Solar activity began the period at very low levels on 13 Jul but increased to low levels on 14 Jul with C1 flares from Region 2381 (N14, L=074, class/area Eko/550 on 08 Jul) and 2387 (N17, L=271, class/area Dai/120 on 18 Jul) at 14/0925 UTC and 14/1210 UTC respectively. Very low levels were observed on 15-17 Jul. Ground observatories reported a 22 degree filament eruption, centered near N39E36 at 16/1453-1643 UTC. The associated CME was not geoeffective. Region 2388 (N08, L=024, class/area Cao/020 on 16 Jul) produced a C1 flare at 18/1442 UTC and was accompanied by a Type II radio sweep (est speed 418 km/s). A CME was later observed in SOHO/LASCO C2 coronagraph imagery erupting from the west limb at 18/1512 UTC with an estimated plane of sky speed of 337 km/s. This event is not expected to be geoeffective. A long duration event (LDE) C2 flare was observed at 19/1040 UTC. The LDE was associated with a 23 degree long filament eruption located in the SW quadrant centered near S32W52. CME analysis, and subsequent WSA-Enlil model output, revealed a possible weak glancing blow from the northern flank of the SW-directed CME expected to arrive at Earth early on 23 Jul.

No proton events were observed at geosynchronous orbit.

The greater than 2 MeV electron flux at geosynchronous orbit was at moderate levels on 13 Jul. High levels were reached from 14-19 Jul due to effects from a coronal hole high speed stream.

Geomagnetic field activity reached minor storm levels on 13 Jul due to effects from a positive polarity coronal hole high speed stream. Mostly quiet conditions with isolated unsettled periods were observed from 14-16 Jul as coronal hole effects subsided. Quiet conditions were observed for the remainder of the period.

Space Weather Outlook 20 July - 15 August 2015

Solar activity is expected to be very low to low from 20-27 Jul. Moderate levels are likely from 28 Jul through 10 Aug due to the return of old Region 2381 followed by a return to very low to low levels for the remainder of the period.

No proton events are expected at geosynchronous orbit.

The greater than 2 MeV electron flux at geosynchronous orbit is expected to remain at high levels from 20-22 Jul before an anticipated glancing blow from the 19 Jul CME is expected to redistribute. Normal to moderate levels are expected from 23-26 Jul followed by a return to high levels from 27-30 Jul following elevated wind speeds from a combination of the CME and a positive polarity coronal hole high speed stream (CH HSS). High flux levels are expected from 03-05 Aug and 10-15 Aug following recurrent negative and positive polarity high speed streams respectively.

Geomagnetic field activity is expected to be at quiet to active levels on 20 Jul due to influence

from a positive polarity CH HSS followed by quiet conditions from 21-22 Jul as effects subside. Unsettled to active conditions are expected from 23-24 Jul due to a possible glancing blow from the 19 Jul CME followed in close succession by a recurrent positive polarity HSS. Quiet conditions are expected to prevail from 25-30 Jul. Unsettled to active conditions are expected from 31 Jul-02 Aug due to a recurrent negative polarity CH HSS, with minor storms likely on 01 Aug when the HSS is at its peak strength. Mostly quiet conditions are expected to return from 03-05 Aug. Minor storm conditions are likely from 06-07 Aug due to another recurrent positive polarity HSS, followed by a steady decrease to active and then unsettled conditions from 08-10 Aug as effects wane. Mostly quiet conditions are expected for the remainder of the forecast period.

