Space Weather Highlights 01 June - 07 June 2009

SWO PRF 1762 09 June 2009

Solar activity was very low. Isolated low-level B-class flares were observed during the period. The likely source for the flares was Region 1019 (N28, L=297, class/area Cro/080 on 01 June). Region 1019 began to gradually decay on 03 June and was downgraded to a spotless plage region on 06 June.

No proton events were observed at geosynchronous orbit.

The greater than 2 MeV electron flux at geosynchronous orbit was at normal levels during the period.

Geomagnetic field activity was at predominantly quiet levels at all latitudes during the period.

Space Weather Outlook 10 June – 06 July 2009

Solar activity is expected to be very low.

No proton events are expected at geosynchronous orbit.

The greater than 2 MeV electron flux at geosynchronous orbit is expected to be at normal flux levels.

Geomagnetic field activity is expected to be at quiet conditions, with isolated unsettled levels possible on 10 June. Predominantly quiet conditions are expected during 11 - 29 June. Activity is expected to increase to quiet to unsettled levels on 30 June -1 July. Predominantly quiet conditions are expected on 02 - 06 July.

Notice: On May 8, 2009 the Solar Cycle 24 Prediction Panel released a consensus decision on the prediction of the next solar cycle (Cycle 24). See http://www.swpc.noaa.gov/SolarCycle/ for more details.

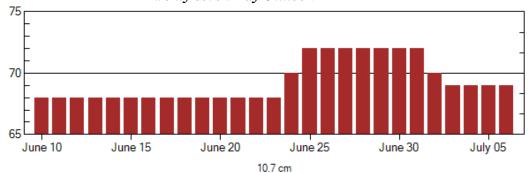
Daily Solar Data

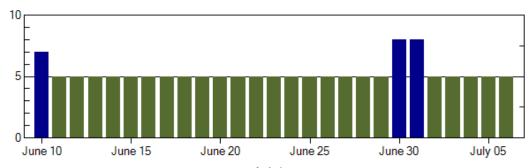
	Radio	Sun	Sunspot	Sunspot X-ray Flares								
	Flux	spot	Area	Background	X-	ray Fl	lux		O	ptical		
Date	10.7 cm	No.	(10 ⁻⁶ hemi.)	С	M	X	S	1	2	3	4
01 June	73	23	80	A1.3	0	0	0	0	0	0	0	0
02 June	72	19	60	<a1.0< td=""><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td></a1.0<>	0	0	0	0	0	0	0	0
03 June	73	17	10	<a1.0< td=""><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td></a1.0<>	0	0	0	0	0	0	0	0
04 June	71	17	20	<a1.0< td=""><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td></a1.0<>	0	0	0	0	0	0	0	0
05 June	70	13	10	<a1.0< td=""><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td></a1.0<>	0	0	0	0	0	0	0	0
06 June	69	0	0	<a1.0< td=""><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td></a1.0<>	0	0	0	0	0	0	0	0
07 June	69	0	0	<a1.0< td=""><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td></a1.0<>	0	0	0	0	0	0	0	0

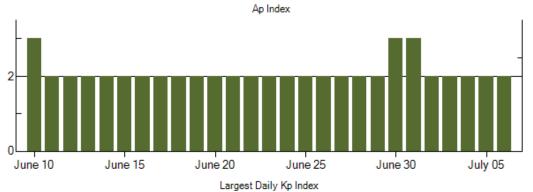
Daily Particle Data

		oton Fluence		Electron Fluence						
	(prote	ons/cm ² -day-sı	<u>:) </u>	(electrons/cm ² -day-sr)						
Date	>1 MeV	>10 MeV	>100 MeV	>.6 MeV	>2MeV >4 MeV					
01 June	4.7e + 05	2.0e+04	4.6e + 03		9.9e+04					
02 June	5.9e + 05	2.0e+04	4.8e + 03		1.1e+05					
03 June	8.2e + 05	2.0e+04	4.3e+03		1.3e + 05					
04 June	4.9e + 05	1.9e + 04	4.1e+03		6.3e+04					
05 June	6.0e + 05	2.0e+04	4.3e+03		5.3e+04					
06 June	4.5e + 05	2.1e+04	4.5e+03		4.7e + 04					
07 June	5.4e + 05	2.0e+04	4.4e+03		5.1e+04					

