# Space Weather Highlights 18 May - 24 May 2009

SWO PRF 1760 26 May 2009

Solar activity was very low. No flares were observed. New-cycle polarity Region 1017 (N18, L=184, class/area Bxo/020 on 14 May) was numbered on 13 May. It was inactive and simply-structured during the period and rotated off the disk on 24 May as spotless plage. New-cycle polarity Region 1018 (S33, L= 046, class/area, Bxo/030 on 23 May) was numbered on 23 May. The region decayed as spotless plage on 24 May. The region was inactive during its short lifespan.

No proton events were observed at geosynchronous orbit.

The greater than 2 MeV electron flux at geosynchronous orbit was at normal levels during the period.

Geomagnetic field activity was at quiet levels at all latitudes during most of the period. However, activity briefly increased to active levels at high latitudes on 22 May. ACE observations indicated the active period (22/1500 – 22/1800 UTC) was due to solar wind changes associated with a period of sustained southward IMF Bz (minimum – 4 nT) and a modest increase in velocities (approximately 370 km/sec).

#### Space Weather Outlook 27 May – 22 June 2009

Solar activity is expected to be very low.

No proton events are expected at geosynchronous orbit.

The greater than 2 MeV electron flux at geosynchronous orbit is expected to be at normal flux levels.

Geomagnetic field activity is expected to be at quiet levels through 02 June. Activity is expected to increase to mostly unsettled levels during 03-05 June with a chance for active levels at high latitudes on 04 June due to a recurrent coronal hole high-speed stream. Mostly quiet conditions are expected during 06-09 June. Activity is expected to increase to quiet to unsettled levels on 10-11 June due to a recurrent coronal hole wind stream. Mostly quiet conditions are expected during 12-22 June.

**Notice:** On May 8, 2009 the Solar Cycle 24 Prediction Panel released a consensus decision on the prediction of the next solar cycle (Cycle 24). See http://www.swpc.noaa.gov/SolarCycle/ for more details.



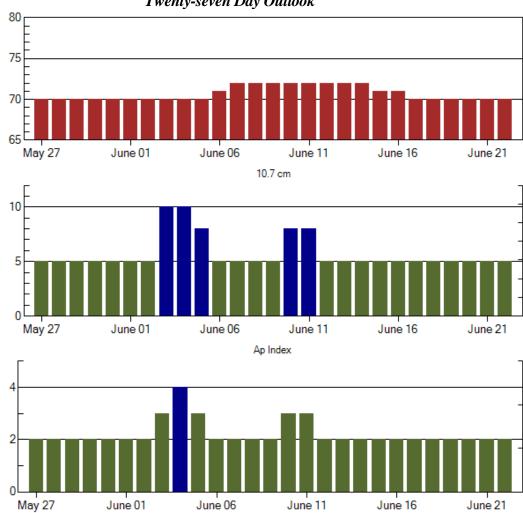
Daily Solar Data

|        | Radio   | Sun  | Sunspot                 | X-ray                                                                                                 |   | Flares |     |   |         |   |   |   |  |
|--------|---------|------|-------------------------|-------------------------------------------------------------------------------------------------------|---|--------|-----|---|---------|---|---|---|--|
|        | Flux    | spot | Area                    | a Background                                                                                          |   | ray F  | lux |   | Optical |   |   |   |  |
| Date   | 10.7 cm | No.  | (10 <sup>-6</sup> hemi. | )                                                                                                     | С | M      | X   | S | 1       | 2 | 3 | 4 |  |
| 18 May | 73      | 14   | 30                      | <a1.0< td=""><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td></a1.0<> | 0 | 0      | 0   | 0 | 0       | 0 | 0 | 0 |  |
| 19 May | 72      | 11   | 10                      | <a1.0< td=""><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td></a1.0<> | 0 | 0      | 0   | 0 | 0       | 0 | 0 | 0 |  |
| 20 May | 72      | 0    | 0                       | <a1.0< td=""><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td></a1.0<> | 0 | 0      | 0   | 0 | 0       | 0 | 0 | 0 |  |
| 21 May | 72      | 0    | 0                       | <a1.0< td=""><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td></a1.0<> | 0 | 0      | 0   | 0 | 0       | 0 | 0 | 0 |  |
| 22 May | 72      | 0    | 0                       | <a1.0< td=""><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td></a1.0<> | 0 | 0      | 0   | 0 | 0       | 0 | 0 | 0 |  |
| 23 May | 70      | 13   | 30                      | <a1.0< td=""><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td></a1.0<> | 0 | 0      | 0   | 0 | 0       | 0 | 0 | 0 |  |
| 24 May | 69      | 0    | 0                       | <a1.0< td=""><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td></a1.0<> | 0 | 0      | 0   | 0 | 0       | 0 | 0 | 0 |  |

