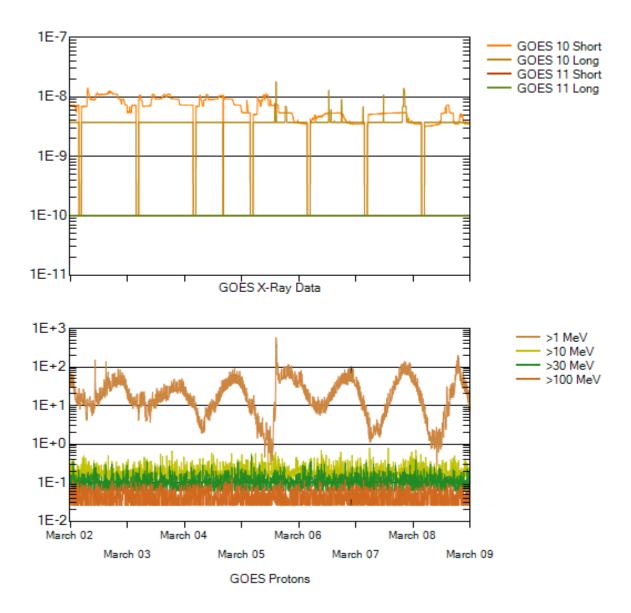
Recent Solar Indices (preliminary)
Of the observed monthly mean values

	Sunspot Numbers Radio Flux Geomagnetic												
	Observed	_		Smooth	valuec	*Penticton		Planetary	-				
Month	SEC	RI	RI/SEC	SEC	RI	10.7 cm	Value	Ap	Value				
MOHH	SEC	<u> Ni</u>	KI/SEC		2006	10.7 CIII	v aiue	<u> </u>	v alue				
Morob	21.3	10.8	0.51	31.0	2000 17.4	75.5	81.6	8	8.4				
March	21.3	10.8	0.31	31.0	17.4	13.3	81.0	8	6.4				
April	55.2	30.2	0.55	30.6	17.1	89.0	80.9	11	7.9				
May	39.6	22.2	0.56	30.0	17.1	81.0	80.8	8	7.9 7.9				
•		13.9	0.30	28.9	16.3	80.1	80.6	9	8.3				
June	37.7	13.9	0.57	20.9	10.5	80.1	80.0	9	0.3				
July	22.6	12.2	0.54	27.2	15.3	75.8	80.3	7	8.7				
August	22.8	12.2	0.57	27.6	15.6	79.0	80.3	9	8.7				
•		14.5	0.57	27.7	15.6	77.8	80.2	8	8.7				
September	25.2	14.3	0.56	21.1	13.0	11.0	80.2	0	0.7				
October	15.7	10.4	0.66	25.2	14.2	74.3	79.4	8	8.6				
November		21.5	0.68	22.3	12.7	86.4	78.5	9	8.5				
December		13.6	0.61	20.7	12.1	84.3	77.9	15	8.5				
2 cccinisci	22.2	10.0	0.01	20.7	12.1	01.0	77.5	10	0.0				
				,	2007								
January	26.6	16.9	0.64	19.7	12.0	83.5	77.5	6	8.4				
February	17.2	10.6	0.62	18.9	11.6	77.8	76.9	6	8.4				
March	9.7	4.8	0.49	17.5	10.8	72.3	76.0	8	8.4				
April	6.9	3.7	0.54	16.0	9.9	72.4	75.2	9	8.5				
May	19.4	11.7	0.60	14.2	8.7	74.5	74.2	9	8.4				
June	20.0	12.0	0.60	12.8	7.7	73.7	73.2	7	7.8				
July	15.6	10.0	0.64	11.6	7.0	71.6	72.5	8	7.4				
August	9.9	6.2	0.63	10.2	6.1	69.2	71.8	7	7.6				
September	r 4.8	2.4	0.50			67.1		9					
0.1	1.2	0.0	0.70			~~ ~		0					
October	1.3	0.9	0.70			65.5		9					
November		1.7	0.68			69.7		5					
December	16.2	10.1	0.62			78.6		4					
					2008								
January	5.1	3.4	0.67		4 000	72.1		6					
February	3.1	2.1	0.55			71.2		9					
reordary	3.8	$\angle .1$	0.33			/1.2		9					

NOTE: All smoothed values after September 2002 and monthly values after March 2003 are preliminary estimates. The lowest smoothed sunspot index number for Cycle 22, RI = 8.0, occurred in May 1996. The highest smoothed sunspot number for Cycle 23, RI= 120.8, occurred April 2000. *After June 1991, the 10.7 cm radio flux data source is Penticton, B.C. Canada. Prior to that, it was Ottawa.

