Space Weather Highlights 28 September 2009 – 04 October 2009

SWO PRF 1779 06 October 2009

Solar activity was very low. Region 1027 (N24, L=240, class/area Dao/110 on 24 September) produced a B7 flare on 01 October as it was nearing the west limb. No flare activity occurred during the remainder of the period.

No proton events were observed at geosynchronous orbit.

The greater than 2 MeV electron flux at geosynchronous orbit was at normal levels during the period.

Geomagnetic field activity was at quiet to active levels on 28 September with brief minor storm conditions at high latitudes. Activity decreased to quiet levels during the remainder of the period. A geomagnetic sudden impulse (18 nT, as measured by the Boulder USGS magnetometer) was detected at 04/0422 UTC. ACE solar wind measurements indicated the 28 September activity was associated with a period of southward IMF Bz (minimum -6 nT at 28/0530 UTC) and enhanced IMF Bt (peak 8 nT at 28/0534 UTC). ACE data indicated the sudden impulse was associated with a weak interplanetary shock. A velocity increase (approximately 297 to 362 km/sec) and increased IMF Bt were associated with the sudden impulse. There was no obvious source for the sudden impulse.

Space Weather Outlook 07 October 2009 – 02 November 2009

Solar activity is expected to be very low.

No proton events are expected at geosynchronous orbit.

The greater than 2 MeV electron flux at geosynchronous orbit is expected to be at normal levels through the period.

Geomagnetic field activity is expected to be at quiet levels during most of the period. However, unsettled conditions are expected during 24 - 25 October due to recurrence.

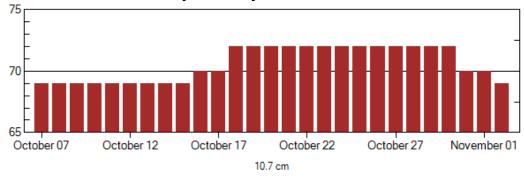
Daily Solar Data

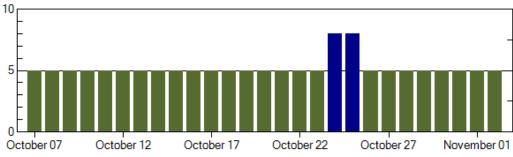
	Radio	Sun	Sunspot	Sunspot X-ray		Flares						
	Flux	spot	Area	Background	X	-ray F	lux		O_{J}	ptical		
Date	10.7 cm	No.	(10 ⁻⁶ hemi.)	С	M	X	S	1	2	3	4
28 Septemb	er 73	11	10	<a1.0< td=""><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td></a1.0<>	0	0	0	0	0	0	0	0
29 Septemb	er 72	14	40	<a1.0< td=""><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td></a1.0<>	0	0	0	0	0	0	0	0
30 Septemb	er 72	11	10	<a1.0< td=""><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td></a1.0<>	0	0	0	0	0	0	0	0
01 October	72	11	10	<a1.0< td=""><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td></a1.0<>	0	0	0	0	0	0	0	0
02 October	72	0	0	<a1.0< td=""><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td></a1.0<>	0	0	0	0	0	0	0	0
03 October	72	0	0	<a1.0< td=""><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td></a1.0<>	0	0	0	0	0	0	0	0
04 October	71	0	0	<a1.0< td=""><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td></a1.0<>	0	0	0	0	0	0	0	0

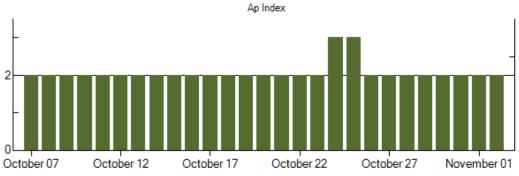
Daily Particle Data

		on Fluence		Electron Fluence					
	(proton	s/cm ² -day-sr)		(electrons/cm ² -day-sr)					
Date	>1 MeV	>10 MeV	>100 MeV	>.6 MeV >2MeV >4 MeV					
28 September	6.9e+05	2.0e+04	4.5e+03	5.2e+04					
29 September	4.9e+05	1.9e + 04	4.5e+03	7.5e + 04					
30 September	6.3e+05	2.0e+04	4.4e + 03	7.3e+04					
01 October	3.6e + 05	2.0e+04	4.5e+03	3.9e + 04					
02 October	4.2e + 05	2.0e+04	4.5e + 03	4.8e + 04					
03 October	6.2e + 05	2.0e+04	4.7e + 03	5.4e + 04					
04 October	5.7e+05	2.0e+04	4.5e+03	5.2e+04					