#### Daily Particle Data

|        |           | oton Fluence                |          | Electron Fluence                    |              |  |  |  |  |
|--------|-----------|-----------------------------|----------|-------------------------------------|--------------|--|--|--|--|
|        | (proto    | ons/cm <sup>2</sup> -day-sı | r)       | (electrons/cm <sup>2</sup> -day-sr) |              |  |  |  |  |
| Date   | >1 MeV    | >10 MeV                     | >100 MeV | >.6 MeV                             | >2MeV >4 MeV |  |  |  |  |
| 18 May | 9.9e + 05 | 2.0e+04                     | 4.4e+03  |                                     | 9.6e + 05    |  |  |  |  |
| 19 May | 7.1e + 05 | 2.0e+04                     | 4.2e+03  | 6.3e+05                             |              |  |  |  |  |
| 20 May | 1.0e + 06 | 2.0e+04                     | 4.4e+03  | 8.4e + 05                           |              |  |  |  |  |
| 21 May | 7.4e + 05 | 1.9e + 04                   | 4.4e+03  |                                     | 6.6e + 05    |  |  |  |  |
| 22 May | 6.5e + 05 | 1.9e + 04                   | 4.3e+03  |                                     | 4.4e + 05    |  |  |  |  |
| 23 May | 7.4e + 05 | 1.9e + 04                   | 4.1e+03  | 2.8e+05                             |              |  |  |  |  |
| 24 May | 5.4e + 05 | 2.0e+04                     | 4.3e+03  | 2.5e+05                             |              |  |  |  |  |

Daily Geomagnetic Data


|        | Middle Latitude |                 |   | High Latitude   |   | Estimated       |
|--------|-----------------|-----------------|---|-----------------|---|-----------------|
|        | F               | redericksburg   |   | College         |   | Planetary       |
| Date   | A               | K-indices       | Α | K-indices       | A | K-indices       |
| 18 May | 2               | 1-0-0-0-1-0-0-2 | 1 | 0-0-1-0-0-1-0-1 | 4 | 2-1-0-0-1-1-0-2 |
| 19 May | 2               | 1-1-1-0-1-1-0-0 | 3 | 1-1-2-2-0-0-0-0 | 5 | 2-2-1-1-1-1-2   |
| 20 May | 4               | 1-1-0-0-1-0-3-2 | 2 | 1-1-0-0-0-0-1-1 | 4 | 1-1-0-0-1-1-2-2 |
| 21 May | 2               | 1-0-1-1-1-0-1-1 | 3 | 1-1-1-3-0-0-1   | 5 | 2-1-1-1-1-2-2   |
| 22 May | 4               | 0-0-1-2-2-2-1-1 | 5 | 1-1-1-1-4-1-0-0 | 5 | 1-0-1-2-2-1-2   |
| 23 May | 3               | 0-0-1-1-0-1-2-2 | 2 | 0-0-1-1-0-1-1-1 | 4 | 0-0-1-1-0-2-2-2 |
| 24 May | 4               | 1-2-1-1-1-1-1   | 3 | 2-1-1-1-1-0-0-1 | 4 | 2-2-1-0-0-1-1-2 |

Alerts and Warnings Issued

| Date & Time of Issue | Type of Alert or Warning | Date & Time of Event UTC |
|----------------------|--------------------------|--------------------------|
| No Alerts Issued     |                          |                          |



