#### Space Weather Highlights 10 September - 16 September 2018

SWPC PRF 2246 17 September 2018

Solar activity was very low throughout the period. Region 2722 (S07, Lo=215, class/area Bxo/10 on 11 Sep) produced the strongest flare of the period, a B1 flare at 11/0759 UTC. The region decayed to plage in the following days. No Earth-directed CMEs were observed in available coronagraph imagery.

No proton events were observed at geosynchronous orbit.

The greater than 2 MeV electron flux at geosynchronous orbit ranged from normal background to high levels. High levels were reached on 12-16 Sep and moderate levels were reached on 10-11 Sep. All enhancements in electron flux are associated with the influence of a positive polarity CH HSS.

Geomagnetic field activity ranged from quiet to G2 (Moderate) geomagnetic storm levels. The onset of a CIR ahead of a positive polarity CH HSS on 10 Sep increased geomagnetic activity to G1 levels. As wind speeds increased to around 550 km/s on 11 Sep, geomagnetic activity further increased to G2 (Moderate) geomagnetic storm levels. Total magnetic field strength (Bt) peaked at 15 nT late on 10 Sep. Bt then decreased to near 5-6 nT by mid-day on 11 Sep, which decreased the geomagnetic response to mostly quiet to active levels. One additional period of isolated G1 (Minor) geomagnetic storming was observed early on 14 Sep. Wind speeds persisted at elevated levels through 16 Sep, with a notable increase to a peak around 650 km/s observed early on 15 Sep. As wind speeds decreased, quiet to unsettled levels on 15 Sep gave way to quiet levels on 16 Sep.

### Space Weather Outlook 17 September - 13 October 2018

Solar activity is expected to be very low throughout the outlook period.

No proton events are expected at geosynchronous orbit.

The greater than 2 MeV electron flux at geosynchronous orbit is expected to be at moderate levels on 06-08 Oct and at high levels for the remainder of the outlook period. All enhancements in electron flux are expected due to multiple, recurrent CH HSSs.

Geomagnetic field activity is expected to range from quiet to G2 (Moderate) geomagnetic storm levels. G2 (Moderate) geomagnetic storm levels are expected on 08 Oct; G1 (Minor) geomagnetic storm levels are expected on 07 Oct and 10 Oct; active conditions are expected on 17 Sep, 23 Sep, 02 Oct and 11 Oct; unsettled conditions are expected on 18 Sep, 24 Sep, 01 Oct, 09 Oct and 12 Oct. All levels of elevated geomagnetic activity are due to the anticipated influence of multiple, recurrent CH HSSs.



## Daily Solar Data

|              | Radio  | Sun  | Sunspot                  |              | X-ray    |   |       |          | Flares |   |       |    |   |
|--------------|--------|------|--------------------------|--------------|----------|---|-------|----------|--------|---|-------|----|---|
|              | Flux   | spot | Area                     | Bac          | ekground |   | X-ray | <u>y</u> |        | O | ptica | ıl |   |
| Date         | 10.7cm | No.  | (10 <sup>-6</sup> hemi.) | )            | Flux     |   | C M   | X        | S      | 1 | 2     | 3  | 4 |
| 10 September | 69     | 0    | 0 4                      | A0.0         | 0        | 0 | 0     | 0        | 0      | 0 |       | 0  | 0 |
| 11 September | 69     | 14   | 10                       | 40.0         | 0        | 0 | 0     | 0        | 0      | 0 | (     | 0  | 0 |
| 12 September | 70     | 11   | 0 4                      | <b>A</b> 0.0 | 0        | 0 | 0     | 0        | 0      | 0 | (     | 0  | 0 |
| 13 September | 70     | 0    | 0                        | 40.0         | 0        | 0 | 0     | 0        | 0      | 0 | (     | 0  | 0 |
| 14 September | 69     | 0    | 0 4                      | 40.0         | 0        | 0 | 0     | 0        | 0      | 0 | (     | 0  | 0 |
| 15 September | 69     | 0    | 0 4                      | 40.0         | 0        | 0 | 0     | 0        | 0      | 0 | (     | 0  | 0 |
| 16 September | 69     | 0    | 0 4                      | A0.0         | 0        | 0 | 0     | 0        | 0      | 0 | (     | 0  | 0 |

