Space Weather Highlights 24 - 30 November 2008

SWO PRF 1735 02 December 2008

Solar activity was very low through the period. No flares were observed. The visible disk was spotless.

No proton events were observed at geosynchronous orbit.

The greater than 2 MeV electron flux at geosynchronous orbit was at normal levels.

Geomagnetic field activity was at mostly quiet levels on 24 November. On 25 and 26 November, activity increased to quiet to active levels, with isolated minor storm periods at high latitudes observed on the 25th. This period of activity was due to a recurrent coronal hole that rotated into a geoeffective position. By early on 27 November, activity decayed to quiet levels and remained so through the balance of the summary period. The period began with ACE solar wind velocities at about 270 km/s. These velocities persisted through late on 24 November when wind speed jumped abruptly to about 600 km/s by midday on the 25th. During this timeframe, the Bz component of the IMF varied from a high of +18 nT (25/0543Z) to a low of -15 nT (25/0406Z) with a Bt max of 24 nT (25/0342Z), all associated with the onset of the coronal high speed stream. Wind speeds reached a maximum of 658 km/s by late on 26 November and gradually decayed to, and ended the period at about 360 km/s.

Space Weather Outlook 03 - 29 December 2008

Solar activity is expected to be at very low levels.

No proton events are expected at geosynchronous orbit.

The greater than 2 MeV electron flux at geosynchronous orbit is expected to reach high levels during 03 December and 06 - 12 December.

Geomagnetic field activity is expected to be at mostly quiet levels on 03 December. Activity is expected to increase to unsettled to active levels during 04 - 06 December due to a recurrent CH HSS. Activity is expected to decrease to quiet levels during 07 - 21 December. Activity is expected to increase to unsettled levels on 22 - 24 December due to another recurrent CH HSS. Activity is expected to decrease to quiet levels during 25 - 29 December 2008.

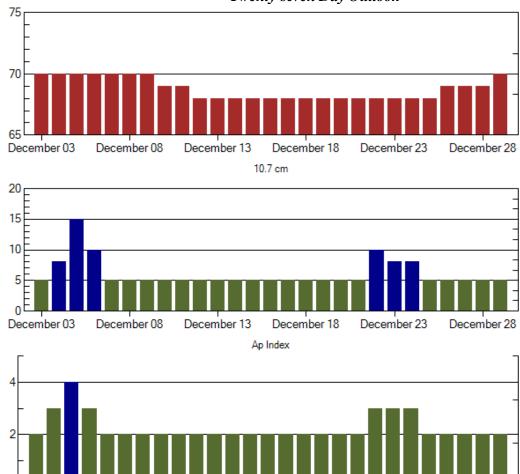
Daily Solar Data

				2000								
	Radio	Sun	Sunspot	X-ray	_			Flares				
	Flux	spot	Area	Background	X	-ray F	lux		Oı	otical		
Date	10.7 cm	No.	<u>(10⁻⁶ hemi.</u>)	C	M	X	S	1	2	3	4
24 November	68	0	0	<a1.0< td=""><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td></a1.0<>	0	0	0	0	0	0	0	0
25 November	68	0	0	<a1.0< td=""><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td></a1.0<>	0	0	0	0	0	0	0	0
26 November	68	0	0	<a1.0< td=""><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td></a1.0<>	0	0	0	0	0	0	0	0
27 November	68	0	0	<a1.0< td=""><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td></a1.0<>	0	0	0	0	0	0	0	0
28 November	67	0	0	<a1.0< td=""><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td></a1.0<>	0	0	0	0	0	0	0	0
29 November	68	0	0	<a1.0< td=""><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td></a1.0<>	0	0	0	0	0	0	0	0
30 November	68	0	0	<a1.0< td=""><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td></a1.0<>	0	0	0	0	0	0	0	0