### Twenty-seven Day Outlook



| 1    | 4 [    | <b>n_:</b> I | $\nu_{-}$ |       |
|------|--------|--------------|-----------|-------|
| Larc | iest i | Janv         | ND.       | ındex |

|        | Radio Flux | Planetary | Largest  |        | Radio Flux | Planetary | Largest  |
|--------|------------|-----------|----------|--------|------------|-----------|----------|
| Date   | 10.7 cm    |           | Kp Index | Date   | 10.7 cm    | •         | Kp Index |
| 27 May | 70         | 5         | 2        | 10 Jun | 72         | 8         | 3        |
| 28     | 70         | 5         | 2        | 11     | 72         | 8         | 3        |
| 29     | 70         | 5         | 2        | 12     | 72         | 5         | 2        |
| 30     | 70         | 5         | 2        | 13     | 72         | 5         | 2        |
| 31     | 70         | 5         | 2        | 14     | 72         | 5         | 2        |
| 01 Jun | 70         | 5         | 2        | 15     | 71         | 5         | 2        |
| 02     | 70         | 5         | 2        | 16     | 71         | 5         | 2        |
| 03     | 70         | 10        | 3        | 17     | 70         | 5         | 2        |
| 04     | 70         | 10        | 4        | 18     | 70         | 5         | 2        |
| 05     | 70         | 8         | 3        | 19     | 70         | 5         | 2        |
| 06     | 71         | 5         | 2        | 20     | 70         | 5         | 2        |
| 07     | 72         | 5         | 2        | 21     | 70         | 5         | 2        |
| 08     | 72         | 5         | 2        | 22     | 70         | 5         | 2        |
| 09     | 72         | 5         | 2        |        |            |           |          |



| Ene | rgetic | Events |
|-----|--------|--------|
|     |        |        |

|           |       |     |     |            | 2     |                  |     |            |            |
|-----------|-------|-----|-----|------------|-------|------------------|-----|------------|------------|
|           | T     | ime |     | X-ray      | Opt   | ical Information | 1   | Peak       | Sweep Freq |
| Date      |       |     | 1/2 | Integ      | Imp/  | Location         | Rgn | Radio Flux | Intensity  |
|           | Begin | Max | Max | Class Flux | Brtns | Lat CMD          | #   | 245 2695   | II IV      |
| No Events | Obser | ved |     |            |       |                  |     |            |            |

#### Flare List

|        |                    | T WIE LIST     |       |          |     |  |  |  |  |  |  |
|--------|--------------------|----------------|-------|----------|-----|--|--|--|--|--|--|
|        |                    | <u>Optical</u> |       |          |     |  |  |  |  |  |  |
|        | Time               | X-ray          | Imp/  | Location | Rgn |  |  |  |  |  |  |
| Date   | Begin Max End      | Class.         | Brtns | Lat CMD  |     |  |  |  |  |  |  |
| 18 May | No Flares Observed |                |       |          |     |  |  |  |  |  |  |
| 19 May | No Flares Observed |                |       |          |     |  |  |  |  |  |  |
| 20 May | No Flares Observed |                |       |          |     |  |  |  |  |  |  |
| 21 May | No Flares Observed |                |       |          |     |  |  |  |  |  |  |
| 22 May | No Flares Observed |                |       |          |     |  |  |  |  |  |  |
| 23 May | No Flares Observed |                |       |          |     |  |  |  |  |  |  |
| 24 May | No Flares Observed |                |       |          |     |  |  |  |  |  |  |

