Space Weather Highlights 04 May - 10 May 2009

SWO PRF 1758 12 May 2009

Solar activity was very low. No flares were observed during 04 - 07 May. Four B1 X-ray flares were observed during 08 - 10 May. The visible disk was spotless.

No proton events were observed at geosynchronous orbit.

The greater than 2 MeV electron flux at geosynchronous orbit was at normal levels during the period.

Geomagnetic field activity was at predominantly quiet levels during 02 - 06 May. Field activity increased to quiet to active levels during 07 - 08 May, with isolated minor storm periods observed at high latitudes, due to the influence of a coronal hole high-speed stream (CH HSS). ACE solar wind velocities increased from 414 km/s at 07/1803 UTC to a high of 527 km/s at 08/1136 UTC. During this period, the Bz component of the IMF varied between -5 nT and +5 nT. Field activity decreased to predominantly quiet levels on 09 - 10 May, and solar wind velocities gradually decreased to 415 km/s at the end of the forecast period.

Space Weather Outlook 13 May – 08 June 2009

Solar activity is expected to be very low.

No proton events are expected at geosynchronous orbit.

The greater than 2 MeV electron flux at geosynchronous orbit is expected to be at normal flux levels.

Geomagnetic field activity is expected to be at mostly quiet levels through 14 May. Activity is expected to increase to quiet to unsettled levels on 15 May, due to a recurrent CH HSS. Activity is expected to decrease to predominantly quiet levels during 16 May - 02 June. Quiet to active conditions, with isolated major storm levels possible at high latitudes, are expected during 02 - 04 June, due to a recurrent CH HSS. Predominantly quiet conditions are expected during 05 - 08 June.

Notice: On May 8, 2009 the Solar Cycle 24 Prediction Panel released a consensus decision on the prediction of the next solar cycle (Cycle 24). See http://www.swpc.noaa.gov/SolarCycle/ for more details. The updated Solar Cycle plots and prediction tables are included in this issue.

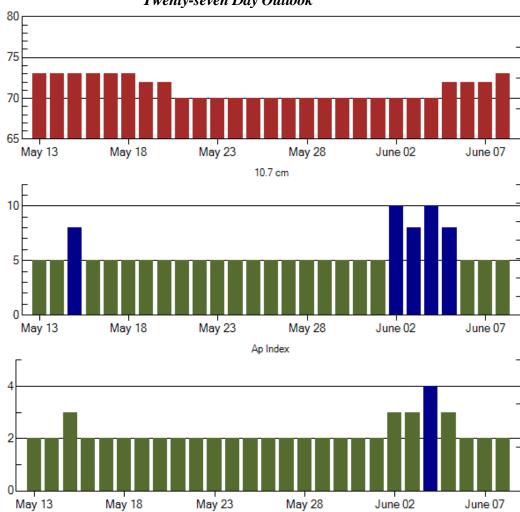
Daily Solar Data

				2000								
	Radio	Sun	Sunspot	Sunspot X-ray		Flares						
	Flux	spot	Area	Area Background		-ray F		Optical				
Date	10.7 cm	No.	(10 ⁻⁶ hemi.)	С	M	X	S	1	2	3	4
04 May	68	0	0	<a1.0< td=""><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td></a1.0<>	0	0	0	0	0	0	0	0
05 May	68	0	0	<a1.0< td=""><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td></a1.0<>	0	0	0	0	0	0	0	0
06 May	69	0	0	<a1.0< td=""><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td></a1.0<>	0	0	0	0	0	0	0	0
07 May	70	0	0	<a1.0< td=""><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td></a1.0<>	0	0	0	0	0	0	0	0
08 May	71	0	0	<a1.0< td=""><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td></a1.0<>	0	0	0	0	0	0	0	0
09 May	72	0	0	<a1.0< td=""><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td></a1.0<>	0	0	0	0	0	0	0	0
10 May	72	0	0	<a1.0< td=""><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td></a1.0<>	0	0	0	0	0	0	0	0