Daily Solar Data

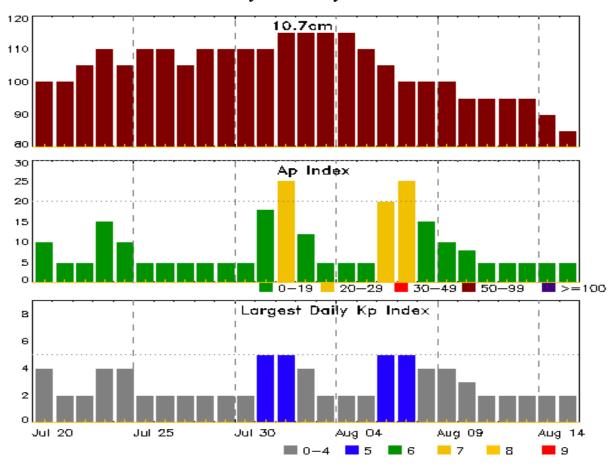
	Radio	Sun	Sunspot	X-ray			I	Flares				
	Flux	spot	Area	Background		X-r	ay		O	ptica	ıl	
Date	10.7cm	No.	(10 ⁻⁶ hemi.)	Flux	C	M	X	S	1	2	3	4
13 July	110	44	590	B3.5	0	0	0	2	0	0	0	0
14 July	105	39	530	B3.1	2	0	0	2	0	0	0	0
15 July	101	39	280	B2.5	0	0	0	0	0	0	0	0
16 July	100	55	210	B2.1	0	0	0	0	0	0	0	0
17 July	97	40	190	B2.2	0	0	0	2	0	0	0	0
18 July	96	52	310	B2.0	1	0	0	1	0	0	0	0
19 July	99	46	220	B3.0	1	0	0	0	0	0	0	0

Daily Particle Data

	(pr	Proton Fluen otons/cm ² -da		Electron Fluence (electrons/cm ² -day -sr)							
Date	>1 MeV	>10 MeV	>100 MeV	>0.6 MeV	>2MeV	>4 MeV					
13 July	1.2e+06	1.1e+04	2.3e+03		8.6e+06						
14 July	1.2e+06	1.1e+04	2.6e+03		5.5e+07						
15 July	3.2e+05	1.1e+04	2.8e+03		1.5e+08						
16 July	2.3e+05	1.1e+04	2.7e+03		1.6e+08						
17 July	1.4e + 05	1.1e+04	2.6e+03		2.8e+08						
18 July	1.4e + 05	1.1e+04	2.7e+03		3.1e+08						
19 July	2.8e + 05	1.1e+04	2.8e+03	4.0e+08							

Daily Geomagnetic Data

	N	Middle Latitude		High Latitude	Estimated				
	I	Fredericksburg		College		Planetary			
Date	A	K-indices	A	K-indices	A	K-indices			
13 July	22	2-4-4-5-3-3-4-2	45	3-6-6-5-5-4-3	32	3-5-5-4-4-5-3			
14 July	8	3-2-1-2-2-2-2	7	3-2-2-1-1-1-2-2	7	3-2-1-1-1-2-2			
15 July	6	1-2-1-2-2-2-2	5	0-2-1-1-2-2-1-2	7	1-2-1-2-2-2-3			
16 July	15	3-2-2-3-3-2-5-2	15	3-3-3-5-2-2-1	8	3-2-2-2-2-1			
17 July	7	2-2-2-1-3-2-1-1	7	2-2-1-3-3-2-0-0	5	2-1-2-1-2-1-1-0			
18 July	4	0-1-0-2-2-2-1-1	2	0-1-0-1-1-0-1-0	4	0-1-1-2-1-1-1			
19 July	3 1-0-0-2-1-2-2-0		1	0-0-1-2-0-0-0	3	0-1-1-2-1-1-0			