Region Summary

| _ |                        |                         | Ke      | gion Su   | mmar    | <u>y                                    </u> |   |       |     |           |       |    |   |  |
|---|------------------------|-------------------------|---------|-----------|---------|----------------------------------------------|---|-------|-----|-----------|-------|----|---|--|
|   | Location               |                         | Sunspot | Character | ristics |                                              |   |       |     | Fla       | res   |    |   |  |
|   | Helio                  | Area                    | Extent  | Spot      | Spot    | Mag                                          | Σ | K-ray |     |           | Optio | al | _ |  |
| _ | Date (° Lat ° CMD) Lon | (10 <sup>-6</sup> hemi) | (helio) | Class     | Count   | Class                                        | C | M :   | X S | <u> 1</u> | 2     | 3  | 4 |  |
|   | Region 10              | )1 <i>7</i>             |         |           |         |                                              |   |       |     |           |       |    |   |  |
|   | 13 May N18E27 190      | 0010                    | 06      | BXO       | 002     | В                                            |   |       |     |           |       |    |   |  |
|   | 14 May N18E17 186      | 0020                    | 07      | BXO       | 800     | В                                            |   |       |     |           |       |    |   |  |
|   | 15 May N18E06 184      | 0010                    | 01      | AXX       | 002     | A                                            |   |       |     |           |       |    |   |  |
|   | 16 May N18W09 186      | 0020                    | 03      | BXO       | 005     | В                                            |   |       |     |           |       |    |   |  |
|   | 17 May N18W21 185      | 0010                    | 03      | BXO       | 003     | В                                            |   |       |     |           |       |    |   |  |
|   | 18 May N18W35 185      | 0030                    | 03      | BXO       | 004     | В                                            |   |       |     |           |       |    |   |  |
|   | 19 May N17W50 187      | 0010                    | 00      | HRX       | 001     | A                                            |   |       |     |           |       |    |   |  |
|   | 20 May N17W44 187      | 0000                    | 00      |           | 000     |                                              |   |       |     |           |       |    |   |  |
|   | 21 May N17W57 187      | 0000                    | 00      |           | 000     |                                              |   |       |     |           |       |    |   |  |
|   | 22 May N17W70 187      | 0000                    | 00      |           | 000     |                                              |   |       |     |           |       |    |   |  |
|   | 23 May N17W83 187      | 0000                    | 00      |           | 000     |                                              |   |       |     |           |       |    |   |  |
|   | 24 May N17W96 187      | 0000                    | 00      |           | 000     |                                              |   |       |     |           |       |    |   |  |
|   |                        |                         |         |           |         |                                              | 0 | 0 (   | 0 ( | 0         | 0     | 0  | 0 |  |
|   | Crossed West Limb      |                         |         |           |         |                                              |   |       |     |           |       |    |   |  |
|   |                        |                         |         |           |         |                                              |   |       |     |           |       |    |   |  |

Absolute heliographic longitude: 184

Region 1018

23 May S33E38 46 0030 03 BXO 003 B 24 May S33E25 46 0000 00 000

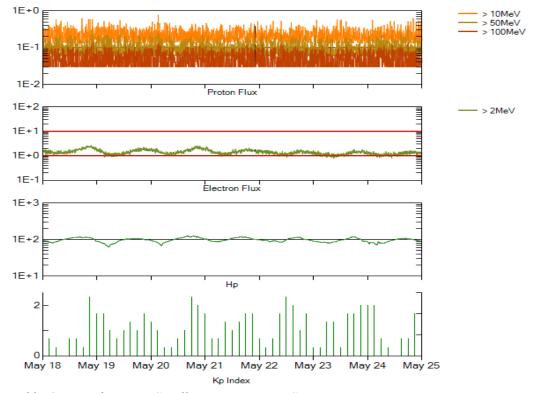
0 0 0 0 0 0 0 0

Still on Disk.