Daily Particle Data

		oton Fluence		Electron Fluence					
	(proto	ons/cm ² -day-sı	r)	(electrons/cm ² -day-sr)					
Date	>1 MeV	>10 MeV	>100 MeV	>.6 MeV	>2MeV >4 MeV				
04 May	4.4e + 05	2.0e+04	4.7e+03		1.4e + 05				
05 May	7.4e + 05	2.0e+04	4.5e+03		2.0e + 05				
06 May	7.6e + 05	2.0e+04	4.3e+03		1.3e+05				
07 May	6.3e + 05	2.0e+04	4.3e+03		1.5e + 05				
08 May	7.7e + 05	1.9e + 04	4.0e + 03		3.5e + 06				
09 May	5.5e + 05	1.9e + 04	4.2e+03		7.6e + 06				
10 May	6.2e + 05	1.9e + 04	4.2e+03		1.7e + 07				

Daily Geomagnetic Data


	Middle Latitude			High Latitude	I	Estimated
	F	redericksburg		College]	Planetary
Date	A	K-indices	Α	K-indices	A	K-indices
04 May	2	0-1-1-1-1-0-0-0	3	1-1-1-3-1-0-0-0	4	1-1-1-2-1-1-1
05 May	2	0-0-0-1-1-0-0-2	0	0-0-0-0-0-0-1	2	0-0-0-0-1-2-1-2
06 May	6	2-2-1-1-2-1-2-2	3	2-1-0-1-1-1-1	6	2-1-1-1-2-2-2-3
07 May	7	3-3-1-1-1-2-2	7	3-2-2-3-1-2-1-1	10	2-4-1-2-2-2-1-3
08 May	12	4-3-4-1-2-1-2-2	23	4-5-5-4-4-1-1-1	13	4-4-4-1-2-2-2
09 May	6	0-2-1-2-2-2-2	11	0-2-3-5-2-2-1-0	6	1-2-1-2-2-1-2
10 May	3	0-2-0-1-2-1-1-1	4	1-2-1-1-2-1-0-1	4	1-2-0-0-1-0-2-2

Alerts and Warnings Issued

Date & Time of Issue	Type of Alert or Warning	Date & Time of Event UTC
08 May 0142	WARNING: Geomagnetic $K = 4$	08 May 0141 - 1600
08 May 0152	ALERT: Geomagnetic $K = 4$	08 May 0151

Twenty-seven Day Outlook

Largest Daily Kp Index

	Radio Flux	Planetary	Largest		Radio Flux	Planetary	Largest
Date	10.7 cm	A Index	Kp Index	Date	10.7 cm	A Index	Kp Index
13 May	73	5	2	27 May	70	5	2
14	73	5	2	28	70	5	2
15	73	8	3	29	70	5	2
16	73	5	2	30	70	5	2
17	73	5	2	31	70	5	2
18	73	5	2	01 Jun	70	5	2
19	72	5	2	02	70	10	3
20	72	5	2	03	70	8	3
21	70	5	2	04	70	10	4
22	70	5	2	05	72	8	3
23	70	5	2	06	72	5	2
24	70	5	2	07	72	5	2
25	70	5	2	08	73	5	2
26	70	5	2				

Energetic Events

			-		ic Liverius			
	Time		X-ray	Optical Information			Peak	Sweep Freq
Date		1/2	Integ	Imp/	Location	Rgn	Radio Flux	Intensity
	Begin Max	Max	Class Flux	Brtns	Lat CMD	#	245 2695	II IV
	_							
08 May	0429 0430	0430					210	
09 May	1613 1614	1614					150	
09 May	1948 1948	1948					250	
•								

Flare List

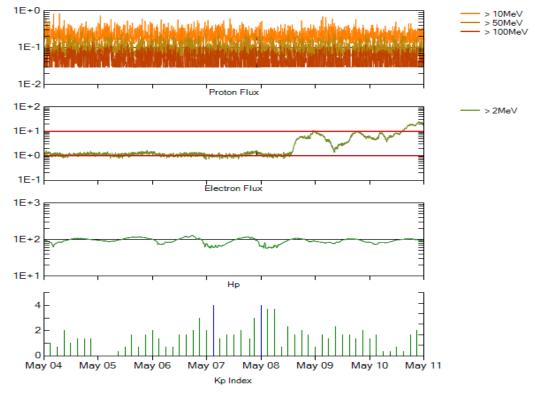
				i wie Disi								
				Optical								
		Time		X-ray	Imp/	Location	Rgn					
Date	Begin	Max	End	Class.	Brtns	Lat CMD						
04 May	No Fla	res Obser	ved									
05 May	No Fla	res Obser	ved									
06 May	No Fla	res Obser	ved									
07 May	No Fla	res Obser	ved									
08 May	2122	2127	2130	B1.8								
09 May	0128	0133	0137	B1.5								
10 May	0300	0304	0307	B1.4								
•	1212	1216	1221	B1.2								

Region Summary

	Location	Sunspot	Characterist	Flares			
	Helio	Area Extent	Spot S	pot Mag	X-ray	Optical	
Date	e (° Lat ° CMD) Lon	(10 ⁻⁶ hemi) (helio)	Class C	Count Class	\overline{C} M X	S 1 2 3 4	

No Active Regions.