# Daily Particle Data

|              |         | Proton Fluen<br>otons/cm <sup>2</sup> -da |           |    | Electron Fluence (electrons/cm <sup>2</sup> -day -sr) |       |        |  |  |  |  |
|--------------|---------|-------------------------------------------|-----------|----|-------------------------------------------------------|-------|--------|--|--|--|--|
| Date         | >1 MeV  | >10 MeV                                   | >100 MeV  | _  | >0.6 MeV                                              | >2MeV | >4 MeV |  |  |  |  |
| 10 September | 1.      | 4e+06                                     | 1.7e+04   | 3. | 5e+03                                                 | 2.20  | e+07   |  |  |  |  |
| 11 September | 5.      | 8e+05                                     | 1.6e+04   | 3. | 3e+03                                                 | 9.4   | e+06   |  |  |  |  |
| 12 September | 1.      | 1e+06                                     | 1.6e+04   | 3. | 3e+03                                                 | 4.76  | e+07   |  |  |  |  |
| 13 September | 1.      | 4e+06                                     | 1.7e + 04 | 3. | 5e+03                                                 | 1.50  | e+08   |  |  |  |  |
| 14 September | 1.      | 4e+06                                     | 1.7e + 04 | 3. | 6e+03                                                 | 9.86  | e+08   |  |  |  |  |
| 15 September | 8.      | 4e+05                                     | 1.7e + 04 | 3. | 6e+03                                                 | 1.20  | e+09   |  |  |  |  |
| 16 September | 1.1e+06 |                                           | 1.7e+04   | 3. | 6e+03                                                 | 1.56  | e+09   |  |  |  |  |

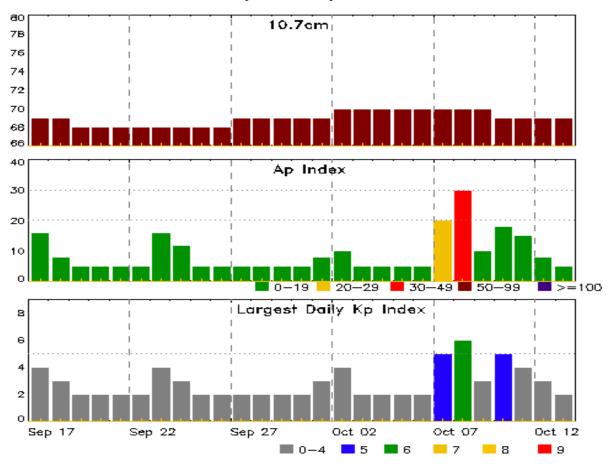
## Daily Geomagnetic Data

|              | Mi  | Middle Latitude |    | igh Latitude    | Estimated |                 |  |  |
|--------------|-----|-----------------|----|-----------------|-----------|-----------------|--|--|
|              | Fre | edericksburg    |    | College         | Planetary |                 |  |  |
| Date         | A   | K-indices       | A  | K-indices       | A         | K-indices       |  |  |
| 10 September | 15  | 1-1-1-3-3-3-5   | 23 | 0-0-2-3-5-5-3   | 21        | 1-1-1-2-3-5-5   |  |  |
| 11 September | 24  | 4-4-5-5-3-2-3-2 | 62 | 2-4-8-7-5-3-3-2 | 35        | 4-5-6-6-4-3-3-2 |  |  |
| 12 September | 10  | 2-2-1-2-2-3-3-3 | 9  | 2-1-1-4-3-2-2-1 | 9         | 2-2-1-2-2-2-3   |  |  |
| 13 September | 17  | 4-4-4-3-2-3-2-2 | 31 | 3-3-4-6-5-5-2-2 | 17        | 4-4-3-3-3-3-2-3 |  |  |
| 14 September | 11  | 4-3-2-2-2-2     | 24 | 5-4-3-5-4-2-3-2 | 16        | 5-4-3-2-2-3-3   |  |  |
| 15 September | 7   | 3-2-2-2-1-1-2   | 8  | 2-2-3-3-2-1-1-1 | 8         | 3-3-2-2-1-1-2   |  |  |
| 16 September | 5   | 2-1-2-2-1-1-1   | 4  | 2-1-2-2-2-0-1-0 | 7         | 2-2-2-1-0-1-2   |  |  |