Daily Particle Data

		roton Fluence ons/cm ² -day-si	r)	Electron Fluence (electrons/cm ² -day-sr)
Date	$\frac{\text{(prot)}}{>1 \text{ MeV}}$	>10 MeV	>100 MeV	>.6 MeV >2MeV >4 MeV
24 November	7.8E+5	1.9E+4	4.3E+3	1.8E+6
25 November	1.2E+6	1.9E + 4	4.2E+3	4.0E+5
26 November	1.0E+6	1.8E+4	4.0E + 3	4.2E+5
27 November	4.7E + 5	1.7E + 4	3.9E + 3	2.1E+6
28 November	7.4E + 5	1.8E + 4	4.0E + 3	7.4E+6
29 November	6.3E+5	1.9E+4	4.1E+3	3.7E+6
30 November	9.2E+5	1.9E+4	4.3E+3	3.9E+6
26 November 27 November 28 November 29 November	1.0E+6 4.7E+5 7.4E+5 6.3E+5	1.8E+4 1.7E+4 1.8E+4 1.9E+4	4.0E+3 3.9E+3 4.0E+3 4.1E+3	4.2E+5 2.1E+6 7.4E+6 3.7E+6

Daily Geomagnetic Data


	N	Middle Latitude High Latitude				Estimated
	Fredericksburg			College	I	Planetary
_Date	Α	K-indices	Α	K-indices	Α	K-indices
24 November	2	0-0-0-0-0-0-3	0	0-0-0-0-0-0-0	0	0-0-0-0-0-0-0
25 November	11	3-3-3-2-3-2-2-2	17	1-3-5-2-5-2-1-1	10	3-3-3-2-3-2-2
26 November	11	4-4-2-1-1-1-2-2	11	2-3-4-3-1-2-1-2	8	2-3-2-1-1-1-2
27 November	5	2-1-1-1-1-2-2	6	2-1-2-2-1-2-2	7	3-2-1-1-2-0-2-2
28 November	3	0-2-1-0-0-1-0-2	1	0-1-0-0-0-0-1-1	4	1-2-0-0-0-1-2
29 November	2	0-1-1-1-0-1-0-0	1	0-0-1-2-0-0-0	2	0-0-1-1-1-0-0-1
30 November	1	0-0-0-1-1-1-0	0	0-0-0-0-0-0-0	1	1-0-0-0-0-0-0

Alerts and Warnings Issued

Date & Time of Issue	Type of Alert or Warning	Date & Time of Event UTC
25 Nov 0007	SUMMARY: Geomagnetic Sudden Impulse	24 Nov 2350
25 Nov 0649	WARNING: Geomagnetic K= 4	25 Nov 0650 - 1600
26 Nov 0403	WARNING: Geomagnetic K= 4	26 Nov 0403 - 1600
26 Nov 0421	ALERT: Geomagnetic K= 4	26 Nov 0420

Twenty-seven Day Outlook

Largest Daily Kp Index

December 23

December 13

	Radio Flux	Planetary	Largest		Radio Flux	•	_
Date	10.7 cm	A Index	Kp Index	Date	10.7 cm	A Index	Kp Index
03 Dec	70	5	2	17 Dec	68	5	2
04	70	8	3	18	68	5	2
05	70	15	4	19	68	5	2
06	70	10	3	20	68	5	2
07	70	5	2	21	68	5	2
08	70	5	2	22	68	10	3
09	70	5	2	23	68	8	3
10	69	5	2	24	68	8	3
11	69	5	2	25	68	5	2
12	68	5	2	26	69	5	2
13	68	5	2	27	69	5	2
14	68	5	2	28	69	5	2
15	68	5	2	29	70	5	2
16	68	5	2				

December 03

December 08

Energetic Events

	Time		X-ray	Opti	cal Information	1	Peak	Sweep Freq
Date		1/2	Integ	Imp/	Location	Rgn	Radio Flux	Intensity
	Begin Max	Max	Class Flux	Brtns	Lat CMD	#	245 2695	II IV

No Events Observed

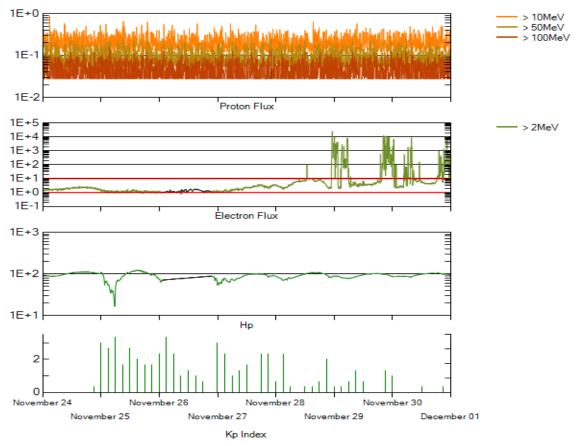
Flare List

		1 ture List		0 1 1	
				Optical	
	Time	X-ray	Imp/	Location	Rgn
Date	Begin Max End	Class.	Brtns	Lat CMD	
24 Nov	No Flares Observed				
25 Nov	No Flares Observed				
26 Nov	No Flares Observed				
27 Nov	No Flares Observed				
28 Nov	No Flares Observed				
29 Nov	No Flares Observed				
30 Nov	No Flares Observed				