Daily Geomagnetic Data


	N	Middle Latitude]	High Latitude		Estimated
	Fredericksburg			College]	Planetary
Date	Α	K-indices	A	K-indices	A	K-indices
28 September	6	2-2-3-1-2-1-1	11	0-1-5-4-1-0-1-0	8	2-2-4-1-1-1-2-2
29 September	0	0-0-0-0-1-0-0-0	0	0-0-0-1-0-0-0	2	0-0-0-0-1-1-1-1
30 September	5	2-1-1-1-2-1-2-1	2	2-1-1-0-0-0-1-0	4	1-1-1-1-0-2-1
01 October	2	1-1-0-0-1-1-0-0	0	0-0-0-1-0-0-0	2	1-1-0-1-0-0-1-0
02 October	0	0-0-0-0-0-0-0	0	0-0-0-1-0-0-0	2	1-1-0-0-1-1-0-1
03 October	1	0-0-0-0-1-0-1-0	0	0-0-0-0-0-1-0	1	0-0-0-0-1-0-0-1
04 October	4	0-2-0-2-2-1-1-1	2	0-1-1-1-1-0-0-0	4	1-2-1-1-1-0-1-1


Alerts and Warnings Issued


Date & Time of Issue	e Type of Alert or Warning	Date & Time of Event UTC
28 Sep 0749	ALERT: Geomagnetic K = 4	28 Sep 0745
28 Sep 0814	ALERT: Geomagnetic $K = 5$	28 Sep 0810
04 Oct 0517	SUMMARY: Geomagnetic Sudden Impulse	04 Oct 0422

Twenty-seven Day Outlook

Larc	ıest [Dailly	Κ'n	Index

	Radio Flux	Planetary	Largest		Radio Flux	Planetary	Largest
Date	10.7 cm	A Index	Kp Index	Date	10.7 cm	A Index	Kp Index
07 Oct	69	5	2	21 Oct	72	5	2
08	69	5	2	22	72	5	2
09	69	5	2	23	72	5	2
10	69	5	2	24	72	8	3
11	69	5	2	25	72	8	3
12	69	5	2	26	72	5	2
13	69	5	2	27	72	5	2
14	69	5	2	28	72	5	2
15	69	5	2	29	72	5	2
16	70	5	2	30	72	5	2
17	70	5	2	31	70	5	2
18	72	5	2	01 Nov	70	5	2
19	72	5	2	02	69	5	2
20	72	5	2				

Energetic Events

					Littige	iic Evenis					
Time				X-ray	Op	tical Information	1	Peak	Sweep Freq		
Date			1/2	Integ	g Imp/	Location	Rgn	Radio Flux	Intensity		
	Begin	Max	Max	Class Flux	Brtns	Lat CMD	#	245 2695	II IV		
No Events	Obser	ved									

Flare List

				rune Lisi			
						Optical	
		Time		X-ray	Imp/	Location	Rgn
Date	Begin	Max	End	Class.	Brtns	Lat CMD	
28 September	No Fla	ares Obse	rved				
29 September	No Fla	ares Obse	rved				
30 September	No Fla	ares Obse	rved				
01 October	0247	0255	0303	B7.0			
02 October	No Fla	ares Obse	rved				
03 October	No Fla	ares Obse	rved				
04 October	No Fla	ares Obse	rved				

