Space Weather Highlights 25 May - 31 May 2009

Solar activity was very low. No flares were observed. New cycle polarity Region 1019 (N28, L=297, class/area Cro/080 on 02 June) was numbered on 31 May. It was simply structured and produced no flares during the summary period.

No proton events were observed at geosynchronous orbit.

The greater than 2 MeV electron flux at geosynchronous orbit was at normal levels during the period.

Geomagnetic field activity was at quiet levels at all latitudes during most of the period. However, activity increased to unsettled levels on 28 May with a brief period of active levels at high latitudes. The increase followed a sudden impulse at 28/0520 UTC (33 nT, as observed by the Boulder USGS magnetometer). ACE solar wind measurements indicated an interplanetary shock passage at approximately 28/0418 UTC. There was no obvious source for the shock. Solar wind changes associated with the shock passage included a jump in velocity (284 – 338 km/sec at 28/0418 UTC), increased interplanetary magnetic field (IMF) Bt (peak 12 nT at 28/0722 UTC), and intermittent periods of southward IMF Bz (minimum -8 nT at 28/0857 UTC).

Space Weather Outlook 03 June – 29 June 2009

Solar activity is expected to be very low.

No proton events are expected at geosynchronous orbit.

The greater than 2 MeV electron flux at geosynchronous orbit is expected to be at normal flux levels.

Geomagnetic field activity is expected to be at quiet to unsettled levels during 03 - 04 June. Mostly quiet conditions are expected during 05 - 28 June, with unsettled periods possible on 10 June. Activity is expected to increase to unsettled levels on 29 June.

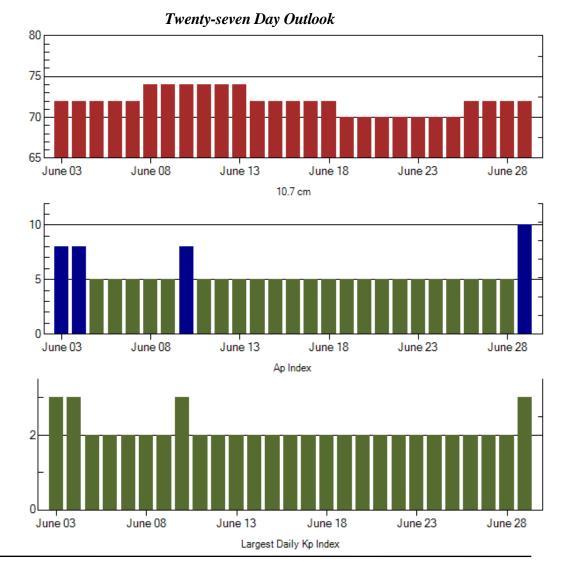
Notice: On May 8, 2009 the Solar Cycle 24 Prediction Panel released a consensus decision on the prediction of the next solar cycle (Cycle 24). See http://www.swpc.noaa.gov/SolarCycle/ for more details.

				Dauy So		uu						
	Radio	Sun	Sunspot	X-ray	_			Flares				
	Flux	spot	Area	Background	X	-ray F	lux		0	ptical		
Date	10.7 cm	No.	(10 ⁻⁶ hemi.))	С	М	Х	S	1	2	3	4
25 May	69	0	0	<a1.0< td=""><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td></a1.0<>	0	0	0	0	0	0	0	0
26 May	68	0	0	<a1.0< td=""><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td></a1.0<>	0	0	0	0	0	0	0	0
27 May	67	0	0	<a1.0< td=""><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td></a1.0<>	0	0	0	0	0	0	0	0
28 May	68	0	0	<a1.0< td=""><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td></a1.0<>	0	0	0	0	0	0	0	0
29 May	68	0	0	<a1.0< td=""><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td></a1.0<>	0	0	0	0	0	0	0	0
30 May	69	0	0	<a1.0< td=""><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td></a1.0<>	0	0	0	0	0	0	0	0
31 May	69	15	30	<a1.0< td=""><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td></a1.0<>	0	0	0	0	0	0	0	0