Alerts and Warnings Issued

Date & Time of Issue UTC	Type of Alert or Warning	Date & Time of Event UTC
13 Jul 0400	WARNING: Geomagnetic K = 4	13/0400 - 0900
13 Jul 0419	ALERT: Geomagnetic $K = 4$	13/0419
13 Jul 0421	WARNING: Geomagnetic $K = 5$	13/0422 - 0800
13 Jul 0521	ALERT: Geomagnetic $K = 5$	13/0520
13 Jul 0730	EXTENDED WARNING: Geomagnetic K = 5	13/0422 - 1300
13 Jul 0730	EXTENDED WARNING: Geomagnetic K = 4	13/0400 - 1800
13 Jul 0741	ALERT: Geomagnetic $K = 5$	13/0741
13 Jul 1044	ALERT: Geomagnetic $K = 5$	13/1044
13 Jul 1710	WARNING: Geomagnetic $K = 5$	13/1710 - 2200
13 Jul 1756	EXTENDED WARNING: Geomagnetic K = 4	13/0400 - 2300
13 Jul 1948	ALERT: Geomagnetic $K = 5$	13/1948
13 Jul 1955	WARNING: Geomagnetic $K = 6$	13/1955 - 2300
13 Jul 2114	EXTENDED WARNING: Geomagnetic K = 4	13/0400 - 14/0600
13 Jul 2114	EXTENDED WARNING: Geomagnetic K = 5	13/1710 - 14/0600
13 Jul 2114	WATCH: Geomagnetic Storm Category G1 predicte	ed
14 Jul 0555	EXTENDED WARNING: Geomagnetic K = 4	13/0400 - 14/1100
14 Jul 1213	CANCELLATION: Geomagnetic Storm Category G1 predicted	
14 Jul 1330	ALERT: Electron 2MeV Integral Flux >= 1000pfu	14/1315
15 Jul 0715	CONTINUED ALERT: Electron 2MeV Integral Flux >= 1000pfu	14/1315
16 Jul 1059	CONTINUED ALERT: Electron 2MeV Integral Flux >= 1000pfu	14/1315
17 Jul 0718	CONTINUED ALERT: Electron 2MeV Integral Flux >= 1000pfu	14/1315
18 Jul 0507	CONTINUED ALERT: Electron 2MeV Integral Flux >= 1000pfu	14/1315
18 Jul 1529	ALERT: Type II Radio Emission	18/1450
19 Jul 0508	CONTINUED ALERT: Electron 2MeV Integral Flux >= 1000pfu	14/1315

Twenty-seven Day Outlook

	Radio Flux	Planetary	Largest		Radio Flux	Planetary	Largest
Date	10.7cm	A Index	Kp Index	Date	10.7cm	A Index	Kp Index
20 Jul	100	10	4	03 Aug	115	5	2
21	100	5	2	04	115	5	2
22	105	5	2	05	110	5	2
23	110	15	4	06	105	20	5
24	105	10	4	07	100	25	5
25	110	5	2	08	100	15	4
26	110	5	2	09	100	10	4
27	105	5	2	10	95	8	3
28	110	5	2	11	95	5	2
29	110	5	2	12	95	5	2
30	110	5	2	13	95	5	2
31	110	18	5	14	90	5	2
01 Aug	115	25	5	15	85	5	2
02	115	12	4				

Energetic Events

	Time			X-	-ray	_Optio	cal Informat	ion	P	eak	Sweep	Freq
	Half			Integ	Imp/	Location	Rgn	Radi	o Flux	Inten	sity	
Date	Begin	Max	Max	Class	Flux	Brtns	Lat CMD	#	245	2695	II	IV

No Events Observed

Flare List

					(Optical	
		Time		X-ray	Imp/	Location	Rgn
Date	Begin	Max	End	Class	Brtns	Lat CMD	#
13 Jul	0922	0934	0947		SF	N00E49	
13 Jul	0955	1003	1009		SF	S00E49	
13 Jul	2345	2348	2350	B6.3			2386
14 Jul	0347	0354	0357	B6.2			
14 Jul	0447	0552	0919	B9.0			
14 Jul	0510	0512	0516		SF	N16W57	2381
14 Jul	0920	0922	0930	C1.0	SF	N15W59	2381
14 Jul	1203	1210	1228	C1.2			2387
14 Jul	1544	1600	1612	B8.1			2387
14 Jul	1723	1727	1734	B7.1			2387
16 Jul	2100	2111	2120	B5.8			2387
17 Jul	0450	0450	0503		SF	S18W38	2384
17 Jul	1553	1559	1605	B5.1	SF	N19E54	2387
18 Jul	0841	0843	0850		SF	N20E42	2387
18 Jul	1428	1442	1452	C1.8			2388
19 Jul	0922	1040	1302	C2.1			