Region Summary

	Locatio	n		Sunspot	Characte	ristics				F	lare	s		
		Helio	Area	Extent	Spot	Spot	Mag	X-ray			C)ptic	al	
Date	(° Lat ° CMD)	Lon	(10 ⁻⁶ hemi)	(helio)	Class	Count	Class	C M	Κ .	S	1	2	3	4

Region 1026

21 Sep	S29E63	221	10	1	AXX	1	Α	
22 Sep	S30E54	217	30	9	CSO	2	В	
23 Sep	S36E34	224	40	2	HSX	2	A	
24 Sep	S29E28	221	70	1	HSX	1	A	1
25 Sep	S30E15	217	20	1	AXX	1	A	
26 Sen	S34E05	213						

27 Sep S34W08 213

28 Sep S34W21 213

29 Sep S34W34 213

30 Sep S34W47 213 01 Oct S34W60 213

02 Oct S34W73 213

03 Oct S34W86 213

0 0 0 1 0 0 0 0

Crossed West Limb.

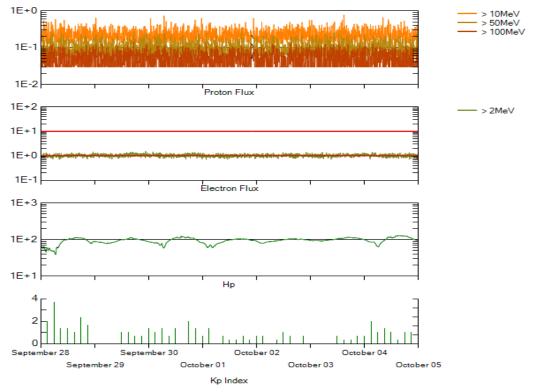
Absolute heliographic longitude: 213

	Reg	ion 1	027					
22 Sep	N24E32	239	4()	5	DRO	4	В
23 Sep	N23E21	238	100)	7	DSC	9	В
24 Sep	N24E05	240	110)	8	DAO	11	В
25 Sep	N24W08	239	60)	8	CAO	4	В
26 Sep	N24W21	239	60)	7	BXO	4	В
27 Sep	N24W34	239	10)	1	AXX	1	A
28 Sep	N23W47	239	60)	5	DAO	5	В
29 Sep	N23W62	241	4()	5	CRO	4	В
30 Sep	N23W76	241	10)		AXX	1	A
01 Oct	N24W89	241	10)		AXX	1	A

0 0 0 0 0 0 0 0

Crossed West Limb.

Absolute heliographic longitude: 240


Recent Solar Indices (preliminary)
Of the observed monthly mean values

	Sunspot Numbers Radio Flux Geomagnetic											
	Obacina 1	_			volves				-			
3.6 .1	Observed			Smooth		*Penticton		Planetary				
Month	SEC	RI	RI/SEC	SEC	RI_	10.7 cm	Value	<u>Ap</u>	Value			
0 . 1	1.0	0.0	0.60		007	6 7 .5	71.0	7	7.0			
October	1.3	0.9	0.69	10.0	6.0	67.5	71.8	7	7.9			
November		1.7	0.68	9.4	5.7	69.6	71.4	7	7.8			
December	16.2	10.1	0.62	8.1	4.9	78.5	70.8	6	7.8			
				_								
-		2.2	0.65		008	5.1. 0	7 0.2	0	7 0			
January	5.1	3.3	0.65	6.9	4.2	74.3	70.3	8	7.8			
February	3.8	2.1	0.55	5.9	3.6	71.1	69.9	11	7.6			
March	15.9	9.3	0.58	5.3	3.3	72.9	69.8	11	7.5			
A '1	4.0	2.0	0.50	5 2	2.4	70.2	60.0	0	7.0			
April	4.9	2.9	0.59	5.3	3.4	70.2	69.8	9	7.3			
May	5.7	3.2	0.56	5.7	3.5	68.4	69.8	6	7.2			
June	4.2	3.4	0.81	5.2	3.3	65.9	69.4	7	7.0			
July	1.0	0.8	0.80	4.5	2.8	65.7	68.8	5	6.8			
August	0.0	0.5	**	4.4	2.7	66.3	68.6	5	6.3			
September		1.1	0.73	3.7	2.3	67.1	68.4	6	5.8			
October	5.2	2.9	0.56	2.9	1.9	68.3	68.2	7	5.4			
November	6.8	4.1	0.60	2.7	1.8	68.6	68.3	4	5.1			
December	1.3	0.8	0.62	2.7	1.7	69.2	68.5	4	4.9			
					009							
January	2.8	1.3	0.46	3.0	1.8	69.8	68.7	4	4.7			
February	2.5	1.4	0.56	3.1	1.9	70.0	68.9	5	4.7			
March	0.7	0.7	1.00	3.4	2.0	69.2	69.0	5	4.5			
April	1.2	1.2	1.00			69.7		4				
May	3.9	2.9	0.74			70.5		4				
=		2.6	0.74			68.6		4				
June	6.6	2.0	0.39			00.0		4				
July	5.0	3.5	0.70			68.2		4				
August	0.3	0.0	0.00			67.4		5				
September	r 6.6	4.2	0.64			70.4		3				
-												