Weekly Geosynchronous Satellite Environment Summary Week Beginning 03 March 2008

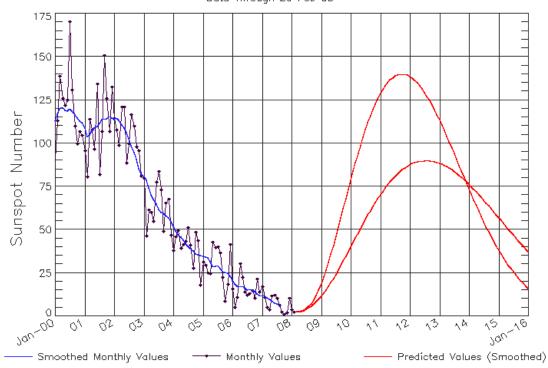
Protons plot contains the five-minute averaged integral proton flux (protons/cm²-sec -sr) as measured by GOES-11 (W135) for each of three energy thresholds: greater than 10, 50, and 100 MeV.


Electrons plot contains the five-minute averaged integral electron flux (electrons/cm²-sec -sr) with energies greater than 2 MeV at GOES-12 (W075).

Hp plot contains the five minute averaged magnetic field H - component in nanoteslas (nT) as measured by GOES-12. The H component is parallel to the spin axis of the satellite, which is nearly parallel to the Earth's rotation axis.

Kp plot contains the estimated planetary 3-hour K-index (derived by the Air Force Weather Agency) in real time from magnetometers at Meanook, Canada; Sitka, AK; Glenlea, Canada; St. Johns, Canada; Ottawa, Canada; Newport, WA; Fredericksburg, VA; Boulder, CO; Fresno, CA and Hartland, UK. These data are made available through cooperation from the Geological Survey of Canada (GSC), British Geological Survey (BGS) and the US Geological Survey. These may differ from the final Kp values derived from a more extensive network of magnetometers.

The data included here are those now available in real time at the SEC and are incomplete in that they do not include the full set of parameters and energy ranges known to cause satellite operating anomalies. The proton and electron fluxes and Kp are "global" parameters that are applicable to a first order approximation over large areas. H parallel is subject to more localized phenomena and the measurements generally are applicable to within a few degrees of longitude of the measuring satellite.


Weekly GOES Satellite X-ray and Proton Plots

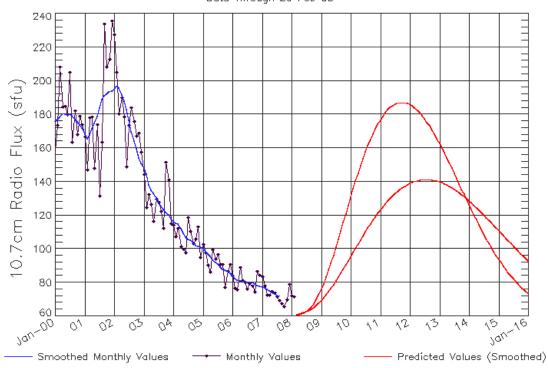
X-ray plot contains five-minute averaged x-ray flux (watts/ m^2) as measured by GOES 10 (W060) and GOES 11 (W135) in two wavelength bands, .05 - .4 and .1 - .8 nm. The letters A, B, C, M and X refer to x-ray event levels for the .1 - .8 nm band.

Proton plot contains the five-minute averaged integral proton flux (protons/cm 2 -sec-sr) as measured by GOES-11 (W135) for each of the energy thresholds: >1, >10, >30 and >100 MeV. P10 event threshold is 10 pfu (protons/cm 2 -sec-sr) at greater than 10 MeV.