Region Summary

	Location	Su	inspot C	haracte	ristics					Flares	5				
		Helio		Extent		Spot	Mag	X	K-ray			O	ptica	1	
Date	Lat CMD	Lon	10 ⁻⁶ hemi.	(helio)	Class	Count	Class	C	M	X	S	1	2	3	4
		Regi	on 2378												
02 Jul	S15E64	92	40	5	Cso	4	В								
03 Jul	S17E56	87	80	4	Dso	5	В	5	1		13	1			
04 Jul	S16E44	86	90	4	Cso	4	В	1			1				
05 Jul	S17E32	85	70	5	Cso	6	В				2				
06 Jul	S17E18	86	60	2	Hax	3	A								
07 Jul	S17E03	86	50	2	Hsx	3	A								
08 Jul	S16W09	86	50	3	Hsx	4	A								
09 Jul	S10W23	87	20	1	Hsx	2	A								
10 Jul	S15W33	84	10	7	Bxo	3	В								
11 Jul	S16W49	87	10	1	Axx	1	A								
12 Jul	S16W63	87	plage												
13 Jul	S16W77	88	plage												
								6	1	0	16	1	0	0	0
Died or	n Disk.														
Absolu	te heliograp	ohic lon	igitude: 8	6											
		Regi	on 2379												
03 Jul	S15E45	98	10	4	Bxo	5	В								
04 Jul	S14E33	97	20	5	Cro	5	В								
05 Jul	S15E21	96	30	6	Dro	7	В								
06 Jul	S15E07	97	30	6	Dro	7	В								
07 Jul	S13W07	97	20	9	Cro	7	В								
08 Jul	S11W24	100	10	2	Axx	4	A								
09 Jul	S09W39	103	10	2	Bxo	3	В				1				
10 Jul	S11W52	103	10	2	Axx	4	A				1				
10 Jul	S11W52 S11W66	103	plage	2	1111	7	11								
12 Jul	S11W80	104	plage												
12 Jul	511 11 00	104	prage					0	0	0	1	0	0	0	0
Cusasa	1 Wast I im	h						U	U	U	1	J	J	J	J

Crossed West Limb. Absolute heliographic longitude: 97

Region Summary - continued

	Location	on	Su	ınspot C	haracte	ristics					Flares	S			
		Helio	Area	Extent	Spot	Spot	Mag	X	K-ray			O	ptica	1	
Date	Lat CMD	Lon	10 ⁻⁶ hemi.	(helio)	Class	Count	Class	C	M	X	S	1	2	3	4
		Rogi	on 2381												
04.7.1)	_			~		_								
04 Jul	N16E57	73	30	4	Cro	4	В								
05 Jul	N15E44	73	100	7	Dao	10	В		•		6				
06 Jul	N14E31	72	350	11	Ekc	14	BG	9	2		19		1		
07 Jul	N14E17	73	450	12	Ekc	25	BG	6			13	1			
08 Jul	N14E03	74	550	14	Eko	28	В				1				
09 Jul	N14W11	74	500	15	Eko	19	В	1			1				
10 Jul	N15W24	75	400	16	Fko	15	В								
11 Jul	N15W37	75	380	16	Fko	11	В								
12 Jul	N15W51	75	360	16	Fko	5	В								
13 Jul	N15W65	76	360	16	Fko	5	В								
14 Jul	N15W79	77	320	16	Fko	5	В	1			2				
15 Jul	N12W92	77	90	14	Eso	2	В								
								17	2	0	42	1	1	0	0
	l West Lim														
Absolut	te heliograp	ohic lor	ngitude: 7	4											
		Regi	on 2383												
07 Jul	S06E04	85	20	3	Dro	3	В								
07 Jul 08 Jul	S00E04 S07W10	87	10	5	Bxo	9	В				1				
08 Jul 09 Jul	S07W10 S06W24	87	50	5	Dso	10	В				1				
10 Jul	S06W37	88	10	6	Bxo	3	В								
11 Jul	S06W52	90	10	6	Bxo	2	В								
12 Jul	S06W67	91	plage												
13 Jul	S06W82	93	plage					0	0	0	1	0	0	0	0