Daily Geomagnetic Data


	N.	Iiddle Latitude		High Latitude		Estimated
	F	redericksburg		College		Planetary
Date	Α	K-indices	Α	K-indices	Α	K-indices
01 June	2	0-0-1-0-1-1-1-0	0	0-0-1-0-0-0-0	3	1-1-1-0-1-1-1
02 June	2	0-0-1-1-0-0-1-1	1	0-0-0-0-0-1-1-0	2	1-0-0-1-1-0-0-1
03 June	4	0-0-1-0-2-3-2-1	3	0-0-0-0-2-2-1-1	4	1-0-0-1-0-2-2-2
04 June	5	3-2-1-1-1-1-1	3	2-2-1-1-0-0-1-1	6	1-3-2-1-2-2-1-2
05 June	5	1-2-2-2-0-1-1	6	1-2-3-3-2-0-0-1	6	1-2-2-2-2-1-1
06 June	2	0-2-1-0-0-1-1-1	2	0-2-2-0-1-0-0-0	5	1-2-1-0-1-1-2-1
07 June	3	0-0-1-1-2-2-1-1	1	0-0-1-0-1-0-1-0	6	1-0-1-1-2-3-2-2


Alerts and Warnings Issued


Date & Time of Issue	Type of Alert or Warning	Date & Time of Event UTC
No Alerts Issued		

Twenty-seven Day Outlook

	Radio Flux	Planetary	Largest		Radio Flux	Planetary	Largest
Date	10.7 cm	•	Kp Index	Date	10.7 cm	•	Kp Index
10 Jun	68	7	3	24 Jun	70	5	2
11	68	5	2	25	72	5	2
12	68	5	2	26	72	5	2
13	68	5	2	27	72	5	2
14	68	5	2	28	72	5	2
15	68	5	2	29	72	5	2
16	68	5	2	30	72	8	3
17	68	5	2	01 Jul	72	8	3
18	68	5	2	02	70	5	2
19	68	5	2	03	69	5	2
20	68	5	2	04	69	5	2
21	68	5	2	05	69	5	2
22	68	5	2	06	69	5	2
23	68	5	2				

Ene	rgetic	Events

Ti		ime		X-ray	Optical Information			Peak	Sweep Freq
Date			1/2	Integ	Imp/	Location	Rgn	Radio Flux	Intensity
	Begin	Max	Max	Class Flux	Brtns	Lat CMD	#	245 2695	II IV
No Event	s Obser	ved							

Flare List

						Optical	
		Time		X-ray	Imp/	Location	Rgn
Date	Begin	Max	End	Class.	Brtns	Lat CMD	
01 June	0804	0807	0815	B1.1			
02 June	0630	0639	0647	B1.1			
03 June	0005	0008	0011	B1.0			
	0740	0744	0751	B1.3			
	1831	1837	1840	B1.5			
04 June	No Fla	res Obsei	rved				
05 June	No Fla	res Obsei	rved				
06 June	0317	0323	0333	B2.6			
07 June	No Fla	res Obsei	rved				

Region Summary

				110,	COLU DU		,								
	Locatio		Sunspot Characteristics					Flares							
		Helio	Area	Extent	Spot	Spot	Mag	X-ray			0	ptic	al		
Date	(° Lat ° CMD)	Lon	(10 ⁻⁶ hemi)	(helio)	Class	Count	Class	$C M \Sigma$	(S	1	2	3	4	