# Alerts and Warnings Issued

| Date & Time<br>of Issue UTC | Type of Alert or Warning                                   | Date & Time<br>of Event UTC |
|-----------------------------|------------------------------------------------------------|-----------------------------|
| 10 Sep 1611                 | WARNING: Geomagnetic K = 4                                 | 10/1610 - 2300              |
| 10 Sep 1729                 | WARNING: Geomagnetic $K = 5$                               | 10/1730 - 2100              |
| 10 Sep 1733                 | ALERT: Geomagnetic $K = 4$                                 | 10/1733                     |
| 10 Sep 1745                 | ALERT: Geomagnetic $K = 5$                                 | 10/1745                     |
| 10 Sep 2036                 | EXTENDED WARNING: Geomagnetic K =                          | 4 10/1610 - 11/0600         |
| 10 Sep 2036                 | EXTENDED WARNING: Geomagnetic K =                          | 5 10/1730 - 11/0300         |
| 10 Sep 2101                 | ALERT: Geomagnetic $K = 5$                                 | 10/2059                     |
| 10 Sep 2344                 | ALERT: Geomagnetic $K = 5$                                 | 10/2344                     |
| 11 Sep 0424                 | WARNING: Geomagnetic $K = 5$                               | 11/0423 - 1200              |
| 11 Sep 0425                 | EXTENDED WARNING: Geomagnetic K =                          | 4 10/1610 - 11/1800         |
| 11 Sep 0437                 | ALERT: Geomagnetic $K = 5$                                 | 11/0436                     |
| 11 Sep 0739                 | ALERT: Geomagnetic $K = 5$                                 | 11/0739                     |
| 11 Sep 0804                 | WARNING: Geomagnetic $K = 6$                               | 11/0805 - 1200              |
| 11 Sep 0817                 | ALERT: Geomagnetic $K = 6$                                 | 11/0817                     |
| 11 Sep 1008                 | ALERT: Geomagnetic $K = 5$                                 | 11/1008                     |
| 11 Sep 1050                 | ALERT: Geomagnetic $K = 6$                                 | 11/1050                     |
| 11 Sep 1110                 | EXTENDED WARNING: Geomagnetic K =                          | 4 10/1610 - 11/2359         |
| 11 Sep 1110                 | EXTENDED WARNING: Geomagnetic K =                          | 6 11/0805 - 1500            |
| 11 Sep 1110                 | EXTENDED WARNING: Geomagnetic K =                          | 5 11/0423 - 2100            |
| 11 Sep 2344                 | EXTENDED WARNING: Geomagnetic K =                          | 4 10/1610 - 12/0900         |
| 12 Sep 1750                 | ALERT: Electron 2MeV Integral Flux >= 1000p                | fu 12/1730                  |
| 12 Sep 2357                 | WARNING: Geomagnetic $K = 4$                               | 13/0000 - 0600              |
| 13 Sep 0152                 | ALERT: Geomagnetic $K = 4$                                 | 13/0152                     |
| 13 Sep 0529                 | EXTENDED WARNING: Geomagnetic K =                          | 4 13/0000 - 1200            |
| 13 Sep 1132                 | EXTENDED WARNING: Geomagnetic K =                          | 4 13/0000 - 1800            |
| 13 Sep 1456                 | CONTINUED ALERT:<br>Electron 2MeV Integral Flux >= 1000pfu | 12/1730                     |
| 14 Sep 0106                 | WARNING: Geomagnetic $K = 4$                               | 14/0105 - 0900              |
| 14 Sep 0222                 | ALERT: Geomagnetic $K = 4$                                 | 14/0222                     |