Crossed West Limb. Absolute heliographic longitude: 85

Region Summary - continued

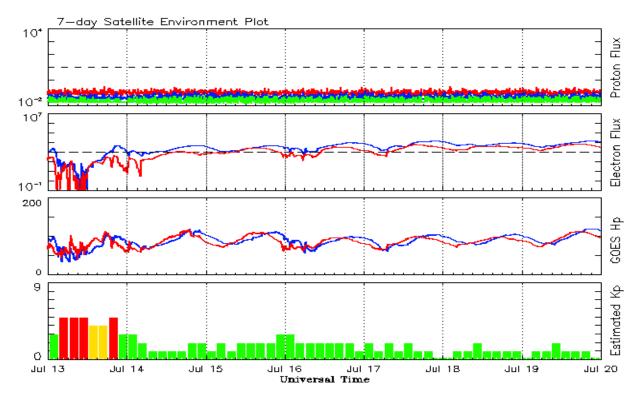
	Location	on	Su	ınspot C	haracte	eristics					Flares	S			
		Helio	Area	Extent	Spot	Spot	Mag	X	K-ray			O	ptica	.1	
Date	Lat CMD	Lon	10 ⁻⁶ hemi.	(helio)	Class	Count	Class	C	M	X	S	1	2	3	4
		Regi	on 2384												
08 Jul	S18E62	15	120	2	Hsx	2	A								
09 Jul	S17E47	17	140	2	Hsx	1	A				1				
10 Jul	S18E36	15	180	2	Cso	4	В				1				
11 Jul	S18E23	15	180	3	Cao	5	В								
12 Jul	S18E09	15	170	3	Cao	7	В								
13 Jul	S18W05	16	170	3	Cso	8	В								
14 Jul	S18W18	16	150	3	Cso	3	В								
15 Jul	S18W29	14	120	4	Cso	5	В								
16 Jul	S18W43	14	90	4	Hsx	4	A								
17 Jul	S17W57	15	80	2	Hsx	1	Α				1				
18 Jul	S17W69	14	90	2	Hsx	1	A								
19 Jul	S17W80	12	60	2	Hsx	1	Α								
								0	0	0	3	0	0	0	0
Still on	Disk.														
	te heliograp	hic lor	ngitude: 1	6											
		Regi	on 2385												
10 Jul	N07W53	104	30	3	Dri	13	В	1			7				
11 Jul	N08W68	106	110	7	Dao	11	В	1			8				
12 Jul	N08W82	106	100	8	Dao	6	В								
13 Jul	N08W96	107	plage												
								2	0	0	15	0	0	0	0
Crossec	l West Liml	b.													
	te heliograp		ngitude: 1	04											
	0 1		Ü												
		Regi	on 2386												
12 Jul	N11E71	312	120	4	Hsx	1	A								
13 Jul	N11E57	314	60	2	Hsx	1	A								
14 Jul	N11E43	315	60	2	Hsx	1	A								
15 Jul	N11E30	315	70	4	Hsx	2	A								
16 Jul	N11E18	313	70	4	Hsx	2	A								
17 Jul	N11E04	314	70	2	Hsx	2	A								
18 Jul	N11W07	312	90	2	Hsx	2	A								
19 Jul	N11W20	312	60	4	Hax	4	A								
2, 001	_,,	J.2	00	•		•	• •	0	0	0	0	0	0	0	0
G. 11	D' 1							-	-	-	~	~	~	-	-