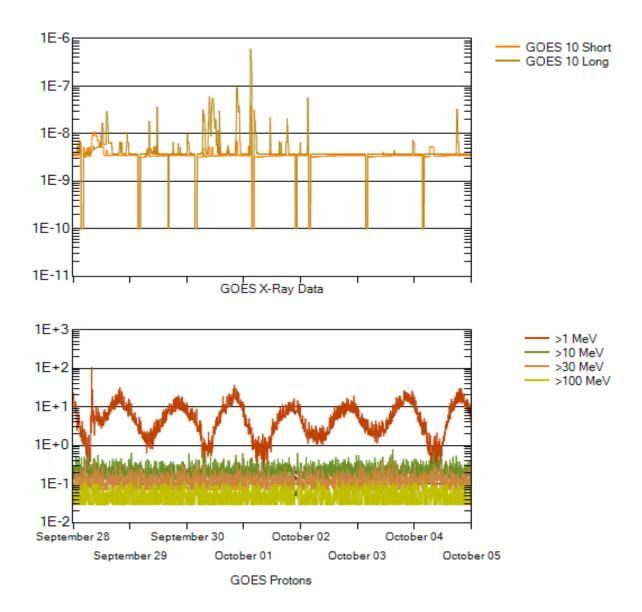
NOTE: Values are final except for the most recent 6 months which are considered preliminary. Cycle 23 started in May 1996 with an RI=8.0. Cycle 23 maximum was April 2000 with an RI=120.8.

^{**} SWPC sunspot number was less than RI value, so a ratio could not be computed.

Weekly Geosynchronous Satellite Environment Summary Week Beginning 28 September 2009

GOES-11 designated Primary Electron Satellite and GOES-10 Secondary: December 1, 2008 the GOES-12 Electron sensor began experiencing periods of noise and sensor is unreliable.

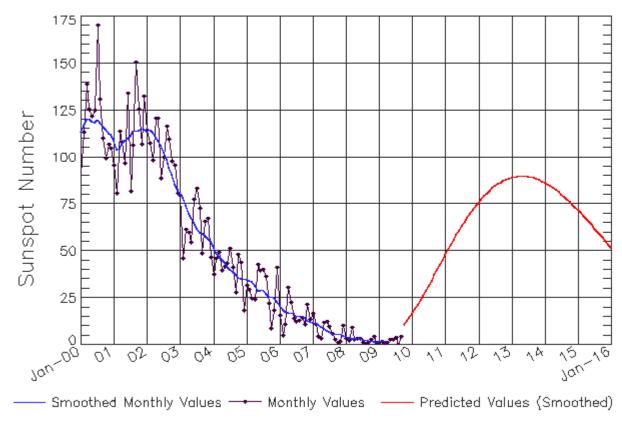
Protons plot contains the five-minute averaged integral proton flux (protons/cm²-sec -sr) as measured by GOES-11 (W135) for each of three energy thresholds: greater than 10, 50, and 100 MeV.


