Solar activity was very low. No flares were observed. The visible disk was spotless.

No proton events were observed at geosynchronous orbit.

The greater than 2 MeV electron flux at geosynchronous orbit was at normal levels during 20 - 22 July. Fluxes rose to moderate levels during 23 - 24 July. Fluxes rose to high levels during 25 - 26 July.

Geomagnetic field activity was at mostly quiet levels during 20 - 21 July. Activity increased to major storm levels from 0300 - 1200 UTC on 22 July. Activity decreased to quiet to unsettled levels for the remainder of the day and continued through 25 July. Activity decreased to quiet levels at all latitudes on 26 July. ACE solar wind measurements indicated the storm conditions on 22 July were associated with the onset of a coronal hole high-speed wind stream. Solar wind velocities began to gradually increase early on 22 July and eventually reached a maximum of 601 km/sec at 24/0158 UTC. Velocities gradually decreased during the rest of the period. Interplanetary magnetic field (IMF) changes associated with the onset of the high-speed stream included an increase in IMF Bt (peak 18 nT at 22/0533 UTC) and a sustained period of southward IMF Bz (minimum -18 nT at 22/0703 UTC).

Space Weather Outlook 29 July – 24 August 2009

Solar activity is expected to be very low.

No proton events are expected at geosynchronous orbit.

The greater than 2 MeV electron flux at geosynchronous orbit is expected to be at high levels during 21 - 22 August. Normal to moderate flux levels are expected during the rest of the period.

Geomagnetic field activity is expected to be at quiet levels during 29 July – 04 August. Quiet levels, with isolated unsettled periods, are expected during 05-06 August due to a recurrent coronal hole. Activity is expected to decrease to quiet levels during 07 - 08 August. Activity is expected to increase to unsettled levels during 09 - 10 August, again due to recurrence. A decrease to quiet levels is expected during 11 - 17 August. A subsequent increase to active to minor storm levels is expected on 18 August due to another recurrent coronal hole high-speed stream. Activity is expected to decrease to unsettled levels on 19 August followed by a further decrease to quiet levels during the rest of the period.

Daily Solar Data

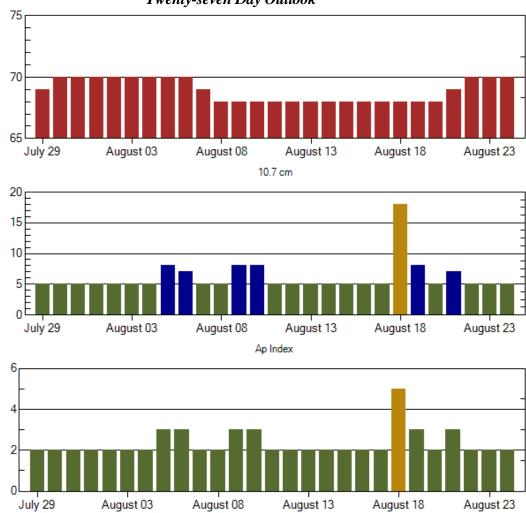
	Radio	Sun	Sunspot	X-ray				Flares				
	Flux	spot	Area	Background	X	-ray F	lux		O	ptical		
Date	10.7 cm	No.	(10 ⁻⁶ hemi.)	С	M	X	S	1	2	3	4
20 July	68	0	0	<a1.0< td=""><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td></a1.0<>	0	0	0	0	0	0	0	0
21 July	68	0	0	<a1.0< td=""><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td></a1.0<>	0	0	0	0	0	0	0	0
22 July	68	0	0	<a1.0< td=""><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td></a1.0<>	0	0	0	0	0	0	0	0
23 July	68	0	0	<a1.0< td=""><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td></a1.0<>	0	0	0	0	0	0	0	0
24 July	68	0	0	<a1.0< td=""><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td></a1.0<>	0	0	0	0	0	0	0	0
25 July	69	0	0	<a1.0< td=""><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td></a1.0<>	0	0	0	0	0	0	0	0
26 July	68	0	0	<a1.0< td=""><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td></a1.0<>	0	0	0	0	0	0	0	0