Absolute heliographic longitude: 46



Recent Solar Indices (preliminary)
Of the observed monthly mean values


|              | Sunspot Numbers Radio Flux Geomagnetic |       |        |        |     |              |       |           |       |  |  |  |  |  |
|--------------|----------------------------------------|-------|--------|--------|-----|--------------|-------|-----------|-------|--|--|--|--|--|
|              |                                        | _     |        |        |     |              |       |           | _     |  |  |  |  |  |
|              | Observed                               |       |        | Smooth |     | *Penticton   |       | Planetary |       |  |  |  |  |  |
| <u>Month</u> | SEC                                    | RI    | RI/SEC | SEC    | RI  | 10.7 cm      | Value | Ap        | Value |  |  |  |  |  |
|              |                                        |       |        | 2      | 007 |              |       |           |       |  |  |  |  |  |
| May          | 19.4                                   | 11.7  | 0.60   | 14.2   | 8.7 | 74.5         | 74.2  | 9         | 8.4   |  |  |  |  |  |
| June         | 20.0                                   | 12.0  | 0.60   | 12.8   | 7.7 | 73.7         | 73.2  | 7         | 7.8   |  |  |  |  |  |
|              |                                        |       |        |        |     |              |       |           |       |  |  |  |  |  |
| July         | 15.6                                   | 10.0  | 0.64   | 11.6   | 7.0 | 71.6         | 72.5  | 8         | 7.4   |  |  |  |  |  |
| August       | 9.9                                    | 6.2   | 0.63   | 10.2   | 6.1 | 69.2         | 71.8  | 7         | 7.6   |  |  |  |  |  |
| Septembe     | r 4.8                                  | 2.4   | 0.50   | 9.9    | 5.9 | 67.1         | 71.5  | 9         | 7.8   |  |  |  |  |  |
| 1            |                                        |       |        |        |     |              |       |           |       |  |  |  |  |  |
| October      | 1.3                                    | 0.9   | 0.70   | 10.0   | 6.1 | 65.5         | 71.5  | 9         | 7.9   |  |  |  |  |  |
| November     | r 2.5                                  | 1.7   | 0.68   | 9.4    | 5.7 | 69.7         | 71.1  | 5         | 7.8   |  |  |  |  |  |
| December     | 16.2                                   | 10.1  | 0.62   | 8.1    | 5.0 | 78.6         | 70.5  | 4         | 7.8   |  |  |  |  |  |
|              |                                        |       |        |        |     |              |       |           |       |  |  |  |  |  |
|              |                                        |       |        | 2      | 008 |              |       |           |       |  |  |  |  |  |
| January      | 5.1                                    | 3.4   | 0.67   | 6.9    | 4.2 | 72.1         | 70.0  | 6         | 7.7   |  |  |  |  |  |
| February     | 3.8                                    | 2.1   | 0.55   | 5.9    | 3.6 | 71.2         | 69.6  | 9         | 7.6   |  |  |  |  |  |
| March        | 15.9                                   | 9.3   | 0.58   | 5.3    | 3.3 | 72.9         | 69.5  | 10        | 7.4   |  |  |  |  |  |
|              |                                        |       |        |        |     |              |       |           |       |  |  |  |  |  |
| April        | 4.9                                    | 2.9   | 0.59   | 5.3    | 3.3 | 70.3         | 69.6  | 9         | 7.1   |  |  |  |  |  |
| May          | 5.7                                    | 2.9   | 0.51   | 5.7    | 3.5 | 68.4         | 69.7  | 6         | 6.9   |  |  |  |  |  |
| June         | 4.2                                    | 3.1   | 0.74   | 5.2    | 3.2 | 65.9         | 69.2  | 7         | 6.8   |  |  |  |  |  |
|              |                                        |       |        |        |     |              |       |           |       |  |  |  |  |  |
| July         | 1.0                                    | 0.5   | 0.50   | 4.5    | 2.7 | 65.8         | 68.8  | 6         | 6.6   |  |  |  |  |  |
| August       | 0.0                                    | 0.5   | **     | 4.4    | 2.6 | 66.4         | 68.6  | 5         | 6.2   |  |  |  |  |  |
| Septembe     |                                        | 1.1   | 0.73   | 3.7    | 2.2 | 67.1         | 68.4  | 5         | 5.8   |  |  |  |  |  |
|              |                                        |       |        |        |     |              |       |           |       |  |  |  |  |  |
| October      | 5.2                                    | 2.9   | 0.56   | 2.9    | 1.8 | 68.3         | 68.2  | 6         | 5.4   |  |  |  |  |  |
| November     |                                        | 4.1   | 0.60   |        |     | 68.6         |       | 3         |       |  |  |  |  |  |
| December     |                                        | 0.8   | 0.62   |        |     | 69.2         |       | 2         |       |  |  |  |  |  |
| 200111001    | 110                                    | 0.0   | 0.02   |        |     | 07 <b>.2</b> |       | _         |       |  |  |  |  |  |
|              |                                        |       |        | 2      | 009 |              |       |           |       |  |  |  |  |  |
| January      | 2.8                                    | 1.5   | 0.54   | _      |     | 69.8         |       | 3         |       |  |  |  |  |  |
| February     | 2.5                                    | 1.4   | 0.56   |        |     | 70.0         |       | 4         |       |  |  |  |  |  |
| March        | 0.7                                    | 0.7   | 1.00   |        |     | 69.2         |       | 4         |       |  |  |  |  |  |
|              |                                        |       |        |        |     |              |       | •         |       |  |  |  |  |  |
| April        | 1.2                                    | 1.2   | 1.00   |        |     | 69.7         |       | 4         |       |  |  |  |  |  |
| r            |                                        | - • - | 2.00   |        |     | 57.1         |       | •         |       |  |  |  |  |  |

**NOTE:** All smoothed and monthly values are preliminary estimates.

Cycle 23 started in May 1996 with an RI=8.0. Cycle 23 maximum was April 2000 with an RI=120.8.

