Solar activity was very low this period. Region 2723 (S08, L=357, class/area=Dso/30 on 01 Oct) was the only active region with sunspots, but was quiet throughout the period. No Earth-directed CMEs were observed during the summary period.

No proton events were observed at geosynchronous orbit.

The greater than 2 MeV electron flux at geosynchronous orbit was at moderate levels throughout the period.

Geomagnetic field activity reached G1 (Minor) geomagnetic storm levels on 07 Oct due to the influence of a positive polarity CH HSS. Active conditions were observed on 01-02 Oct and quiet to unsettled levels were observed on 03, and 05-06 Oct. Quiet conditions prevailed on 04 Oct.

Space Weather Outlook 08 October - 03 November 2018

Solar activity is expected to be very low throughout the outlook period.

No proton events are expected at geosynchronous orbit.

The greater than 2 MeV electron flux at geosynchronous orbit is expected to reach high levels on 08-25 Oct with moderate flux levels expected throughout the remainder of the outlook period.

Geomagnetic field activity is expected to reach G1-G2 (Minor-Moderate) geomagnetic storm levels on 08 Oct and 03 Nov due to the influence of a positive polarity CH HSS. G1 (Minor) geomagnetic storm levels are expected on 19 Oct and active levels are expected on 09-10, 18, 20, and 22 Oct, due to the influence of multiple, recurrent CH HSSs.

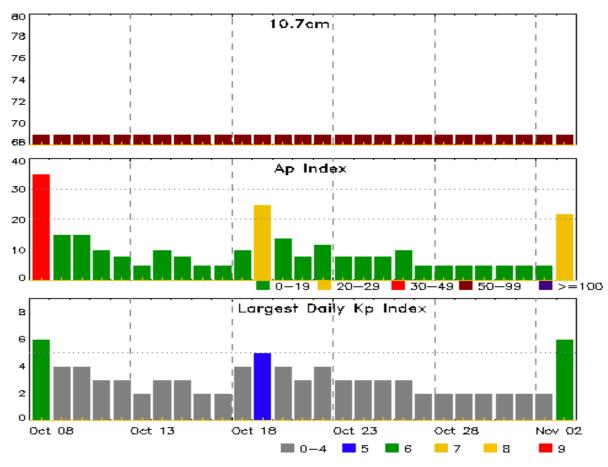
	Radio	Sun	Sunsp	ot	X-ray]	Flares			
	Flux	spot	Area	B	ackgroun	ıd	X-ra	ıy		0	ptical	
Date	10.7cm	No.	(10 ⁻⁶ her	ni.)	Flux		C M	Х	S	1	2 3	4
01 October	70	14	30	A0.0	0	0	0	0	0	0	0	0
02 October	67	14	30	A0.0	0	0	0	0	0	0	0	0
03 October	68	12	10	A0.0	0	0	0	0	0	0	0	0
04 October	67	11	10	A0.0	0	0	0	0	0	0	0	0
05 October	69	0	0	A0.0	0	0	0	0	0	0	0	0
06 October	69	0	0	A0.0	0	0	0	0	0	0	0	0
07 October	68	0	0	A0.0	0	0	0	0	0	0	0	0

Daily Solar Data

Daily Particle Data

	Proton Flue (protons/cm ² -		Electron Fluence (electrons/cm ² -day -sr)					
Date	>1 MeV >10 MeV	e /	>0.6 MeV	>2MeV >4 MeV				
01 October	2.2e+06	1.7e+04	3.6e+03	2.2e+07				
02 October	4.9e+05	1.6e+04	3.8e+03	2.5e+07				
03 October	7.5e+05	1.7e+04	3.8e+03	3.2e+07				
04 October	6.1e+05	1.7e+04	3.5e+03	1.8e+07				
05 October	3.4e+05	1.7e+04	3.7e+03	1.2e+07				
06 October	3.2e+05	1.7e+04	3.6e+03	1.5e+07				
07 October	1.2e+06	1.6e+04	3.3e+03	5.8e+06				