Electrons plot contains the five-minute averaged integral electron flux (electrons/cm²-sec -sr) with energies greater than 2 MeV at GOES-11.

Hp plot contains the five minute averaged magnetic field H - component in nanoteslas (nT) as measured by GOES-11. The H component is parallel to the spin axis of the satellite, which is nearly parallel to the Earth's rotation axis.

Kp plot contains the estimated planetary 3-hour K-index (derived by the Air Force Weather Agency) in real time from magnetometers at Meanook, Canada; Sitka, AK; Glenlea, Canada; St. Johns, Canada; Ottawa, Canada; Newport, WA; Fredericksburg, VA; Boulder, CO; Fresno, CA and Hartland, UK. These data are made available through cooperation from the Geological Survey of Canada (GSC), British Geological Survey (BGS) and the US Geological Survey. These may differ from the final Kp values derived from a more extensive network of magnetometers.

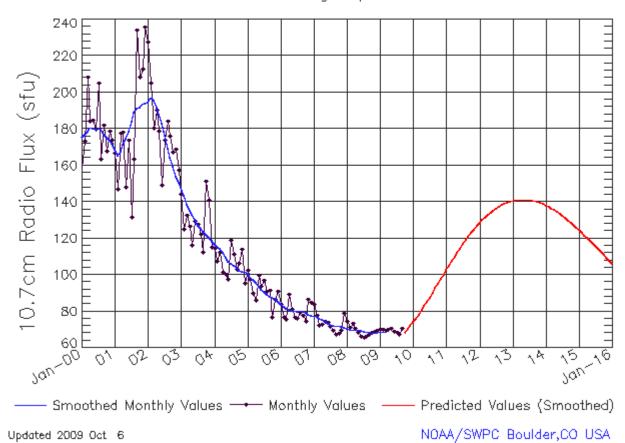
The data included here are those now available in real time at the SWPC and are incomplete in that they do not include the full set of parameters and energy ranges known to cause satellite operating anomalies. The proton and electron fluxes and Kp are "global" parameters that are applicable to a first order approximation over large areas. H parallel is subject to more localized phenomena and the measurements generally are applicable to within a few degrees of longitude of the measuring satellite.


Weekly GOES Satellite X-ray and Proton Plots

X-ray plot contains five-minute averaged x-ray flux (watts/ m^2) as measured by GOES 10 (W060) and GOES 11 (W135) in two wavelength bands, .05 - .4 and .1 - .8 nm. The letters A, B, C, M and X refer to x-ray event levels for the .1 - .8 nm band.

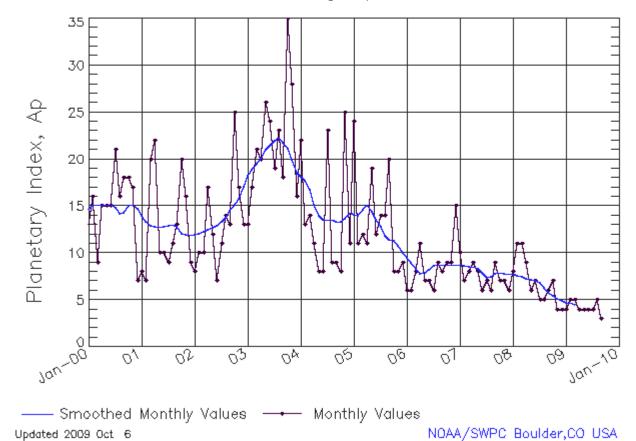
Proton plot contains the five-minute averaged integral proton flux (protons/cm² –sec-sr) as measured by GOES-11 for each of the energy thresholds: >1, >10, >30 and >100 MeV. P10 event threshold is 10 pfu (protons/cm²-sec-sr) at greater than 10 MeV.