Daily Particle Data

		oton Fluence	Electron Fluence				
	(prote	ons/cm ² -day-si	r)	(electrons/cm ² -day-sr)			
Date	>1 MeV	>10 MeV	>100 MeV	>.6 MeV >2MeV >4 MeV			
20 July	6.4e + 05	2.1e+04	4.6e + 03	3.0e+06			
21 July	7.3e + 05	2.1e+04	4.4e+03	1.6e+05			
22 July	7.1e + 05	2.0e+04	4.6e + 03	8.9e+04			
23 July	9.3e + 05	1.9e + 04	4.4e + 03	1.4e+07			
24 July	8.0e + 05	1.9e + 04	4.1e+03	3.3e+07			
25 July	1.3e + 06	1.9e + 04	4.2e+03	6.6e + 07			
26 July	1.6e + 06	2.0e+04	4.4e+03	5.9e+07			

Daily Geomagnetic Data

	M	iddle Latitude		High Latitude		Estimated
	F	redericksburg		College]	Planetary
Date	A	K-indices	A	K-indices	A	K-indices
20 July	3	1-1-1-1-2-1-0-0	17	0-2-2-4-5-5-0-0	6	1-1-1-2-2-1-1-1
21 July	3	1-2-1-1-1-1-0	2	1-1-1-2-0-0-0	4	2-1-1-1-1-2-1
22 July	18	4-5-4-3-3-0-2-1	27	3-5-5-6-2-2-1	24	3-6-5-4-2-2-2
23 July	8	0-2-3-2-2-3-2	8	1-1-3-2-3-2-2-2	8	1-2-3-2-1-2-2
24 July	5	2-0-2-2-1-2-1-1	7	2-1-2-2-2-3-1-1	6	2-1-2-2-1-2-2
25 July	5	3-3-0-1-1-0-1-1	4	0-0-0-2-3-1-0-1	7	3-3-0-1-1-1-2-2
26 July	1	0-0-1-0-1-1-0-0	1	0-1-0-0-0-0-1-1	3	1-0-0-0-1-1-1



Alerts and Warnings Issued

	1200108 00100	
Date & Time of Is	sue Type of Alert or Warning	Date & Time of Event UTC
22 Jul 0305	WARNING: Geomagnetic $K = 4$	22 Jul 0310 - 1600
22 Jul 0310	WARNING: Geomagnetic $K = 5$	22 Jul 0315 - 0600
22 Jul 0315	ALERT: Geomagnetic K = 4	22 Jul 0315
22 Jul 0346	ALERT: Geomagnetic $K = 5$	22 Jul 0345
22 Jul 0840	ALERT: Geomagnetic $K = 5$	22 Jul 0840
22 Jul 0911	WARNING: Geomagnetic $K = 5$	22 Jul 0912 - 1600
22 Jul 0922	ALERT: Geomagnetic K = 5	22 Jul 0918
25 Jul 1743	ALERT: Electron 2MeV Integral Flux >= 1000p	fu 25 Jul 1725
26 Jul 2228	ALERT: Electron 2MeV Integral Flux >= 1000p	fu 26 Jul 2225

Twenty-seven Day Outlook

Largest	Daily K	ם Index	

	Radio Flux	Planetary	Largest		Radio Flux	Planetary	Largest
Date	10.7 cm	•	Kp Index	Date	10.7 cm	•	Kp Index
29 Jul	69	5	2	12 Aug	68	5	2
30	70	5	2	13	68	5	2
31	70	5	2	14	68	5	2
01 Aug	70	5	2	15	68	5	2
02	70	5	2	16	68	5	2
03	70	5	2	17	68	5	2
04	70	5	2	18	68	18	5
05	70	8	3	19	68	8	3
06	70	7	3	20	68	5	2
07	69	5	2	21	69	7	3
08	68	5	2	22	70	5	2
09	68	8	3	23	70	5	2
10	68	8	3	24	70	5	2
11	68	5	2				