Recent Solar Indices (preliminary)
Of the observed monthly mean values


					noniniy	mean values	T71		
		_	ot Numbe	Radio		Geoma	_		
	Observed			Smooth		*Penticton		Planetary	
<u>Month</u>	SEC	RI	RI/SEC	SEC	RI	10.7 cm	Value	Ap	Value
				2	007				
May	19.4	11.7	0.60	14.2	8.7	74.5	74.2	9	8.4
June	20.0	12.0	0.60	12.8	7.7	73.7	73.2	7	7.8
July	15.6	10.0	0.64	11.6	7.0	71.6	72.5	8	7.4
August	9.9	6.2	0.63	10.2	6.1	69.2	71.8	7	7.6
Septembe	r 4.8	2.4	0.50	9.9	5.9	67.1	71.5	9	7.8
1									
October	1.3	0.9	0.70	10.0	6.1	65.5	71.5	9	7.9
November	r 2.5	1.7	0.68	9.4	5.7	69.7	71.1	5	7.8
December	16.2	10.1	0.62	8.1	5.0	78.6	70.5	4	7.8
				2	008				
January	5.1	3.4	0.67	6.9	4.2	72.1	70.0	6	7.7
February	3.8	2.1	0.55	5.9	3.6	71.2	69.6	9	7.6
March	15.9	9.3	0.58	5.3	3.3	72.9	69.5	10	7.4
April	4.9	2.9	0.59	5.3	3.3	70.3	69.6	9	7.1
May	5.7	2.9	0.51	5.7	3.5	68.4	69.7	6	6.9
June	4.2	3.1	0.74	5.2	3.2	65.9	69.2	7	6.8
July	1.0	0.5	0.50	4.5	2.7	65.8	68.8	6	6.6
August	0.0	0.5	**	4.4	2.6	66.4	68.6	5	6.2
Septembe		1.1	0.73	3.7	2.2	67.1	68.4	5	5.8
October	5.2	2.9	0.56	2.9	1.8	68.3	68.2	6	5.4
November		4.1	0.60			68.6		3	
December		0.8	0.62			69.2		2	
200111001	110	0.0	0.02			07 .2		_	
				2	009				
January	2.8	1.5	0.54	_		69.8		3	
February	2.5	1.4	0.56			70.0		4	
March	0.7	0.7	1.00			69.2		4	
								•	
April	1.2	1.2	1.00			69.7		4	
r		- • -	2.00			57.1		•	

NOTE: All smoothed and monthly values are preliminary estimates.

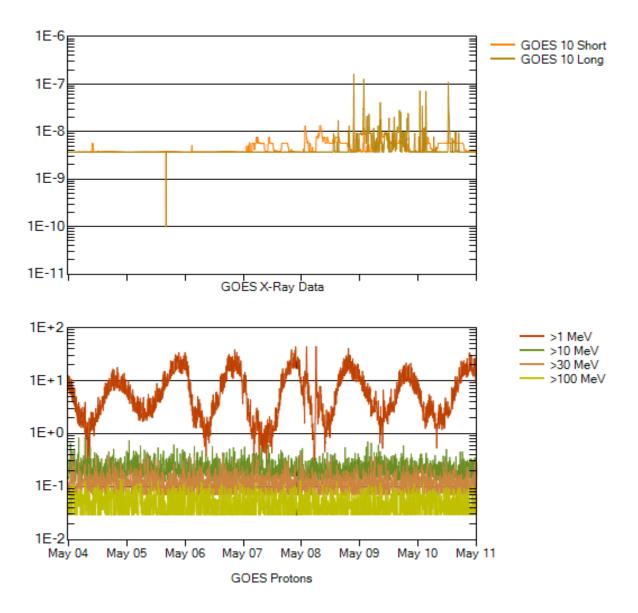
Cycle 23 started in May 1996 with an RI=8.0. Cycle 23 maximum was April 2000 with an RI=120.8.