Region Summary

Location		Sunspot	nspot Characteristics				Flares							
Helio	Area	Extent	Spot	Spot	Mag		X-ra	У	. –	(Optic	al		
Date (° Lat ° CMD) Lon	(10 ⁻⁶ hemi)	(helio)	Class	Count	Class	C	M	X	S	1	2	3	4	

No Regions Reported


Recent Solar Indices (preliminary) Of the observed monthly mean values

		Sunsn	ot Number			Radio	Flux	Geoma	gnetic
	Observed	_		Smooth	values	*Penticton		Planetary	-
Month	SEC	RI	RI/SEC	SEC	RI	10.7 cm	Value	Ap	Value
					2006			•	
November	31.5	21.5	0.68	22.3	12.7	86.4	78.5	9	8.5
December	22.2	13.6	0.61	20.7	12.1	84.3	77.9	15	8.5
					2007				
January	26.6	16.9	0.64	19.7	12.0	83.5	77.5	6	8.4
February	17.2	10.6	0.62	18.9	11.6	77.8	76.9	6	8.4
March	9.7	4.8	0.49	17.5	10.8	72.3	76.0	8	8.4
April	6.9	3.7	0.54	16.0	9.9	72.4	75.2	9	8.5
May	19.4	11.7	0.60	14.2	8.7	74.5	74.2	9	8.4
June	20.0	12.0	0.60	12.8	7.7	73.7	73.2	7	7.8
July	15.6	10.0	0.64	11.6	7.0	71.6	72.5	8	7.4
August	9.9	6.2	0.63	10.2	6.1	69.2	71.8	7	7.6
September	4.8	2.4	0.50	9.9	5.9	67.1	71.5	9	7.8
October	1.3	0.9	0.70	10.0	6.1	65.5	71.5	9	7.9
November		1.7	0.68	9.4	5.7	69.7	71.1	5	7.8
December		10.1	0.62	8.1	5.0	78.6	70.5	4	7.8
					2008				
January	5.1	3.4	0.67	6.9	4.2	72.1	70.0	6	7.7
February	3.8	2.1	0.55	5.9	3.6	71.2	69.6	9	7.6
March	15.9	9.3	0.58	5.3	3.3	72.9	69.5	10	7.4
A mril	4.9	2.9	0.59	5.3	3.3	70.3	69.6	0	7.1
April May	4.9 5.7	2.9	0.59	3.3	3.3	68.4	09.0	9 6	7.1
•								7	
June	4.2	3.1	0.74			65.9		/	
July	1.0	0.5	0.50			65.8		6	
August	0.0	0.5	**			66.4		5	
September	1.5	1.1	0.73			67.1		5	
October	5.2	2.9	0.56			68.3		6	

NOTE: All smoothed values after September 2002 and monthly values after March 2003 are preliminary estimates. The lowest smoothed sunspot index number for Cycle 22, RI = 8.0, occurred in May 1996. The highest smoothed sunspot number for Cycle 23, RI= 120.8, occurred April 2000. *After June 1991, the 10.7 cm radio flux data source is Penticton, B.C. Canada. Prior to that, it was Ottawa.

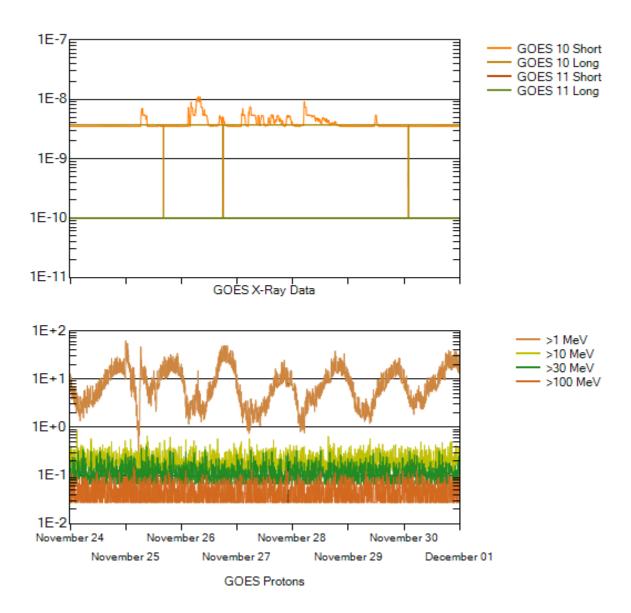
^{**}SEC sunspot number was less than RI value, so a ratio could not be done.

