Space Weather Highlights 21 – 27 September 2009

SWO PRF 1778 29 September 2009

Solar activity was at very low to low levels. Very low levels occurred during most of the period with isolated B-class flares from Region 1026 (S30, L = 213, class/area Hsx/070 on 24 September) and Region 1027 (N24, L=240, class/area Dao/110 on 24 September). Activity increased to low levels on 25 September by virtue of a C2 flare at 25/0102 UTC from Region 1026. Both regions began to gradually decay during the latter half of the period.

No proton events were observed at geosynchronous orbit.

The greater than 2 MeV electron flux at geosynchronous orbit was at normal levels during the period.

Geomagnetic field activity was at quiet to unsettled levels on 21 September with brief minor storm periods detected at high latitudes. Activity decreased to quiet levels at all latitudes during 22 - 26 September. Activity increased to quiet to unsettled levels on 27 September with a brief period of minor storm at high latitudes. ACE solar wind measurements indicated the activity of 21 September was associated with a recurrent coronal hole high-speed stream (CH HSS). The CH HSS commenced late on 20 September and continued through 22 September (peak velocity 489 km/sec at 21/1611 UTC). IMF changes associated with the CH HSS included increased IMF Bt (peak 10 nT at 21/0048 UTC) and intermittent periods of southward Bz (minimum -8 nT at 21/0641 UTC). The activity increase of 27 September was associated with a solar sector boundary crossing (SSBC (toward to away)). IMF changes associated with the SSBC included increased Bt and intermittent periods of southward Bz (minimum -8 nT at 27/0055 UTC).

Space Weather Outlook 30 September – 26 October 2009

Solar activity is expected to be very low.

No proton events are expected at geosynchronous orbit.

The greater than 2 MeV electron flux at geosynchronous orbit is expected to be at normal levels through the period.

Geomagnetic field activity is expected to be at quiet levels during 30 September - 01 October. Activity is expected to increase to quiet to unsettled levels during 02 - 03 October with a slight chance for active levels due to a coronal hole high-speed stream. Quiet conditions are expected during 04 - 23 October. Activity is expected to increase to quiet to unsettled levels during 24 - 25 October due to recurrence. A return to quiet conditions is expected on the last day of the period.

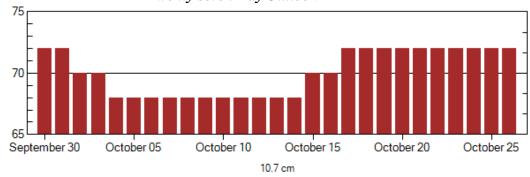
Daily Solar Data

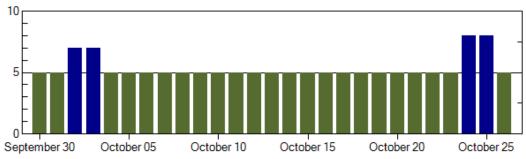
	Radio	Sun	Sunspot	Sunspot X-ray				Flares							
	Flux	spot	Area	Area Background		ray F	lux		Optical						
Date	10.7 cm	No.	(10 ⁻⁶ hemi.)	С	M	X	S	1	2	3	4			
21 September	er 72	11	10	<a1.0< td=""><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td></a1.0<>	0	0	0	0	0	0	0	0			
22 September	er 75	26	70	A1.4	0	0	0	0	0	0	0	0			
23 September	er 76	31	140	A1.3	0	0	0	0	0	0	0	0			
24 September	er 75	32	180	<a1.0< td=""><td>0</td><td>0</td><td>0</td><td>1</td><td>0</td><td>0</td><td>0</td><td>0</td></a1.0<>	0	0	0	1	0	0	0	0			
25 September	er 72	25	80	<a1.0< td=""><td>1</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td></a1.0<>	1	0	0	0	0	0	0	0			
26 September	er 72	14	60	<a1.0< td=""><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td></a1.0<>	0	0	0	0	0	0	0	0			
27 September	er 72	11	10	<a1.0< td=""><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td></a1.0<>	0	0	0	0	0	0	0	0			