Daily Solar Data

Daily Particle Data

		oton Fluence ons/cm ² -day-si	<u>,</u>)		on Fluence s/cm ² -day-sr)
Date	>1 MeV	>10 MeV	>100 MeV	>.6 MeV	>2MeV >4 MeV
25 May	6.0e+05	2.0e+04	4.4e+03		3.6e+05
26 May	7.0e+05	2.0e+04	4.6e+03		3.9e+05
27 May	6.8e+05	2.0e+04	4.6e+03		3.6e+05
28 May	5.2e+05	2.0e+04	4.6e+03		1.2e+05
29 May	4.6e+05	1.9e+04	4.1e+03		5.7e+04
30 May	5.5e+05	2.0e+04	4.3e+03		7.7e+04
31 May	5.5e+05	1.9e+04	4.3e+03		9.3e+04


Daily Geomagnetic Data

	Ν	fiddle Latitude]	High Latitude]	Estimated
	F	Fredericksburg		College		Planetary
Date	Α	K-indices	Α	K-indices	Α	K-indices
25 May	1	0-0-0-1-1-0-1-0	1	0-0-1-0-0-1-0	3	1-0-0-1-1-1-0-2
26 May	2	1-0-1-0-1-0-0-1	1	1-0-1-0-0-0-0-0	4	1-0-1-0-1-1-1-2
27 May	2	0-0-0-0-1-1-1-1	0	1-0-0-0-0-0-0-0	3	1-0-0-0-2-1-2
28 May	5	0-3-2-2-2-1-1-0	9	0-3-3-4-3-1-1-0	7	1-3-2-3-2-2-1-2
29 May	4	1-1-1-2-1-1-2	3	1-1-0-1-2-1-1-1	5	1-2-1-1-2-2-2-2
30 May	2	1-1-0-0-0-1-1	2	1-1-1-1-0-1-1-0	3	2-2-0-0-0-0-1
31 May	3	1-0-2-0-1-1-2-1	1	0-0-1-0-0-1-0	3	1-0-1-0-1-1-1-1

Alerts and Warnings Issued

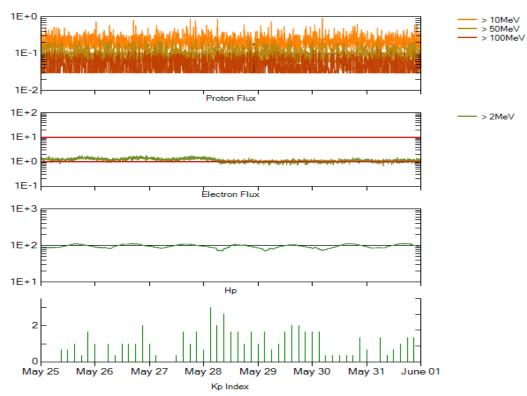
Date & Time of	Issue	Type of Alert or Warning	Date	& Time of Event UTC
28 May 0451	WARNI	NG: Geomagnetic Sudden Impulse ex	xpected	28 May 0525 - 0545
28 May 0528	SUM	IMARY: Geomagnetic Sudden Impu	ilse	28 May 0520
28 May 0548	SUM	IMARY: Geomagnetic Sudden Impu	ılse	28 May 0520

	Radio Flux	Planetary	Largest		Radio Flux	Planetary	Largest
Date	10.7 cm	A Index	Kp Index	Date	10.7 cm	A Index	Kp Index
03 Jun	72	8	3	17 Jun	72	5	2
04	72	8	3	18	72	5	2
05	72	5	2	19	70	5	2
06	72	5	2	20	70	5	2
07	72	5	2	21	70	5	2
08	74	5	2	22	70	5	2
09	74	5	2	23	70	5	2
10	74	8	3	24	70	5	2
11	74	5	2	25	70	5	2
12	74	5	2	26	72	5	2
13	74	5	2	27	72	5	2
14	72	5	2	28	72	5	2
15	72	5	2	29	72	10	3
16	72	5	2				