^{**}SWPC sunspot number was less than RI value, so a ratio could not be computed.

Weekly Geosynchronous Satellite Environment Summary Week Beginning 04 May 2009

GOES-11 designated Primary Electron Satellite and GOES-10 Secondary: December 1, 2008 the GOES-12 Electron sensor began experiencing periods of noise and sensor is unreliable.

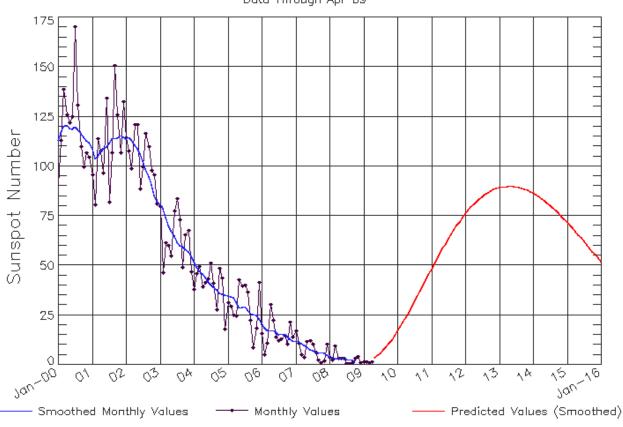
Protons plot contains the five-minute averaged integral proton flux (protons/cm²-sec -sr) as measured by GOES-11 (W135) for each of three energy thresholds: greater than 10, 50, and 100 MeV.


Electrons plot contains the five-minute averaged integral electron flux (electrons/cm²-sec -sr) with energies greater than 2 MeV at GOES-11 (W135).

Hp plot contains the five minute averaged magnetic field H - component in nanoteslas (nT) as measured by GOES-11. The H component is parallel to the spin axis of the satellite, which is nearly parallel to the Earth's rotation axis.

Kp plot contains the estimated planetary 3-hour K-index (derived by the Air Force Weather Agency) in real time from magnetometers at Meanook, Canada; Sitka, AK; Glenlea, Canada; St. Johns, Canada; Ottawa, Canada; Newport, WA; Fredericksburg, VA; Boulder, CO; Fresno, CA and Hartland, UK. These data are made available through cooperation from the Geological Survey of Canada (GSC), British Geological Survey (BGS) and the US Geological Survey. These may differ from the final Kp values derived from a more extensive network of magnetometers.

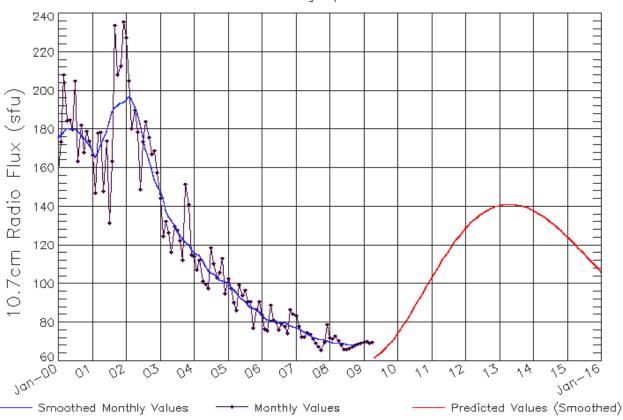
The data included here are those now available in real time at the SWPC and are incomplete in that they do not include the full set of parameters and energy ranges known to cause satellite operating anomalies. The proton and electron fluxes and Kp are "global" parameters that are applicable to a first order approximation over large areas. H parallel is subject to more localized phenomena and the measurements generally are applicable to within a few degrees of longitude of the measuring satellite.


Weekly GOES Satellite X-ray and Proton Plots

X-ray plot contains five-minute averaged x-ray flux (watts/ m^2) as measured by GOES 10 (W060) and GOES 11 (W135) in two wavelength bands, .05 - .4 and .1 - .8 nm. The letters A, B, C, M and X refer to x-ray event levels for the .1 - .8 nm band.

Proton plot contains the five-minute averaged integral proton flux (protons/cm² –sec-sr) as measured by GOES-11 (W135) for each of the energy thresholds: >1, >10, >30 and >100 MeV. P10 event threshold is 10 pfu (protons/cm²-sec-sr) at greater than 10 MeV.