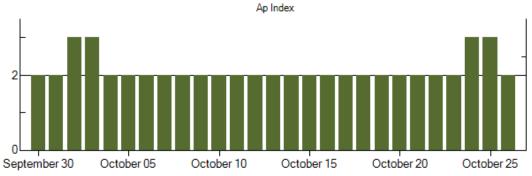
Daily Particle Data

		on Fluence s/cm ² -day-sr)	Electron Fluence (electrons/cm²-day-sr)						
Date	>1 MeV	>10 MeV	>100 MeV	>.6 MeV >2MeV >4 MeV					
21 September	4.5e+05	1.9e + 04	4.1e+03	4.7e+04					
22 September	3.9e+05	1.9e + 04	4.1e+03	4.1e+04					
23 September	4.3e+05	2.0e+04	4.3e+03	4.8e+04					
24 September	6.8e + 05	2.1e+04	4.4e + 03	5.1e+04					
25 September	7.0e+05	2.1e+04	4.9e + 03	4.5e+04					
26 September	1.1e+06	2.1e+04	4.7e + 03	5.2e+04					
27 September	1.1e+06	2.0e+04	4.4e+03	3.6e+04					

Daily Geomagnetic Data


]	Middle Latitude		High Latitude		Estimated
	Fredericksburg			College]	Planetary
Date	Α	K-indices	Α	K-indices	A	K-indices
21 September	5	2-1-2-2-1-1-0	16	2-1-5-5-3-1-0-0	7	3-1-2-3-2-1-1-1
22 September	2	1-0-1-1-1-0-0-0	4	1-0-2-2-3-0-0-0	4	1-0-1-1-2-1-0-1
23 September	1	0-0-0-0-1-1-0	0	0-0-0-0-0-0-0	2	0-0-0-0-1-1-0-1
24 September	1	0-0-0-0-0-1-1	0	0-0-0-0-0-0-0	1	0-0-0-0-0-1-0-1
25 September	1	0-1-0-1-1-0-0-0	0	0-0-0-1-0-0-0	2	0-1-0-0-0-1-0-1
26 September	3	0-0-0-0-2-1-1-2	0	0-0-0-0-0-0-1	3	0-0-0-1-1-1-2
27 September	8	4-3-1-2-1-1-1	10	2-2-2-5-2-0-1-0	8	2-3-2-3-1-0-0-1


Alerts and Warnings Issued


Date & Time of Issue	Type of Alert or Warning	Date & Time of Event UTC
27 Sep 1036	ALERT: Geomagnetic K = 4	27 Sep 1035

Twenty-seven Day Outlook

Largest Daily Kp Index

	Radio Flux	Planetary	Largest		Radio Flux	Planetary	Largest
Date	10.7 cm	A Index	Kp Index	Date	10.7 cm	A Index	Kp Index
30 Sep	72	5	2	14 Oct	68	5	2
01 Oct	72	5	2	15	70	5	2
02	70	7	3	16	70	5	2
03	70	7	3	17	72	5	2
04	68	5	2	18	72	5	2
05	68	5	2	19	72	5	2
06	68	5	2	20	72	5	2
07	68	5	2	21	72	5	2
08	68	5	2	22	72	5	2
09	68	5	2	23	72	5	2
10	68	5	2	24	72	8	3
11	68	5	2	25	72	8	3
12	68	5	2	26	72	5	2
13	68	5	2				

Energetic Events

					21101 800	te Breitis				
	Time			X-ray	Opt	ical Information	l	Peak	Sweep Freq	
Date			1/2	Integ	Imp/	Location	Rgn	Radio Flux	Intensity	
	Begin	Max	Max	Class Flux	Brtns	Lat CMD	#	245 2695	II IV	
No Events	s Obser	ved								

Flare List

					Optical							
		Time		X-ray	Imp/	Location	Rgn					
Date	Begin	Max	End	Class.	Brtns	Lat CMD						
21 September	1251	1256	1302	B1.1								
22 September	1054	1057	1101	B3.6								
	2031	2041	2047	B4.2								
23 September	No Fla	res Obsei	rved									
24 September	0016	0020	0024	B1.1								
	2345	2353	0001	B2.6	SF	S32E28	1026					
25 September	0047	0102	0116	C2.0								
-	0854	0858	0903	B1.1								
26 September	No Fla	res Obsei	rved									
27 September	No Fla	res Obsei	rved									