						Energet	ic Events				
	Т	ime		X	-ray	Opti	ical Informatio		Pe	eak	Sweep Freq
Date			1⁄2		Integ	Imp/	Location	Rgn	Radi	o Flux	Intensity
	Begin	Max	Max	Class	Flux	Brtns	Lat CMD	#	245	2695	II IV
No Event.	s Obser	ved									
						Flar	e List				
									Optical		
			Tim	e			X-ray	Imp /	Lo	ocation	Rgn
Date		Begin	Max	i.	End	(Class.	Brtns	La	t CMD	
25 May		No Fl	ares C	bserv	ed						
26 May		No Fl	ares C	bserv	ed						
27 May		No Fl	ares C	bserv	ed						
28 May		No Fl	ares C	bserv	ed						
29 May		No Fl	ares C	bserv	ed						
30 May		No Fl									
31 May				bserv							

Location			Sunspot Characteristics						Flares						
I	Helio	Area	Extent	Spot	Spot	Mag		X-ra		. –		Opti	cal		
Date (° Lat ° CMD) I	Lon	(10 ⁻⁶ hemi)	(helio)	Class	Count	Class	С	Μ	Х	S	1	2	3	4	
Regi	ion 10	18													
23 May S33E38	46	0030	03	BXO	003	В									
24 May S33E25	46	0000	00		000										
25 May S33E12	46	0000	00		000										
26 May S33W01	46	0000	00		000										
27 May S33W14	46	0000	00		000										
28 May S33W27	46	0000	00		000										
29 May S33W40	45	0000	00		000										
30 May S33W53	45	0000	00		000										
31 May S33W66	45	0000	00		000										
							0	0	0	0	0	0	0	0	
Died on Disk															
Absolute heliograp	hic lor	ngitude: 46													
Reg	ion 10	19													
31 May N27E41		0030	04	BXO	005	В									
5							0	0	0	0	0	0	0	0	
Still on Disk.															
Absolute heliograp	hic lor	ngitude: 29	8												

			Of the	observed	monthly	mean values			
		Sunsp	ot Numbe	ers		Radio	Flux	Geoma	gnetic
	Observed	values	<u>Ratio</u>	Smooth	values	*Penticton	Smooth	Planetary	Smooth
Month	SEC	RI	RI/SEC	SEC	RI	10.7 cm	Value	Ap	Value
				2	007				
June	20.0	12.0	0.60	12.8	7.7	73.7	73.2	7	7.8
July	15.6	10.0	0.64	11.6	7.0	71.6	72.5	8	7.4
August	9.9	6.2	0.63	10.2	6.1	69.2	72.3	7	7.4
September		0.2 2.4	0.03	9.9	5.9	67.1	71.5	9	7.8
September	4.0	2.4	0.50	9.9	5.9	07.1	/1.5	7	7.0
October	1.3	0.9	0.70	10.0	6.1	65.5	71.5	9	7.9
November	2.5	1.7	0.68	9.4	5.7	69.7	71.1	5	7.8
December	16.2	10.1	0.62	8.1	5.0	78.6	70.5	4	7.8
				2	008				
January	5.1	3.4	0.67	6.9	4.2	72.1	70.0	6	7.7
February	3.8	2.1	0.55	5.9	3.6	71.2	69.6	9	7.6
March	15.9	9.3	0.58	5.3	3.3	72.9	69.5	10	7.4
April	4.9	2.9	0.59	5.3	3.3	70.3	69.6	9	7.1
May	5.7	2.9	0.51	5.7	3.5	68.4	69.7	6	6.9
June	4.2	3.1	0.74	5.2	3.2	65.9	69.2	7	6.8
July	1.0	0.5	0.50	4.5	2.7	65.8	68.8	6	6.6
August	0.0	0.5	**	4.4	2.6	66.4	68.6	5	6.2
September		1.1	0.73	3.7	2.2	67.1	68.4	5	5.8
October	5.2	2.0	0.56	2.0	10	68.3	68.2	C	5.4
November		2.9 4.1	0.36	2.9 2.7	1.8 1.7	68.6	68.2	6 3	5.4 5.1
December		4.1 0.8	0.60	2.1	1.7	69.2	00.5	2	5.1
December	1.5	0.8	0.02			09.2		2	
	_		_	2	009				
January	2.8	1.5	0.54			69.8		3	
February	2.5	1.4	0.56			70.0		4	
March	0.7	0.7	1.00			69.2		4	
April	1.2	1.2	1.00			69.7		4	
May	3.9	2.9	0.74			70.6		4	


Recent Solar Indices (preliminary) Of the observed monthly mean values

NOTE: All smoothed and monthly values are preliminary estimates.