Weekly Geosynchronous Satellite Environment Summary Week Beginning 24November 2008

GOES-11 designated Primary Electron Satellite and GOES-10 Secondary: December 1, 2008 the GOES-12 Electron sensor began experiencing periods of noise and sensor is unreliable.

Protons plot contains the five-minute averaged integral proton flux (protons/cm²-sec -sr) as measured by GOES-11 (W135) for each of three energy thresholds: greater than 10, 50, and 100 MeV.

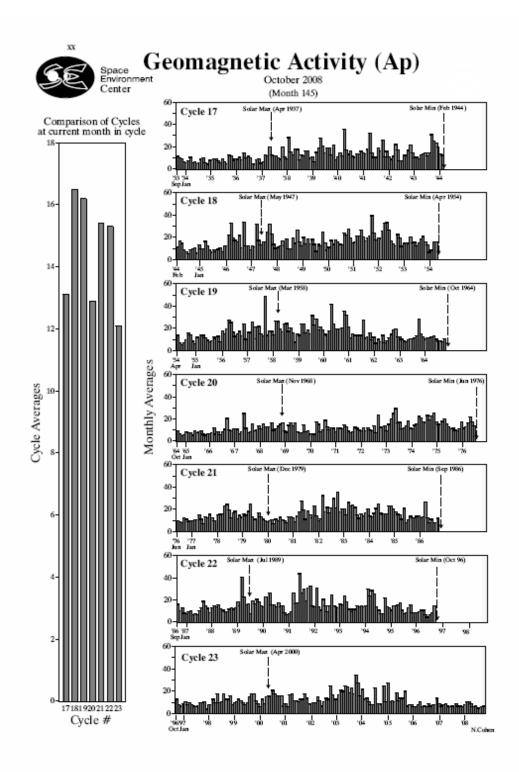
Electrons plot contains the five-minute averaged integral electron flux (electrons/cm²-sec -sr) with energies greater than 2 MeV at GOES-12 (W075).


Hp plot contains the five minute averaged magnetic field H - component in nanoteslas (nT) as measured by GOES-12. The H component is parallel to the spin axis of the satellite, which is nearly parallel to the Earth's rotation axis.

Kp plot contains the estimated planetary 3-hour K-index (derived by the Air Force Weather Agency) in real time from magnetometers at Meanook, Canada; Sitka, AK; Glenlea, Canada; St. Johns, Canada; Ottawa, Canada; Newport, WA; Fredericksburg, VA; Boulder, CO; Fresno, CA and Hartland, UK. These data are made available through cooperation from the Geological Survey of Canada (GSC), British Geological Survey (BGS) and the US Geological Survey. These may differ from the final Kp values derived from a more extensive network of magnetometers.

The data included here are those now available in real time at the SEC and are incomplete in that they do not include the full set of parameters and energy ranges known to cause satellite operating anomalies. The proton and electron fluxes and Kp are "global" parameters that are applicable to a first order approximation over large areas. H parallel is subject to more localized phenomena and the

measurements generally are applicable to within a few degrees of longitude of the measuring satellite.



Weekly GOES Satellite X-ray and Proton Plots

X-ray plot contains five-minute averaged x-ray flux (watts/ m^2) as measured by GOES 10 (W060) and GOES 11 (W135) in two wavelength bands, .05 - . 4 and .1 - .8 nm. The letters A, B, C, M and X refer to x-ray event levels for the .1 - .8 nm band.

Proton plot contains the five-minute averaged integral proton flux (protons/cm 2 -sec-sr) as measured by GOES-11 (W135) for each of the energy thresholds: >1, >10, >30 and >100 MeV. P10 event threshold is 10 pfu (protons/cm 2 -sec-sr) at greater than 10 MeV.