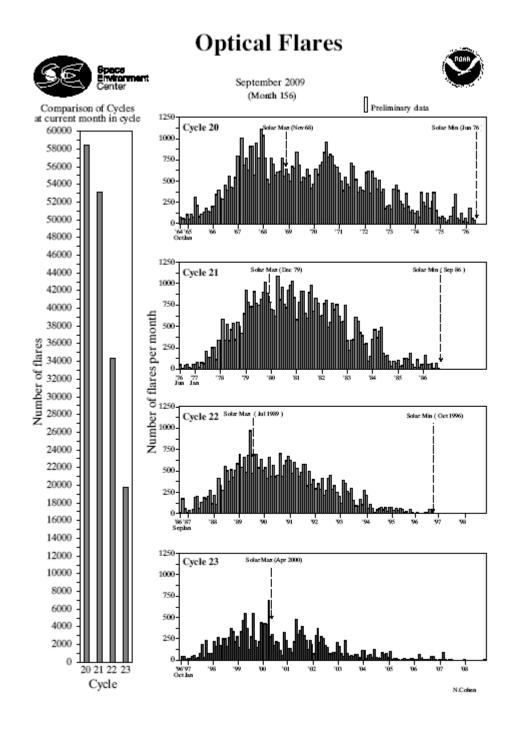
ISES Solar Cycle Sunspot Number Progression Data Through Sep 09


Updated 2009 Oct 6

NOAA/SWPC Boulder,CO USA

Smoothed Sunspot Number Prediction												
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
2008	4	4	3	3	4	3	3	3	2	2	2	2
	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)
2009	2	2	2	3	3	4	5	7	8	10	12	14
	(***)	(***)	(***)	(1)	(2)	(3)	(5)	(5)	(6)	(7)	(7)	(8)
2010	16	19	22	24	26	29	32	34	37	40	43	45
	(9)	(9)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)
2011	48	51	53	56	59	61	63	66	68	70	72	74
	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)
2012	76	78	79	81	82	84	85	86	87	88	88	89
	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)
2013	89	90	90	90	90	90	90	89	89	89	88	87
	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)
2014	86	86	85	84	83	81	80	79	78	76	75	73
	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)
2015	72	70	69	67	65	64	62	60	59	57	55	54
	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)


ISES Solar Cycle F10.7cm Radio Flux Progression
Data Through Sep 09


Smoothed F10.7cm Radio Flux Prediction												
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
2008	70 (***)	70 (***)	70 (***)	70 (***)	70 (***)	69 (***)	69 (***)	69 (***)	68 (***)	68 (***)	68 (***)	69 (***)
2009	69	69	69	69	69	69	70	70	71	72	73	74
	(***)	(***)	(***)	(1)	(1)	(2)	(3)	(4)	(4)	(5)	(6)	(7)
2010	75	77	79	81	83	85	88	90	93	95	98	100
	(8)	(8)	(9)	(9)	(9)	(9)	(9)	(9)	(9)	(9)	(9)	(9)
2011	103	105	108	110	112	115	117	119	121	123	125	127
	(9)	(9)	(9)	(9)	(9)	(9)	(9)	(9)	(9)	(9)	(9)	(9)
2012	128	130	132	133	134	135	136	137	138	139	140	140
	(9)	(9)	(9)	(9)	(9)	(9)	(9)	(9)	(9)	(9)	(9)	(9)
2013	141	141	141	141	141	141	141	141	140	140	139	139
	(9)	(9)	(9)	(9)	(9)	(9)	(9)	(9)	(9)	(9)	(9)	(9)
2014	138	137	136	136	135	134	132	131	130	129	127	126
	(9)	(9)	(9)	(9)	(9)	(9)	(9)	(9)	(9)	(9)	(9)	(9)
2015	125	123	122	120	119	117	116	114	113	111	110	108
	(9)	(9)	(9)	(9)	(9)	(9)	(9)	(9)	(9)	(9)	(9)	(9)

ISES Solar Cycle Ap Progression Data Through Sep 09