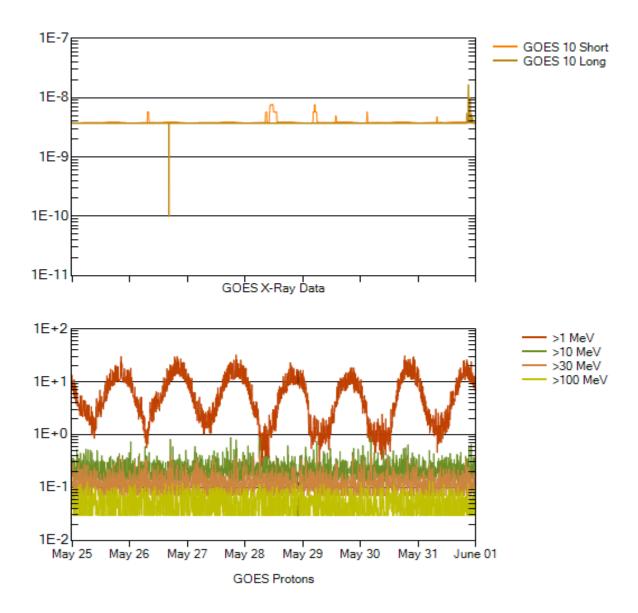
Cycle 23 started in May 1996 with an RI=8.0. Cycle 23 maximum was April 2000 with an RI=120.8.

**SWPC sunspot number was less than RI value, so a ratio could not be computed.

Weekly Geosynchronous Satellite Environment Summary Week Beginning 25May 2009

GOES-11 designated Primary Electron Satellite and GOES-10 Secondary: December 1, 2008 the GOES-12 Electron sensor began experiencing periods of noise and sensor is unreliable.

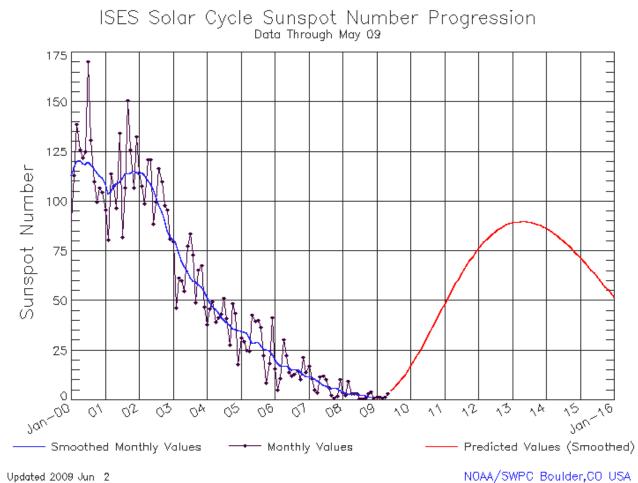
Protons plot contains the five-minute averaged integral proton flux (protons/cm²-sec -sr) as measured by GOES-11 (W135) for each of three energy thresholds: greater than 10, 50, and 100 MeV.


Electrons plot contains the five-minute averaged integral electron flux (electrons/cm²-sec -sr) with energies greater than 2 MeV at GOES-11 (W135).

Hp plot contains the five minute averaged magnetic field H - component in nanoteslas (nT) as measured by GOES-11. The H component is parallel to the spin axis of the satellite, which is nearly parallel to the Earth's rotation axis.

Kp plot contains the estimated planetary 3-hour K-index (derived by the Air Force Weather Agency) in real time from magnetometers at Meanook, Canada; Sitka, AK; Glenlea, Canada; St. Johns, Canada; Ottawa, Canada; Newport, WA; Fredericksburg, VA; Boulder, CO; Fresno, CA and Hartland, UK. These data are made available through cooperation from the Geological Survey of Canada (GSC), British Geological Survey (BGS) and the US Geological Survey. These may differ from the final Kp values derived from a more extensive network of magnetometers.