Updated 2009 May 8

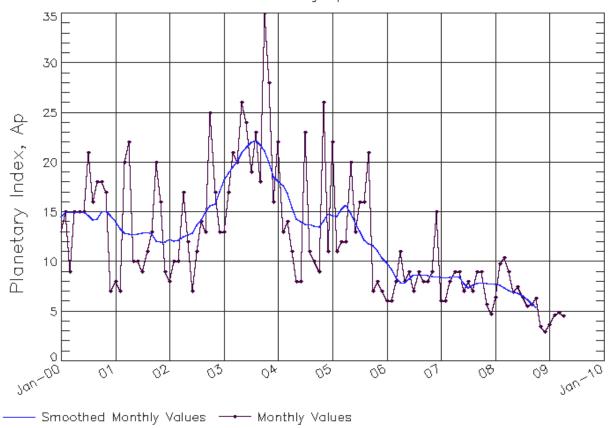

NOAA/SWPC Boulder,CO USA

SEC Prediction of Smoothed Sunspot Number

	Jan Hi/Lo	Feb Hi/Lo	Mar Hi/Lo	Apr Hi/Lo	May Hi/Lo	Jun Hi/Lo	Jul Hi/Lo	Aug Hi/Lo	Sep Hi/Lo	Oct Hi/Lo	Nov Hi/Lo	Dec Hi/Lo
2008	4	4	3	3	4	3	3	3	2	2	2	2
	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(1)	(2)
2009	2	3	3	4	5	6	7	8	10	12	13	15
	(3)	(5)	(5)	(6)	(7)	(7)	(8)	(9)	(9)	(10)	(10)	(10)
2010	17	19	21	24	26	29	32	34	37	40	43	45
	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)
2011	48	51	53	56	59	61	63	66	68	70	72	74
	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)
2012	76	78	79	81	82	84	85	86	87	88	88	89
	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)
2013	89	90	90	90	90	90	90	89	89	89	88	87
	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)
2014	86	86	85	84	83	81	80	79	78	76	75	73
	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)
2015	72	70	69	67	65	64	62	60	59	57	55	54
	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)

ISES Solar Cycle F10.7cm Radio Flux Progression

Updated 2009 May 8


NOAA/SWPC Boulder,CO USA

SEC Prediction of Smoothed F10.7cm Radio Flux

	Jan Hi/Lo	Feb Hi/Lo	Mar Hi/Lo	Apr Hi/Lo	May Hi/Lo	Jun Hi/Lo	Jul Hi/Lo	Aug Hi/Lo	Sep Hi/Lo	Oct Hi/Lo	Nov Hi/Lo	Dec Hi/Lo
2008	70	70	70	70	70	69	69	69	68	68	68	68
2000	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(1)	(1)
2009	67	67	67	67	67	67	68	68	69	70	70	72
	(2)	(3)	(4)	(4)	(5)	(6)	(7)	(8)	(8)	(9)	(9)	(9)
2010	74	76	78	81	83	85	88	90	93	95	98	100
	(9)	(9)	(9)	(9)	(9)	(9)	(9)	(9)	(9)	(9)	(9)	(9)
2011	103	105	108	110	112	115	117	119	121	123	125	127
	(9)	(9)	(9)	(9)	(9)	(9)	(9)	(9)	(9)	(9)	(9)	(9)
2012	128	130	132	133	134	135	136	137	138	139	140	140
	(9)	(9)	(9)	(9)	(9)	(9)	(9)	(9)	(9)	(9)	(9)	(9)
2013	141	141	141	141	141	141	141	141	140	140	139	139
	(9)	(9)	(9)	(9)	(9)	(9)	(9)	(9)	(9)	(9)	(9)	(9)
2014	138	137	136	136	135	134	132	131	130	129	127	126
	(9)	(9)	(9)	(9)	(9)	(9)	(9)	(9)	(9)	(9)	(9)	(9)
2015	125	123	122	120	119	117	116	114	113	111	110	108
	(9)	(9)	(9)	(9)	(9)	(9)	(9)	(9)	(9)	(9)	(9)	(9)

ISES Solar Cycle Ap Progression Data Through Apr 09

NOAA/SWPC Boulder,CO USA

Updated 2009 May 8