Still on Disk. Absolute heliographic longitude: 314

Region Summary - continued

	Location	on	Su	inspot C	haracte	ristics				I	Flares	5			
		Helio	Area	Extent	Spot	Spot	Mag	X	K-ray			О	ptica	ıl	
Date	Lat CMD	Lon 1	0 ⁻⁶ hemi.	(helio)	Class	Count	Class	C	M	X	S	1	2	3	4
		Regio	n 2387												
14 Jul	N17E90	270	plage					1							
16 Jul	N17E61	270	30	6	Cai	5	В								
17 Jul	N17E47	271	40	7	Dac	7	В				1				
18 Jul	N17E34	271	120	10	Dai	7	В				1				
19 Jul	N17E18	274	100	9	Dai	11	В								
								1	0	0	2	0	0	0	0
Still on															
Absolu	te heliograp	hic long	gitude: 2	.74											
		Regio	n 2388												
16 Jul	N08W53	24	20	7	Cao	4	В								
17 Jul	N08W67	25	plage												
18 Jul	N14W81	26	10	4	Bxo	2	В	1							
								1	0	0	0	0	0	0	0

Crossed West Limb. Absolute heliographic longitude: 24



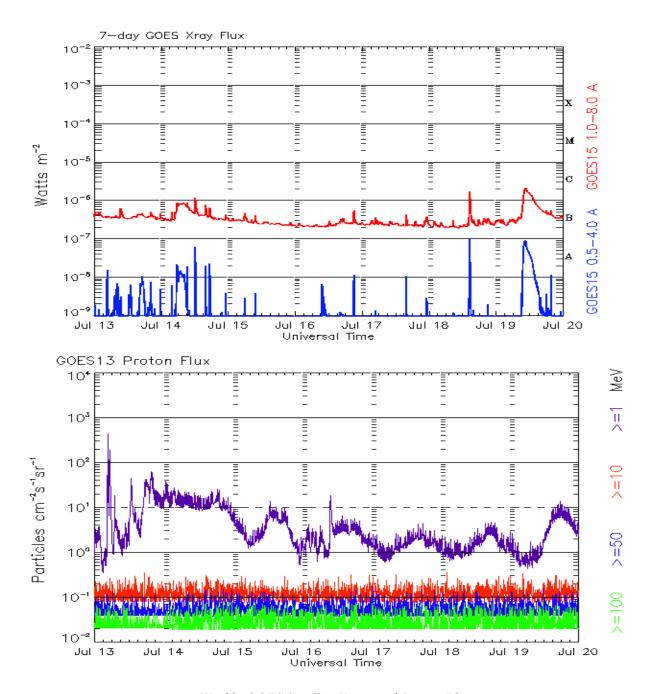
Recent Solar Indices (preliminary) Observed monthly mean values

			Sunspot Nu			Radio	Flux	Geoma	gnetic
	Observ	ed values	_	Smooth	n values	Penticton		Planetary	-
Month	SEC		RI/SEC	SEC	RI	10.7 cm	Value	Ap	Value
					2013			<u> </u>	
July	86.1	57.0	0.66	97.9	65.5	115.6	123.9	9	7.3
August	90.2	66.0	0.73	103.7	68.9	114.7	127.9	9	7.6
September	55.0	37.0	0.67	111.0	73.0	102.7	132.3	5	7.8
October	127.1	85.6	0.67	114.3	74.9	132.3	134.7	7	7.8
November	125.7	77.6	0.62	114.6	75.3	148.4	135.4	5	7.9
December	118.2	90.3	0.76	115.4	75.9	147.7	135.9	5	7.5
				,	2014				
January	125.9	81.8	0.65	117.7	77.3	158.6	137.3	6	7.1
February	174.6	102.3	0.59	119.5	78.3	170.3	138.6	12	6.9
March	141.1	91.9	0.65	123.2	80.8	149.9	140.8	6	7.2
April	130.5	84.7	0.65	124.8	81.9	144.3	143.5	9	7.5
May	116.8	75.2	0.64	122.3	80.5	130.0	144.7	7	7.9
June	107.7	71.0	0.66	121.4	79.7	122.2	145.5	7	8.4
July	113.6	72.4	0.64	120.4	78.5	137.3	145.2	5	8.8
August	106.2	74.6	0.70	115.1	75.5	124.7	142.8	9	8.9
September		87.6	0.69	107.4	70.8	146.1	140.1	11	9.3
October	92.0	60.6	0.66	101.7	67.3	153.7	138.4	10	9.9
November	101.8	70.2	0.69	97.9	65.4	155.3	137.4	10	10.1
December	120.0	76.7	0.65	95.2	56.0	158.7	137.0	12	10.5
				,	2015				
January	101.2	67.0	0.66	4	2013	141.7		10	
February	70.6	44.8	0.63			128.8		10	
March	61.7	38.4	0.62			126.0		17	
April	72.5	54.4	0.75			129.2		12	
May	83.0	58.8	0.73			120.1		9	
June	77.3	41.0	0.53			123.2		14	