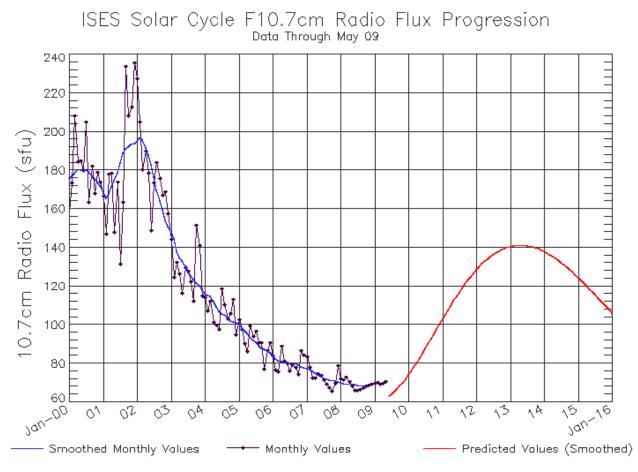
The data included here are those now available in real time at the SWPC and are incomplete in that they do not include the full set of parameters and energy ranges known to cause satellite operating anomalies. The proton and electron fluxes and Kp are "global" parameters that are applicable to a first order approximation over large areas. H parallel is subject to more localized phenomena and the measurements generally are applicable to within a few degrees of longitude of the measuring satellite.



Weekly GOES Satellite X-ray and Proton Plots

X-ray plot contains five-minute averaged x-ray flux (watts/ m^{2}) as measured by GOES 10 (W060) and GOES 11 (W135) in two wavelength bands, .05 - .4 and .1 - .8 nm. The letters A, B, C, M and X refer to x-ray event levels for the .1 - .8 nm band.

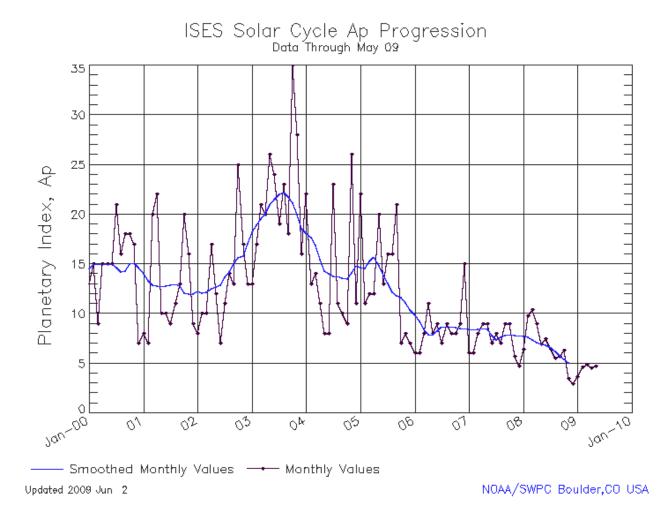
Proton plot contains the five-minute averaged integral proton flux (protons/cm² –sec-sr) as measured by GOES-11 (W135) for each of the energy thresholds: >1, >10, >30 and >100 MeV. P10 event threshold is 10 pfu (protons/cm²-sec-sr) at greater than 10 MeV.