<sup>\*\*</sup>SWPC sunspot number was less than RI value, so a ratio could not be computed.

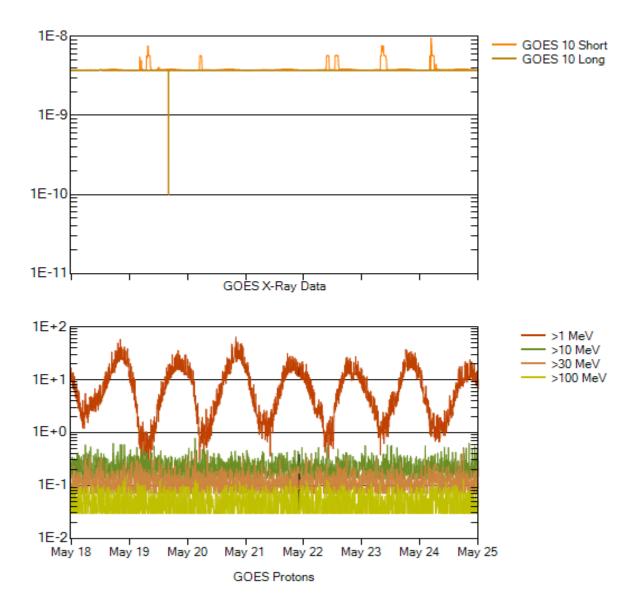




Weekly Geosynchronous Satellite Environment Summary Week Beginning 18May 2009

## GOES-11 designated Primary Electron Satellite and GOES-10 Secondary: December 1, 2008 the GOES-12 Electron sensor began experiencing periods of noise and sensor is unreliable.

Protons plot contains the five-minute averaged integral proton flux (protons/cm<sup>2</sup>-sec -sr) as measured by GOES-11 (W135) for each of three energy thresholds: greater than 10, 50, and 100 MeV.


Electrons plot contains the five-minute averaged integral electron flux (electrons/cm<sup>2</sup>-sec -sr) with energies greater than 2 MeV at GOES-11 (W135).

Hp plot contains the five minute averaged magnetic field H - component in nanoteslas (nT) as measured by GOES-11. The H component is parallel to the spin axis of the satellite, which is nearly parallel to the Earth's rotation axis.

Kp plot contains the estimated planetary 3-hour K-index (derived by the Air Force Weather Agency) in real time from magnetometers at Meanook, Canada; Sitka, AK; Glenlea, Canada; St. Johns, Canada; Ottawa, Canada; Newport, WA; Fredericksburg, VA; Boulder, CO; Fresno, CA and Hartland, UK. These data are made available through cooperation from the Geological Survey of Canada (GSC), British Geological Survey (BGS) and the US Geological Survey. These may differ from the final Kp values derived from a more extensive network of magnetometers.

The data included here are those now available in real time at the SWPC and are incomplete in that they do not include the full set of parameters and energy ranges known to cause satellite operating anomalies. The proton and electron fluxes and Kp are "global" parameters that are applicable to a first order approximation over large areas. H parallel is subject to more localized phenomena and the measurements generally are applicable to within a few degrees of longitude of the measuring satellite.





#### Weekly GOES Satellite X-ray and Proton Plots

X-ray plot contains five-minute averaged x-ray flux (watts/ $m^2$ ) as measured by GOES 10 (W060) and GOES 11 (W135) in two wavelength bands, .05 - .4 and .1 - .8 nm. The letters A, B, C, M and X refer to x-ray event levels for the .1 - .8 nm band.

Proton plot contains the five-minute averaged integral proton flux (protons/cm $^2$ -sec-sr) as measured by GOES-11 (W135) for each of the energy thresholds: >1, >10, >30 and >100 MeV. P10 event threshold is 10 pfu (protons/cm $^2$ -sec-sr) at greater than 10 MeV.