Energetic Events

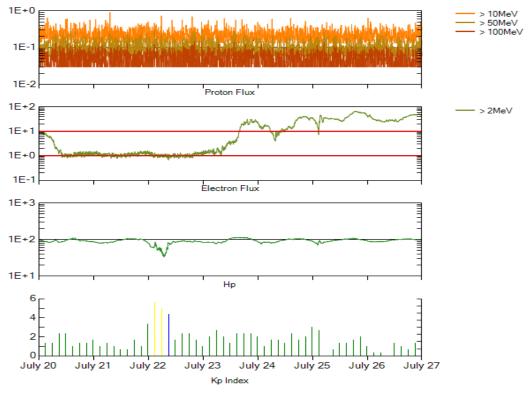
				2.00. 500	te Brents				
	Date Time		X-ray	Opt	ical Information	l	Peak	Sweep Freq	
Date			Integ	Imp/	Imp/ Location		Radio Flux	Intensity	
	Begin Max	Max	Class Flux	Brtns	Lat CMD	#	245 2695	II IV	
No Events	s Observed								

Flare List

					Optical	
	Time		X-ray	Imp/	Location	Rgn
Date	Begin Max	End	Class.	Brtns	Lat CMD	
20 July	No Flares Obs	served				
21 July	No Flares Obs	served				
22 July	No Flares Obs	served				
23 July	No Flares Obs	served				
24 July	No Flares Obs	served				
25 July	No Flares Obs	served				
26 July	No Flares Obs	served				

Region Summary

	Location			Sunspot Characteristics					Flares				
	Helio		Area	Extent	Spot	Spot	Mag	X-ray	Optical				
Date	(° Lat ° CMD)	Lon	(10 ⁻⁶ hemi)	(helio)	Class	Count	Class	C M X	S	1	2	3	4
No Active Regions													


Recent Solar Indices (preliminary) Of the observed monthly mean values

	Sunspot Numbers Radio Flux Geomagnetic											
	Observed	_		Smooth	values	*Penticton		Planetary	_			
Month	SEC	RI	RI/SEC	SEC	RI	10.7 cm	Value	Ap	Value			
				2	007			*				
July	15.6	10.0	0.64	11.6	7.0	71.6	72.5	8	7.4			
August	9.9	6.2	0.63	10.2	6.1	69.2	71.8	7	7.6			
September	r 4.8	2.4	0.50	9.9	5.9	67.1	71.5	9	7.8			
October	1.3	0.9	0.70	10.0	6.1	65.5	71.5	9	7.9			
November		1.7	0.68	9.4	5.7	69.7	71.1	5	7.8			
December	: 16.2	10.1	0.62	8.1	5.0	78.6	70.5	4	7.8			
				2	008							
January	5.1	3.4	0.67	6.9	4.2	72.1	70.0	6	7.7			
February	3.8	2.1	0.55	5.9	3.6	71.2	69.6	9	7.6			
March	15.9	9.3	0.58	5.3	3.3	72.9	69.5	10	7.4			
March	13.7	7.5	0.50	3.3	3.3	12.7	07.3	10	7.4			
April	4.9	2.9	0.59	5.3	3.3	70.3	69.6	9	7.1			
May	5.7	2.9	0.51	5.7	3.5	68.4	69.7	6	6.9			
June	4.2	3.1	0.74	5.2	3.2	65.9	69.2	7	6.8			
July	1.0	0.5	0.50	4.5	2.7	65.8	68.8	6	6.6			
August	0.0	0.5	**	4.4	2.6	66.4	68.6	5	6.2			
September	r 1.5	1.1	0.73	3.7	2.2	67.1	68.4	5	5.8			
October	5.2	2.9	0.56	2.9	1.8	68.3	68.2	6	5.4			
November		4.1	0.50	2.7	1.7	68.6	68.3	3	5.1			
December		0.8	0.62	2.7	1.7	69.2	68.5	2	4.9			
December	1.5	0.0	0.02	2.1	1.7	07.2	00.5	2	7.7			
				2	009							
January	2.8	1.5	0.54			69.8		3				
February	2.5	1.4	0.56			70.0		4				
March	0.7	0.7	1.00			69.2		4				
A mri 1	1.2	1.2	1.00			69.7		1				
April May	1.2 3.9	1.2 2.9	0.74			70.6		4 4				
June	5.9 6.6	2.9	0.74			68.6		5				
Juile	0.0	2.0	0.37			00.0		3				