# Alerts and Warnings Issued

| Date & Time of Issue UTC | Type of Alert or Warning                                   | Date & Time of Event UTC |  |  |
|--------------------------|------------------------------------------------------------|--------------------------|--|--|
| 14 Sep 0235              | WARNING: Geomagnetic K = 5                                 | 14/0235 - 0900           |  |  |
| 14 Sep 0302              | ALERT: Geomagnetic $K = 5$                                 | 14/0259                  |  |  |
| 14 Sep 0859              | CONTINUED ALERT:<br>Electron 2MeV Integral Flux >= 1000pfu | 12/1730                  |  |  |
| 15 Sep 0859              | CONTINUED ALERT:<br>Electron 2MeV Integral Flux >= 1000pfu | 12/1730                  |  |  |
| 16 Sep 0859              | CONTINUED ALERT:<br>Electron 2MeV Integral Flux >= 1000pfu | 12/1730                  |  |  |



### Twenty-seven Day Outlook



| Date   | Radio Flux<br>10.7cm | Planetary<br>A Index | Largest<br>Kp Index | Date   | Radio Flux<br>10.7cm | •  | Largest<br>Kp Index |
|--------|----------------------|----------------------|---------------------|--------|----------------------|----|---------------------|
|        |                      |                      | •                   |        |                      |    |                     |
| 17 Sep | 69                   | 16                   | 4                   | 01 Oct | 69                   | 8  | 3                   |
| 18     | 69                   | 8                    | 3                   | 02     | 70                   | 10 | 4                   |
| 19     | 68                   | 5                    | 2                   | 03     | 70                   | 5  | 2                   |
| 20     | 68                   | 5                    | 2                   | 04     | 70                   | 5  | 2                   |
| 21     | 68                   | 5                    | 2                   | 05     | 70                   | 5  | 2                   |
| 22     | 68                   | 5                    | 2                   | 06     | 70                   | 5  | 2                   |
| 23     | 68                   | 16                   | 4                   | 07     | 70                   | 20 | 5                   |
| 24     | 68                   | 12                   | 3                   | 08     | 70                   | 30 | 6                   |
| 25     | 68                   | 5                    | 2                   | 09     | 70                   | 10 | 3                   |
| 26     | 68                   | 5                    | 2                   | 10     | 69                   | 18 | 5                   |
| 27     | 69                   | 5                    | 2                   | 11     | 69                   | 15 | 4                   |
| 28     | 69                   | 5                    | 2                   | 12     | 69                   | 8  | 3                   |
| 29     | 69                   | 5                    | 2                   | 13     | 69                   | 5  | 2                   |
| 30     | 69                   | 5                    | 2                   |        |                      |    |                     |



## Energetic Events

|      | Time  |     | e X-ray |       | _Opti | cal Informat | Peak     |     | Sweep Free |        |           |    |
|------|-------|-----|---------|-------|-------|--------------|----------|-----|------------|--------|-----------|----|
|      |       |     | Half    |       | Integ | Imp/         | Location | Rgn | Radi       | o Flux | Intensity |    |
| Date | Begin | Max | Max     | Class | Flux  | Brtns        | Lat CMD  | #   | 245        | 2695   | II        | IV |

### **No Events Observed**

### Flare List

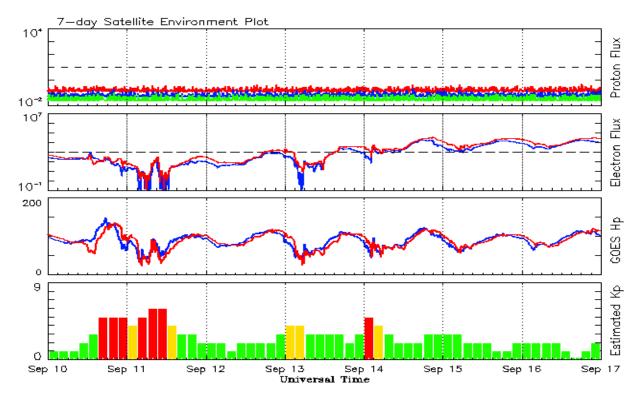
|        |       |      |       | Optical |          |         |   |  |  |
|--------|-------|------|-------|---------|----------|---------|---|--|--|
|        | Time  |      | X-ray | Imp/    | Location | Rgn     |   |  |  |
| Date   | Begin | Max  | End   | Class   | Brtns    | Lat CMD | # |  |  |
| 10 Sep | 1250  | 1253 | 1255  | A3.5    |          |         |   |  |  |
| 11 Sep | 0756  | 0759 | 0801  | B1.0    |          |         |   |  |  |
| 13 Sep | 1756  | 1758 | 1802  | A1.8    |          |         |   |  |  |
| 16 Sep | 0434  | 0435 | 0436  | A1.0    |          |         |   |  |  |