ISES Solar Cycle Sunspot Number Progression Data Through 29 Feb 08

Updated 2008 Mar 1

NOAA/SWPC Boulder,CO USA

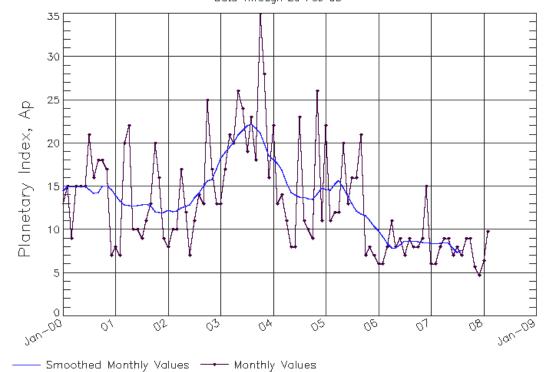

SEC Prediction of Smoothed Sunspot Number

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
	Hi/Lo	Hi/Lo	Hi/Lo	Hi/Lo	Hi/Lo	Hi/Lo	Hi/Lo	Hi/Lo	Hi/Lo	Hi/Lo	Hi/Lo	Hi/Lo
2006	21	19	17	17	17	16	15	16	16	14	13	12
	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)
2007	12	12	11	10	9	8	7	6	5/5	5/5	5/5	4/4
	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(1)	(3)	(5)	(7)
2008	3/3	3/3	3/3	4/3	5/4	5/4	6/5	8/5	7/5	9/7	12/8	15/9
	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)	(15)	(15)	(15)	(15)
2009	18/11	22/13	26/15	31/17	36/19	41/21	46/24	51/26	56/29	62/31	67/34	73/37
	(15)	(15)	(15)	(15)	(15)	(15)	(15)	(15)	(15)	(15)	(15)	(15)
2010	78/40	83/42	89/45	94/48	98/50	103/53	107/56	111/58	115/61	119/63	122/65	125/67
	(15)	(15)	(15)	(15)	(15)	(15)	(15)	(15)	(15)	(15)	(15)	(15)
2011	128/70	131/72	133/74	135/75	136/77	137/79	138/80	139/82	139/83	139/84	139/85	139/86
	(15)	(15)	(15)	(15)	(15)	(15)	(15)	(15)	(15)	(15)	(15)	(15)
2012	138/87	137/88	136/88	134/89	133/89	131/89	129/89	127/90	124/89	122/89	119/89	116/89
	(15)	(15)	(15)	(15)	(15)	(15)	(15)	(15)	(15)	(15)	(15)	(15)
2013	113/88	110/87	107/87	104/86	100/85	97/84	94/83	90/82	87/81	83/80	80/78	77/77
	(15)	(15)	(15)	(15)	(15)	(15)	(15)	(15)	(15)	(15)	(15)	(15)
2014	73/76	70/74	67/73	63/71	60/70	57/68	54/67	51/65	48/63	46/62	43/60	40/58
	(15)	(15)	(15)	(15)	(15)	(15)	(15)	(15)	(15)	(15)	(15)	(15)
2015	38/57	36/55	33/53	31/51	29/50	27/48	25/46	23/45	22/43	20/42	18/40	17/38
	(15)	(15)	(15)	(15)	(15)	(15)	(15)	(15)	(15)	(15)	(15)	(15)

Note: Hi is for the larger solar cycle prediction, Lo is for the smaller solar cycle prediction