Note: Values are final except for the most recent 6 months which are considered preliminary. Cycle 24 started in Dec 2008 with an RI=1.7.

Weekly Geosynchronous Satellite Environment Summary
Week Beginning 13 July 2015

The proton flux plot contains the five-minute averaged integral proton flux (protons/cm²-sec -sr) as measured by the SWPC Primary GOES satellite, near West 75, for each of three energy thresholds: greater than 10, 50, and 100 MeV.


The electron flux plot contains the five-minute averaged integral electron flux (electrons/cm²-sec -sr) with energies greater than 2 MeV by the SWPC Primary GOES satellite.

The Hp plot contains the five minute averaged Hp magnetic field component in nanoteslas (nT) as by the SWPC Primary GOES satellite. The Hp component is parallel to the spin axis of the satellite, which is nearly parallel to the Earth's rotation axis.

The Estimated 3-hour Planetary Kp-index is derived at the NOAA Space Weather Prediction Center using data from the following ground-based magnetometers: Boulder, Colorado; Chambon la Foret, France; Fredericksburg, Virginia; Fresno, California; Hartland, UK; Newport, Washington; Sitka, Alaska. These data are made available thanks to the cooperative efforts between SWPC and data providers around the world, which currently includes the U.S. Geological Survey, the British Geological Survey, and the Institut de Physique du Globe de Paris.

The data included here are those now available in real time at the SWPC and are incomplete in that they do not include the full set of parameters and energy ranges known to cause satellite operating anomalies. The proton and electron fluxes and Kp are 'global' parameters that are applicable to a first order approximation over large areas. H parallel is subject to more localized phenomena and the measurements generally are applicable to within a few degrees of longitude of the measuring satellite.

Weekly GOES Satellite X-ray and Proton Plots Week Beginning 13 July 2015

The x-ray plots contains five-minute averages x-ray flux (Watt/ m^2) as measure by the SWPC primary GOES X-ray satellite, usually at West 105 longitude, in two wavelength bands, 0.05 - 0.4 and 0.1 - 0.8 nm. The letters A, B, C, M and X refer to x-ray event levels for the 0.1 - 0.8 nm band.

The proton plot contains the five-minute averaged intergral flux units (pfu = protons/cm 2 -sec -sr) as measured by the primary SWPC GOES Proton satellite for each of the energy thresholds: >1, >10, >30, and >100 MeV. The P10 event threshold is 10 pfu at greater than 10 MeV.

Preliminary Report and Forecast of Solar Geophysical Data (The Weekly)

Published every Monday by the Space Weather Prediction Center.

U.S. Department of Commerce NOAA / National Weather Service Space Weather Prediction Center 325 Broadway, Boulder CO 80305

Notice: The 27-day Outlook, Satellite Environment, X-ray and Proton plots have been redesigned. Comments and suggestions are welcome SWPC.Webmaster@noaa.gov

The Weekly has been published continuously since 1951 and is available online since 1997.

http://spaceweather.gov/weekly/ -- Current and previous year

http://spaceweather.gov/ftpmenu/warehouse.html -- Online achive from 1997

http://spaceweather.gov/ftpmenu/ -- Some content as ascii text

http://spaceweather.gov/SolarCycle/ -- Solar Cycle Progression web site

http://spaceweather.gov/contacts.html -- Contact and Copyright information http://spaceweather.gov/weekly/Usr_guide.pdf -- User Guide