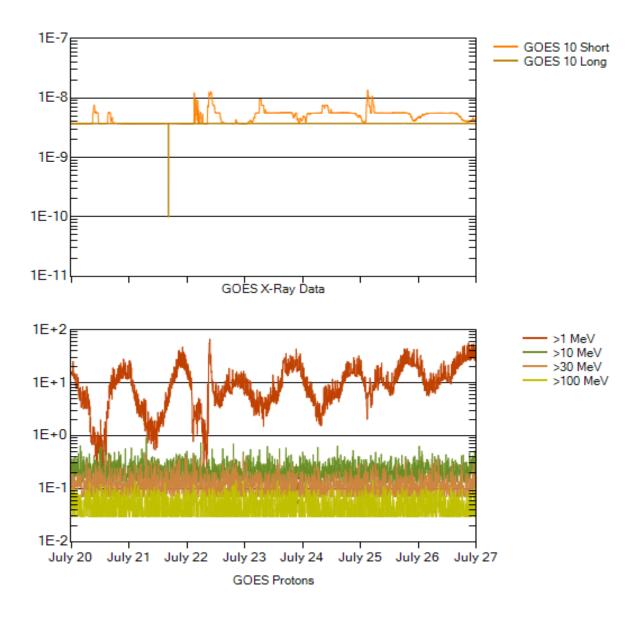
NOTE: All smoothed and monthly values are preliminary estimates. Cycle 23 started in May 1996 with an RI=8.0. Cycle 23 maximum was April 2000 with an RI=120.8.

^{**}SWPC sunspot number was less than RI value, so a ratio could not be computed.

Weekly Geosynchronous Satellite Environment Summary Week Beginning 20 July 2009

GOES-11 designated Primary Electron Satellite and GOES-10 Secondary: December 1, 2008 the GOES-12 Electron sensor began experiencing periods of noise and sensor is unreliable.

Protons plot contains the five-minute averaged integral proton flux (protons/cm²-sec -sr) as measured by GOES-11 (W135) for each of three energy thresholds: greater than 10, 50, and 100 MeV.


Electrons plot contains the five-minute averaged integral electron flux (electrons/cm²-sec -sr) with energies greater than 2 MeV at GOES-11.

Hp plot contains the five minute averaged magnetic field H - component in nanoteslas (nT) as measured by GOES-11. The H component is parallel to the spin axis of the satellite, which is nearly parallel to the Earth's rotation axis.

Kp plot contains the estimated planetary 3-hour K-index (derived by the Air Force Weather Agency) in real time from magnetometers at Meanook, Canada; Sitka, AK; Glenlea, Canada; St. Johns, Canada; Ottawa, Canada; Newport, WA; Fredericksburg, VA; Boulder, CO; Fresno, CA and Hartland, UK. These data are made available through cooperation from the Geological Survey of Canada (GSC), British Geological Survey (BGS) and the US Geological Survey. These may differ from the final Kp values derived from a more extensive network of magnetometers.

The data included here are those now available in real time at the SWPC and are incomplete in that they do not include the full set of parameters and energy ranges known to cause satellite operating anomalies. The proton and electron fluxes and Kp are "global" parameters that are applicable to a first order approximation over large areas. H parallel is subject to more localized phenomena and the measurements generally are applicable to within a few degrees of longitude of the measuring satellite.

Weekly GOES Satellite X-ray and Proton Plots

X-ray plot contains five-minute averaged x-ray flux (watts/ m^2) as measured by GOES 10 (W060) and GOES 11 (W135) in two wavelength bands, .05 - .4 and .1 - .8 nm. The letters A, B, C, M and X refer to x-ray event levels for the .1 - .8 nm band.

Proton plot contains the five-minute averaged integral proton flux (protons/cm² –sec-sr) as measured by GOES-11 for each of the energy thresholds: >1, >10, >30 and >100 MeV. P10 event threshold is 10 pfu (protons/cm²-sec-sr) at greater than 10 MeV.