ISES Solar Cycle F10.7cm Radio Flux Progression
Data Through 29 Feb 08

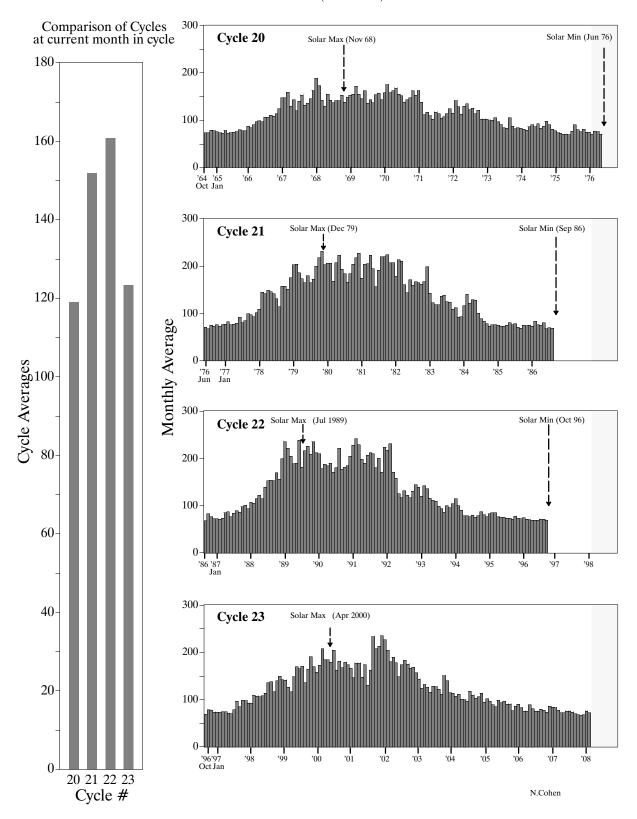
Updated 2008 Mar 1


NOAA/SWPC Boulder,CO USA

SEC Prediction of Smoothed F10.7cm Radio Flux

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
	Hi/Lo	Hi/Lo	Hi/Lo	Hi/Lo	Hi/Lo	Hi/Lo	Hi/Lo	Hi/Lo	Hi/Lo	Hi/Lo	Hi/Lo	Hi/Lo
2006	84	83	82	81	81	81	80	80	80	79	79	78
	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)
2007	78	77	76	75	74	73	73	72	71/65	70/64	69/63	68/62
	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(1)	(3)	(5)	(7)
2008	67/61	66/60	66/60	66/60	66/60	66/60	66/60	66/61	65/64	67/65	69/66	72/67
	(9)	(11)	(13)	(15)	(17)	(19)	(21)	(22)	(23)	(23)	(23)	(23)
2009	75/69	79/70	83/72	87/74	91/76	96/78	101/80	105/83	110/85	115/88	120/90	125/92
	(23)	(23)	(23)	(23)	(23)	(23)	(23)	(23)	(23)	(23)	(23)	(23)
2010	130/95	135/97	140/100	145/102	149/105	153/107	157/110	161/112	165/114	168/116	171/119	174/121
	(23)	(23)	(23)	(23)	(23)	(23)	(23)	(23)	(23)	(23)	(23)	(23)
2011	176/123	179/124	181/126	182/128	184/130	185/131	186/132	186/134	187/135	187/136	187/137	186/138
	(23)	(23)	(23)	(23)	(23)	(23)	(23)	(23)	(23)	(23)	(23)	(23)
2012	185/139	185/139	183/140	182/140	181/140	179/141	177/141	175/141	173/141	170/141	168/140	165/140
	(23)	(23)	(23)	(23)	(23)	(23)	(23)	(23)	(23)	(23)	(23)	(23)
2013	162/139	160/139	157/138	154/138	151/137	148/136	145/135	141/134	138/133	135/132	132/131	129/129
	(23)	(23)	(23)	(23)	(23)	(23)	(23)	(23)	(23)	(23)	(23)	(23)
2014	127/127	125/125	123/123	121/121	118/118	116/116	114/114	112/112	110/110	108/108	106/106	104/104
	(23)	(23)	(23)	(24)	(25)	(26)	(27)	(27)	(28)	(29)	(29)	(30)
2015	102/102	100/100	98/98	97/97	95/95	93/93	91/91	90/90	88/88	87/87	86/86	84/84
	(30)	(31)	(31)	(32)	(32)	(32)	(32)	(33)	(33)	(33)	(33)	(33)

ISES Solar Cycle Ap Progression Data Through 29 Feb 08


Updated 2008 Mar 1

NOAA/SWPC Boulder,CO USA

Solar Radio Flux (10.7 cm)

January 2008 (Month 136)