## Region Summary

|             | Location                   | on    | Sunspot Characteristics |         |       |       |       | Flares   |       |   |   |   |       |    |   |
|-------------|----------------------------|-------|-------------------------|---------|-------|-------|-------|----------|-------|---|---|---|-------|----|---|
|             |                            | Helio | Area                    | Extent  | Spot  | Spot  | Mag   | >        | K-ray |   |   | 0 | ptica | ıl |   |
| Date        | Lat CMD                    | Lon   | 10 <sup>-6</sup> hemi.  | (helio) | Class | Count | Class | <u>C</u> | M     | X | S | 1 | 2     | 3  | 4 |
| Region 2721 |                            |       |                         |         |       |       |       |          |       |   |   |   |       |    |   |
| 08 Sep      | N09W15                     | 286   | 10                      | 3       | Bxo   | 6     | В     |          |       |   |   |   |       |    |   |
| 09 Sep      | N10W28                     | 286   | 10                      | 3       | Bxo   | 2     | В     |          |       |   |   |   |       |    |   |
| 10 Sep      | N11W43                     | 288   | plage                   |         |       |       |       |          |       |   |   |   |       |    |   |
| 11 Sep      | N11W57                     | 289   | plage                   |         |       |       |       |          |       |   |   |   |       |    |   |
| 12 Sep      | N11W71                     | 290   | plage                   |         |       |       |       |          |       |   |   |   |       |    |   |
| 13 Sep      | N11W85                     | 291   | plage                   |         |       |       |       |          |       |   |   |   |       |    |   |
|             | d West Lim<br>te heliograp |       | gitude: 2               | 86      |       |       |       | 0        | 0     | 0 | 0 | 0 | 0     | 0  | 0 |
|             |                            | Regio | on 2722                 |         |       |       |       |          |       |   |   |   |       |    |   |
| 11 Sep      | S07E17                     | 215   | 10                      | 5       | Bxo   | 4     | В     |          |       |   |   |   |       |    |   |
| 12 Sep      | S07E01                     | 218   | 0                       |         | Axx   | 1     | A     |          |       |   |   |   |       |    |   |
| 13 Sep      | S07W14                     | 220   | plage                   |         |       |       |       |          |       |   |   |   |       |    |   |
| 14 Sep      | S07W28                     | 220   | plage                   |         |       |       |       |          |       |   |   |   |       |    |   |
| 15 Sep      | S07W41                     | 220   | plage                   |         |       |       |       |          |       |   |   |   |       |    |   |
| 16 Sep      | S07W54                     | 220   | plage                   |         |       |       |       |          |       |   |   |   |       |    |   |
|             |                            |       |                         |         |       |       |       | 0        | 0     | 0 | 0 | 0 | 0     | 0  | 0 |