Region 1019

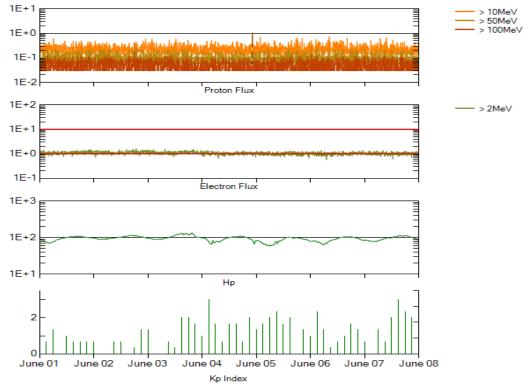
31 May	N27E41	298	0030	04	BXO	005	В
01 Jun	N28E29	297	0080	06	CRO	013	В
02 Jun	N28E15	298	0060	06	BXO	009	В
03 Jun	N26E03	296	0010	07	BXO	007	В
04 Jun	N24W10	296	0020	06	BXO	007	В
05 Jun	N24W23	296	0010	03	BXO	003	В
06 Jun	N24W36	295	0000	00		000	
07 Jun	N24W49	295	0000	00		000	

0 0 0 0 0 0 0 0

Still on Disk.

Absolute heliographic longitude: 296

Recent Solar Indices (preliminary)
Of the observed monthly mean values


		Sunen	ot Numbe		пониц	Radio	Flux	Geoma	onetic
	Observed	_		Smooth	valuec	*Penticton		Planetary	_
Month	SEC	RI	RI/SEC	SEC	RI	10.7 cm	Value	Ap	Value
WIOIIIII	SEC	NI_	KI/SEC		007	10.7 CIII	v aiue	<u> </u>	v alue
Luna	20.0	12.0	0.60	12.8	7.7	73.7	73.2	7	7.8
June	20.0	12.0	0.00	12.8	1.1	13.1	13.2	1	7.8
July	15.6	10.0	0.64	11.6	7.0	71.6	72.5	8	7.4
August	9.9	6.2	0.63	10.2	6.1	69.2	71.8	7	7. 4 7.6
September		2.4	0.50	9.9	5.9	67.1	71.5	9	7.8
September	1 7.0	2.4	0.50	7.7	3.7	07.1	71.5	,	7.0
October	1.3	0.9	0.70	10.0	6.1	65.5	71.5	9	7.9
November		1.7	0.68	9.4	5.7	69.7	71.1	5	7.8
December		10.1	0.62	8.1	5.0	78.6	70.5	4	7.8
Decemen	10.2	10.1	0.02	0.1	2.0	70.0	, 0.0	•	7.0
				2	008				
January	5.1	3.4	0.67	6.9	4.2	72.1	70.0	6	7.7
February	3.8	2.1	0.55	5.9	3.6	71.2	69.6	9	7.6
March	15.9	9.3	0.58	5.3	3.3	72.9	69.5	10	7.4
April	4.9	2.9	0.59	5.3	3.3	70.3	69.6	9	7.1
May	5.7	2.9	0.51	5.7	3.5	68.4	69.7	6	6.9
June	4.2	3.1	0.74	5.2	3.2	65.9	69.2	7	6.8
July	1.0	0.5	0.50	4.5	2.7	65.8	68.8	6	6.6
August	0.0	0.5	**	4.4	2.6	66.4	68.6	5	6.2
September	r 1.5	1.1	0.73	3.7	2.2	67.1	68.4	5	5.8
October	5.2	2.9	0.56	2.9	1.8	68.3	68.2	6	5.4
November	r 6.8	4.1	0.60	2.7	1.7	68.6	68.3	3	5.1
December	1.3	0.8	0.62			69.2		2	
				2	009				
January	2.8	1.5	0.54			69.8		3	
February	2.5	1.4	0.56			70.0		4	
March	0.7	0.7	1.00			69.2		4	
April	1.2	1.2	1.00			69.7		4	
May	3.9	2.9	0.74			70.6		4	
May	3.)	4.7	U. / T			70.0		7	

NOTE: All smoothed and monthly values are preliminary estimates.