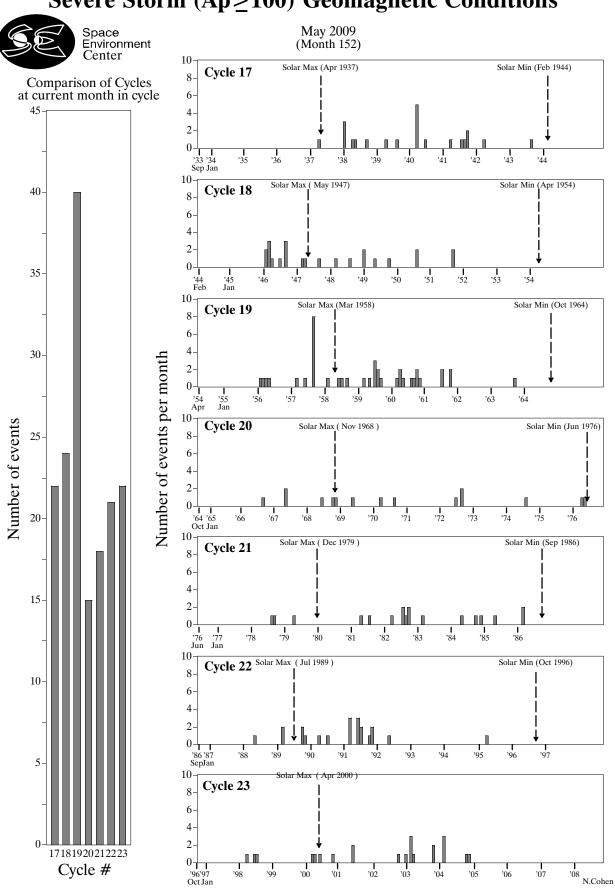
Updated 2009 Jun 2

Smoothed Sunspot Number Prediction

				Smoon	icu bui	Isport	umber	IICun	cuon			
	Jan Hi/Lo	Feb Hi/Lo	Mar Hi/Lo	Apr Hi/Lo	May Hi/Lo	Jun Hi/Lo	Jul Hi/Lo	Aug Hi/Lo	Sep Hi/Lo	Oct Hi/Lo	Nov Hi/Lo	Dec Hi/Lo
2008	4	4	3	3	4	3	3	3	2	2	2	2
	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(1)
2009	2	3	3	4	5	5	7	8	10	11	13	15
	(2)	(3)	(5)	(5)	(6)	(7)	(7)	(8)	(9)	(9)	(10)	(10)
2010	17	19	21	24	26	29	32	34	37	40	43	45
	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)
2011	48	51	53	56	59	61	63	66	68	70	72	74
	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)
2012	76	78	79	81	82	84	85	86	87	88	88	89
	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)
2013	89	90	90	90	90	90	90	89	89	89	88	87
	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)
2014	86	86	85	84	83	81	80	79	78	76	75	73
	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)
2015	72	70	69	67	65	64	62	60	59	57	55	54
	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)


Updated 2009 Jun 2

NOAA/SWPC Boulder,CO USA


Smoothed F10.7cm Radio Flux Prediction

			~									
	Jan Hi/Lo	Feb Hi/Lo	Mar Hi/Lo	Apr Hi/Lo	May Hi/Lo	Jun Hi/Lo	Jul Hi/Lo	Aug Hi/Lo	Sep Hi/Lo	Oct Hi/Lo	Nov Hi/Lo	Dec Hi/Lo
2008	70	70	70	70	70	69	69	69	68	68	68	68
	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(1)
2009	68	68	68	68	68	68	68	69	70	70	71	72
	(1)	(2)	(3)	(4)	(4)	(5)	(6)	(7)	(8)	(8)	(9)	(9)
2010	74	76	78	81	83	85	88	90	93	95	98	100
	(9)	(9)	(9)	(9)	(9)	(9)	(9)	(9)	(9)	(9)	(9)	(9)
2011	103	105	108	110	112	115	117	119	121	123	125	127
	(9)	(9)	(9)	(9)	(9)	(9)	(9)	(9)	(9)	(9)	(9)	(9)
2012	128	130	132	133	134	135	136	137	138	139	140	140
	(9)	(9)	(9)	(9)	(9)	(9)	(9)	(9)	(9)	(9)	(9)	(9)
2013	141	141	141	141	141	141	141	141	140	140	139	139
	(9)	(9)	(9)	(9)	(9)	(9)	(9)	(9)	(9)	(9)	(9)	(9)
2014	138	137	136	136	135	134	132	131	130	129	127	126
	(9)	(9)	(9)	(9)	(9)	(9)	(9)	(9)	(9)	(9)	(9)	(9)
2015	125	123	122	120	119	117	116	114	113	111	110	108
	(9)	(9)	(9)	(9)	(9)	(9)	(9)	(9)	(9)	(9)	(9)	(9)

Severe Storm (Ap≥100) Geomagnetic Conditions