Region Summary

	Locatio	n		Sunspot	Characte	ristics			Flares						
		Helio A	rea	Extent	Spot	Spot	Mag		X-ra	y	_	(Optic	al	
Date	(° Lat ° CMD)	Lon (10	hemi)	(helio)	Class	Count	Class	C	M	X	S	1	2	3	4
	Region	1026													
21 Se	0	S29E63	221	1	0	1 AX	'V	1	A						
	-							1							
22 Se	ep	S30E54	217	3	0	9 CS	SO	2	В						
23 Se	ep	S36E34	224	4	-0	2 HS	$\mathbf{S}\mathbf{X}$	2	A						
24 Se	ep	S29E28	221	7	0	1 HS	$\mathbf{S}\mathbf{X}$	1	A				1		
25 Se	ep	S30E15	217	2	0	1 AX	XX	1	A						
26 Se	ep	S34E05	213												
27 Se	ep	S34W08	213												
	•									0	0	0	1	0	0 00

Still on Disk.

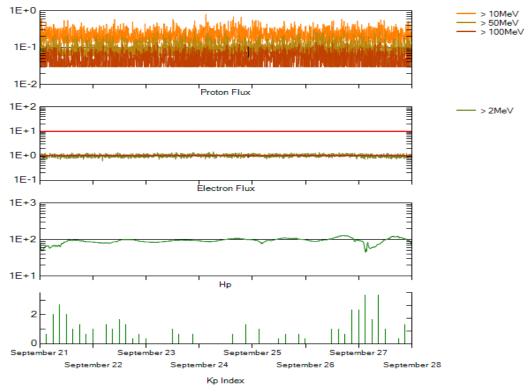
Absolute heliographic longitude: 213

Reg	ion 10	027				
N24E32	239	40	5	DRO	4	В
N23E21	238	100	7	DSC	9	В
N24E05	240	110	8	DAO	11	В
N24W08	239	60	8	CAO	4	В
N24W21	239	60	7	BXO	4	В
N24W34	239	10	1	AXX	1	A
	N24E32 N23E21 N24E05 N24W08 N24W21	Region I N24E32 239 N23E21 238 N24E05 240 N24W08 239 N24W21 239 N24W34 239	N23E21 238 100 N24E05 240 110 N24W08 239 60 N24W21 239 60	N24E32 239 40 5 N23E21 238 100 7 N24E05 240 110 8 N24W08 239 60 8 N24W21 239 60 7	N24E32 239 40 5 DRO N23E21 238 100 7 DSC N24E05 240 110 8 DAO N24W08 239 60 8 CAO N24W21 239 60 7 BXO	N24E32 239 40 5 DRO 4 N23E21 238 100 7 DSC 9 N24E05 240 110 8 DAO 11 N24W08 239 60 8 CAO 4 N24W21 239 60 7 BXO 4

0 0 0 0 0 0 0 0

Still on Disk.