Still on Disk. Absolute heliographic longitude: 218




### Recent Solar Indices (preliminary) Observed monthly mean values

|           |                 | unspot N | uniocis |               |      | Radio     | ГIUХ   | Geomagnetic |        |  |
|-----------|-----------------|----------|---------|---------------|------|-----------|--------|-------------|--------|--|
|           | Observed values | Ratio    | Smoo    | Smooth values |      | Penticton | Smooth | Planetary   | Smooth |  |
| Month     | SEC RI          | RI/SEC   | SEC     | RI            |      | 10.7 cm   | Value  | Ap          | Value  |  |
|           |                 |          |         | 2016          |      |           |        |             |        |  |
| September | 37.4            | 26.8     | 0.72    | 32.1          | 19.9 | 87.8      | 83.7   | 16          | 11.3   |  |
| October   | 30.0            | 20.0     | 0.67    | 31.1          | 18.9 | 86.1      | 82.5   | 16          | 11.6   |  |
| November  | 22.4            | 12.8     | 0.57    | 29.4          | 17.9 | 78.7      | 81.1   | 10          | 11.6   |  |
| December  | 17.6            | 11.1     | 0.64    | 28.1          | 17.1 | 75.1      | 80.0   | 10          | 11.4   |  |
|           |                 |          |         |               |      |           |        |             |        |  |
| January   | 28.1            | 15.7     | 0.55    | 27.3          | 16.7 | 77.4      | 79.4   | 10          | 11.3   |  |
| February  | 22.0            | 15.8     | 0.71    | 25.5          | 15.9 | 76.9      | 78.7   | 10          | 11.3   |  |
| March     | 25.4            | 10.6     | 0.42    | 24.6          | 15.4 | 74.6      | 78.6   | 15          | 11.5   |  |
| April     | 30.4            | 19.4     | 0.64    | 24.3          | 14.9 | 80.9      | 78.4   | 13          | 11.5   |  |
| May       | 18.1            | 11.3     | 0.62    | 23.1          | 14.0 |           | 77.7   | 9           | 11.3   |  |
| June      | 18.0            | 11.5     | 0.64    | 22.0          | 13.3 |           | 77.3   | 7           | 11.3   |  |
| July      | 18.8            | 10.7     | 0.59    | 20.8          | 12.6 | 5 77.7    | 76.8   | 9           | 11.0   |  |
| August    | 25.0            | 19.6     | 0.80    | 19.7          | 11.8 | 77.9      | 76.3   | 12          | 10.7   |  |
| September | 42.2            | 26.2     | 0.62    | 18.6          | 11.0 | 92.0      | 75.9   | 19          | 10.3   |  |
| October   | 16.0            | 7.9      | 0.49    | 16.8          | 10.0 | 76.4      | 75.1   | 11          | 9.8    |  |
| November  | 7.7             | 3.4      | 0.44    | 15.7          | 9.2  | 72.1      | 74.6   | 11          | 9.5    |  |
| December  | 7.6             | 4.9      | 0.64    | 15.7          | 9.1  |           | 74.4   | 8           | 9.4    |  |
|           |                 |          |         | 2018          |      |           |        |             |        |  |
| January   | 7.8             | 4.1      | 0.51    | 15.0          | 8.6  | 70.0      | 74.0   | 6           | 9.3    |  |
| February  | 16.0            | 6.4      | 0.40    | 13.7          | 7.6  | 72.0      | 73.3   | 7           | 9.1    |  |
| March     | 6.0             | 1.5      | 0.25    |               |      | 68.4      |        | 8           |        |  |
| April     | 7.0             | 5.3      | 0.76    |               |      | 70.0      |        | 7           |        |  |
| May       | 15.0            | 7.9      | 0.53    |               |      | 70.9      |        | 8           |        |  |
| June      | 19.7            | 9.5      | 0.48    |               |      | 72.5      |        | 7           |        |  |
| July      | 1.3             | 1.0      | 0.77    |               |      | 69.7      |        | 6           |        |  |
| August    | 10.0            | 5.3      | 0.53    |               |      | 69.1      |        | 10          |        |  |