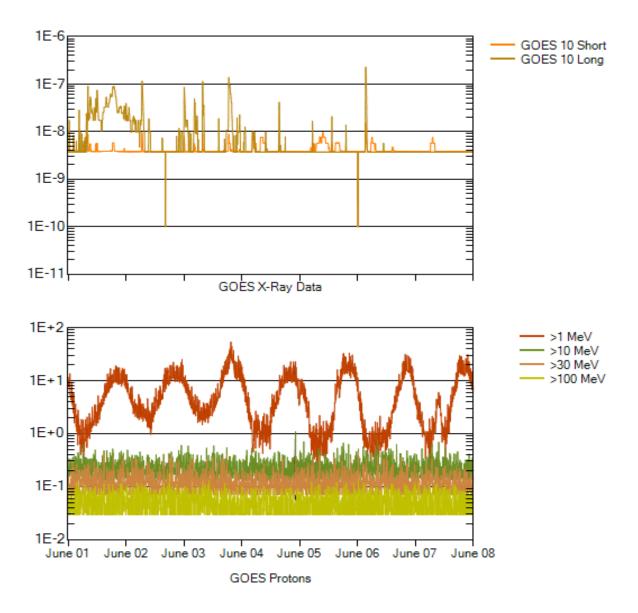
Cycle 23 started in May 1996 with an RI=8.0. Cycle 23 maximum was April 2000 with an RI=120.8.

^{**}SWPC sunspot number was less than RI value, so a ratio could not be computed.

Weekly Geosynchronous Satellite Environment Summary Week Beginning 1 June 2009

GOES-11 designated Primary Electron Satellite and GOES-10 Secondary: December 1, 2008 the GOES-12 Electron sensor began experiencing periods of noise and sensor is unreliable.

Protons plot contains the five-minute averaged integral proton flux (protons/cm²-sec -sr) as measured by GOES-11 (W135) for each of three energy thresholds: greater than 10, 50, and 100 MeV.


Electrons plot contains the five-minute averaged integral electron flux (electrons/cm²-sec -sr) with energies greater than 2 MeV at GOES-11 (W135).

Hp plot contains the five minute averaged magnetic field H - component in nanoteslas (nT) as measured by GOES-11. The H component is parallel to the spin axis of the satellite, which is nearly parallel to the Earth's rotation axis.

Kp plot contains the estimated planetary 3-hour K-index (derived by the Air Force Weather Agency) in real time from magnetometers at Meanook, Canada; Sitka, AK; Glenlea, Canada; St. Johns, Canada; Ottawa, Canada; Newport, WA; Fredericksburg, VA; Boulder, CO; Fresno, CA and Hartland, UK. These data are made available through cooperation from the Geological Survey of Canada (GSC), British Geological Survey (BGS) and the US Geological Survey. These may differ from the final Kp values derived from a more extensive network of magnetometers.

The data included here are those now available in real time at the SWPC and are incomplete in that they do not include the full set of parameters and energy ranges known to cause satellite operating anomalies. The proton and electron fluxes and Kp are "global" parameters that are applicable to a first order approximation over large areas. H parallel is subject to more localized phenomena and the measurements generally are applicable to within a few degrees of longitude of the measuring satellite.

Weekly GOES Satellite X-ray and Proton Plots

X-ray plot contains five-minute averaged x-ray flux (watts/ m^2) as measured by GOES 10 (W060) and GOES 11 (W135) in two wavelength bands, .05 - .4 and .1 - .8 nm. The letters A, B, C, M and X refer to x-ray event levels for the .1 - .8 nm band.

Proton plot contains the five-minute averaged integral proton flux (protons/cm² –sec-sr) as measured by GOES-11 (W135) for each of the energy thresholds: >1, >10, >30 and >100 MeV. P10 event threshold is 10 pfu (protons/cm²-sec-sr) at greater than 10 MeV.