Absolute heliographic longitude: 240


Recent Solar Indices (preliminary)
Of the observed monthly mean values

		Sunsn	ot Numbe	···········y	Radio	Flux	Geomagnetic			
	Observed	_		Smooth	values	*Penticton		Planetary	-	
Month	SEC	RI	RI/SEC	SEC	RI	10.7 cm	Value	Ap	Value	
					007			•		
September	4.8	2.4	0.50	9.9	5.9	67.1	71.5	9	7.8	
-										
October	1.3	0.9	0.70	10.0	6.0	65.5	71.5	9	7.9	
November		1.7	0.68	9.4	5.7	69.7	71.1	5	7.8	
December	16.2	10.1	0.62	8.1	4.9	78.6	70.5	4	7.8	
				2	000					
Ionuomi	5 1	3.3	0.67	6.9	008 4.2	72.1	70.0	6	7.7	
January February	5.1 3.8	2.1	0.67	5.9	3.6	71.2	69.6	6 9	7.7 7.6	
March	3.8 15.9	9.3	0.58	5.3	3.3	72.9	69.5	10	7.0 7.4	
Maich	13.9	9.3	0.56	5.5	3.3	12.9	09.3	10	/ . 4	
April	4.9	2.9	0.59	5.3	3.4	70.3	69.6	9	7.1	
May	5.7	3.2	0.51	5.7	3.5	68.4	69.7	6	6.9	
June	4.2	3.4	0.74	5.2	3.3	65.9	69.2	7	6.8	
July	1.0	0.8	0.50	4.5	2.8	65.8	68.8	6	6.6	
August	0.0	0.5	-1.00	4.4	2.7	66.4	68.6	5	6.2	
September	1.5	1.1	0.73	3.7	2.3	67.1	68.4	5	5.8	
October	5.2	2.9	0.56	2.9	1.9	68.3	68.2	6	5.4	
November		4.1	0.60	2.7	1.8	68.6	68.3	3	5.1	
December		0.8	0.62	2.7	1.7	69.2	68.5	2	4.9	
_					009			_		
January	2.8	1.3	0.54	3.0	1.8	69.8	68.7	3	4.8	
February	2.5	1.4	0.56	3.1	1.9	70.0	68.9	4	4.7	
March	0.7	0.7	1.00			69.2		4		
April	1.2	1.2	1.00			69.7		4		
May	3.9	2.9	0.74			70.6		4		
June	6.6	2.6	0.39			68.6		5		
July	5.0	3.5	0.70			68.3		5		
August	0.3	0.0	0.00			67.3		5		
0	- · -							-		

NOTE: All values are preliminary estimates except for RI Sunspot Numbers which are final values when available.

Cycle 23 started in May 1996 with an RI=8.0. Cycle 23 maximum was April 2000 with an RI=120.8. **SWPC sunspot number was less than RI value, so a ratio could not be computed.

Weekly Geosynchronous Satellite Environment Summary Week Beginning 21 September 2009

GOES-11 designated Primary Electron Satellite and GOES-10 Secondary: December 1, 2008 the GOES-12 Electron sensor began experiencing periods of noise and sensor is unreliable.

Protons plot contains the five-minute averaged integral proton flux (protons/cm²-sec -sr) as measured by GOES-11 (W135) for each of three energy thresholds: greater than 10, 50, and 100 MeV.


Electrons plot contains the five-minute averaged integral electron flux (electrons/cm²-sec -sr) with energies greater than 2 MeV at GOES-11.

Hp plot contains the five minute averaged magnetic field H - component in nanoteslas (nT) as measured by GOES-11. The H component is parallel to the spin axis of the satellite, which is nearly parallel to the Earth's rotation axis.

Kp plot contains the estimated planetary 3-hour K-index (derived by the Air Force Weather Agency) in real time from magnetometers at Meanook, Canada; Sitka, AK; Glenlea, Canada; St. Johns, Canada; Ottawa, Canada; Newport, WA; Fredericksburg, VA; Boulder, CO; Fresno, CA and Hartland, UK. These data are made available through cooperation from the Geological Survey of Canada (GSC), British Geological Survey (BGS) and the US Geological Survey. These may differ from the final Kp values derived from a more extensive network of magnetometers.

The data included here are those now available in real time at the SWPC and are incomplete in that they do not include the full set of parameters and energy ranges known to cause satellite operating anomalies. The proton and electron fluxes and Kp are "global" parameters that are applicable to a first order approximation over large areas. H parallel is subject to more localized phenomena and the measurements generally are applicable to within a few degrees of longitude of the measuring satellite.

Weekly GOES Satellite X-ray and Proton Plots

X-ray plot contains five-minute averaged x-ray flux (watts/ m^2) as measured by GOES 10 (W060) and GOES 11 (W135) in two wavelength bands, .05 - .4 and .1 - .8 nm. The letters A, B, C, M and X refer to x-ray event levels for the .1 - .8 nm band.

Proton plot contains the five-minute averaged integral proton flux (protons/cm² –sec-sr) as measured by GOES-11 for each of the energy thresholds: >1, >10, >30 and >100 MeV. P10 event threshold is 10 pfu (protons/cm²-sec-sr) at greater than 10 MeV.