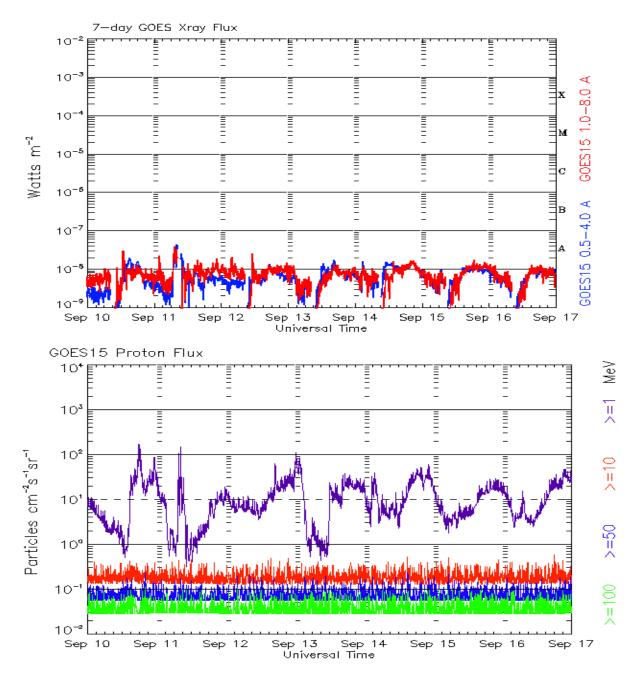
**Note:** Values are final except for the most recent 6 months which are considered preliminary. Cycle 24 started in Dec 2008 with an RI=1.7.





Weekly Geosynchronous Satellite Environment Summary Week Beginning 10 September 2018

The proton flux plot contains the five-minute averaged integral proton flux (protons/cm²-sec -sr) as measured by the SWPC Primary GOES satellite, near West 75, for each of three energy thresholds: greater than 10, 50, and 100 MeV.


The electron flux plot contains the five-minute averaged integral electron flux (electrons/cm²-sec -sr) with energies greater than 2 MeV by the SWPC Primary GOES satellite.

The Hp plot contains the five minute averaged Hp magnetic field component in nanoteslas (nT) as by the SWPC Primary GOES satellite. The Hp component is parallel to the spin axis of the satellite, which is nearly parallel to the Earth's rotation axis.

The Estimated 3-hour Planetary Kp-index is derived at the NOAA Space Weather Prediction Center using data from the following ground-based magnetometers: Boulder, Colorado; Chambon la Foret, France; Fredericksburg, Virginia; Fresno, California; Hartland, UK; Newport, Washington; Sitka, Alaska. These data are made available thanks to the cooperative efforts between SWPC and data providers around the world, which currently includes the U.S. Geological Survey, the British Geological Survey, and the Institut de Physique du Globe de Paris.

The data included here are those now available in real time at the SWPC and are incomplete in that they do not include the full set of parameters and energy ranges known to cause satellite operating anomalies. The proton and electron fluxes and Kp are 'global' parameters that are applicable to a first order approximation over large areas. H parallel is subject to more localized phenomena and the measurements generally are applicable to within a few degrees of longitude of the measuring satellite.





Weekly GOES Satellite X-ray and Proton Plots Week Beginning 10 September 2018

The x-ray plots contains five-minute averages x-ray flux (Watt/ $m^2$ ) as measure by the SWPC primary GOES X-ray satellite, usually at West 105 longitude, in two wavelength bands, 0.05 - 0.4 and 0.1 - 0.8 nm. The letters A, B, C, M and X refer to x-ray event levels for the 0.1 - 0.8 nm band.

The proton plot contains the five-minute averaged intergral flux units (pfu = protons/cm $^2$ -sec -sr) as measured by the primary SWPC GOES Proton satellite for each of the energy thresholds: >1, >10, >30, and >100 MeV. The P10 event threshold is 10 pfu at greater than 10 MeV.



### Preliminary Report and Forecast of Solar Geophysical Data (The Weekly)

Published every Monday by the Space Weather Prediction Center.

U.S. Department of Commerce NOAA / National Weather Service Space Weather Prediction Center 325 Broadway, Boulder CO 80305

**Notice:** The 27-day Outlook, Satellite Environment, X-ray and Proton plots have been redesigned. Comments and suggestions are welcome SWPC.Webmaster@noaa.gov

The Weekly has been published continuously since 1951 and is available online since 1997.

http://spaceweather.gov/weekly/ -- Current and previous year

http://spaceweather.gov/ftpmenu/warehouse.html -- Online achive from 1997

http://spaceweather.gov/ftpmenu/ -- Some content as ascii text

http://spaceweather.gov/SolarCycle/ -- Solar Cycle Progression web site

http://spaceweather.gov/contacts.html -- Contact and Copyright information http://spaceweather.gov/weekly/Usr\_guide.pdf -- User Guide