Daily Geomagnetic Data


	N	Iiddle Latitude	E	ligh Latitude		Estimated		
	F	Fredericksburg		College	Planetary			
Date	Α	K-indices	А	K-indices	А	K-indices		
01 October	6	0-1-1-2-3-2-1-2	19	0-1-2-4-6-4-2-1	9	0-2-1-2-4-2-2-2		
02 October	6	3-2-2-1-2-1-1-1	4	2-1-2-1-1-1-0	8	4-3-2-1-2-1-2-0		
03 October	4	0-1-0-1-1-2-2-2	2	0-0-1-0-0-1-1-2	6	1-1-1-2-1-1-2-3		
04 October	4	1-0-1-0-2-2-2-1	4	1-0-0-0-2-3-1-1	4	1-0-1-0-1-2-1-1		
05 October	8	3-2-2-1-3-1-1-2	6	1-2-1-3-2-1-1-1	9	3-3-2-2-3-1-1-2		
06 October	5	3-1-2-2-1-0-1-0	6	1-1-2-4-2-0-0-0	6	3-1-2-2-1-0-1-0		
07 October	13	0-0-2-3-3-4-4-3	44	0-0-2-6-7-6-4-3	2	0-1-1-3-4-5-5-5		

Date & Time		Date & Time
of Issue UTC	Type of Alert or Warning	of Event UTC
01 Oct 1418	WARNING: Geomagnetic $K = 4$	01/1419 - 2000
01 Oct 1424	ALERT: Geomagnetic $K = 4$	01/1424
02 Oct 0138	WARNING: Geomagnetic $K = 4$	02/0138 - 0900
02 Oct 0219	ALERT: Geomagnetic $K = 4$	02/0219
04 Oct 2150	WATCH: Geomagnetic Storm Category G1 predict	ed
05 Oct 1921	WATCH: Geomagnetic Storm Category G2 predict	ed
07 Oct 1055	WARNING: Geomagnetic $K = 4$	07/1100 - 2359
07 Oct 1459	ALERT: Geomagnetic $K = 4$	07/1459
07 Oct 1555	WARNING: Geomagnetic $K = 5$	07/1555 - 2359
07 Oct 1622	ALERT: Geomagnetic $K = 5$	07/1622
07 Oct 1645	EXTENDED WARNING: Geomagnetic $K = 4$	4 07/1100 - 08/1500
07 Oct 1645	EXTENDED WARNING: Geomagnetic $K = 5$	5 07/1555 - 08/0900
07 Oct 1645	WARNING: Geomagnetic $K = 6$	07/1645 - 08/0600
07 Oct 2043	ALERT: Geomagnetic $K = 5$	07/2042

Alerts and Warnings Issued

Twenty-seven Day Outlook

Date	Radio Flux 10.7cm	Planetary A Index	Largest Kp Index	Date	Radio Flux 10.7cm	•	Largest Kp Index
08 Oct	69	35	6	22 Oct	69	12	4
09	69	15	4	23	69	8	3
10	69	15	4	24	69	8	3
11	69	10	3	25	69	8	3
12	69	8	3	26	69	10	3
13	69	5	2	27	69	5	2
14	69	10	3	28	69	5	2
15	69	8	3	29	69	5	2
16	69	5	2	30	69	5	2
17	69	5	2	31	69	5	2
18	69	10	4	01 Nov	69	5	2
19	69	25	5	02	69	5	2
20	69	14	4	03	69	22	6
21	69	8	3				

				E	nerge	tic Ev	ents					
		Time		X	-ray	Opti	cal Informat	ion	Р	eak	Swee	p Freq
	Half Integ Imp/ Location Rgn <u>Radio Fl</u>										Inte	nsity
Date	Begin	Max	Max	Class	Flux	Brtns	Lat CMD	#	245	2695	II	IV
No Ev	vents O	bserve	d									
					Fla	re List	<u>.</u>					
								Optic	al			
		Tin	ne			X-ray	Imp/	L	ocation	R	gn	
Date	Begi	n N	Лах	End		Class	Brtns	La	at CMD	4	#	
02 Oct	044	1 0	445	0448		B1.1						

				nce	sion L	Junin	ury								
	Locatio	on	Su	inspot C	haracte	eristics				I	Flares	5			
		Helio	Area	Extent	Spot	Spot	Mag	X-ray			Optical				
Date	Lat CMD	Lon 1	0 ⁻⁶ hemi.	(helio)	Class	Count	Class	С	М	Х	S	1	2	3	4
		Regio	on 2723												
29 Sep	S08W01	355	10	1	Bxo	3	В								
30 Sep	S08W15	356	30	5	Dro	4	В								
01 Oct	S08W29	357	30	6	Dso	4	В								
02 Oct	S08W42	357	30	7	Cro	4	В								
03 Oct	S08W56	358	10	6	Bxo	2	В								
06 Oct	S12W99	1	plage												
								0	0	0	0	0	0	0	0
	l West Lim te heliograp		gitude: 3	55											

Region Summary



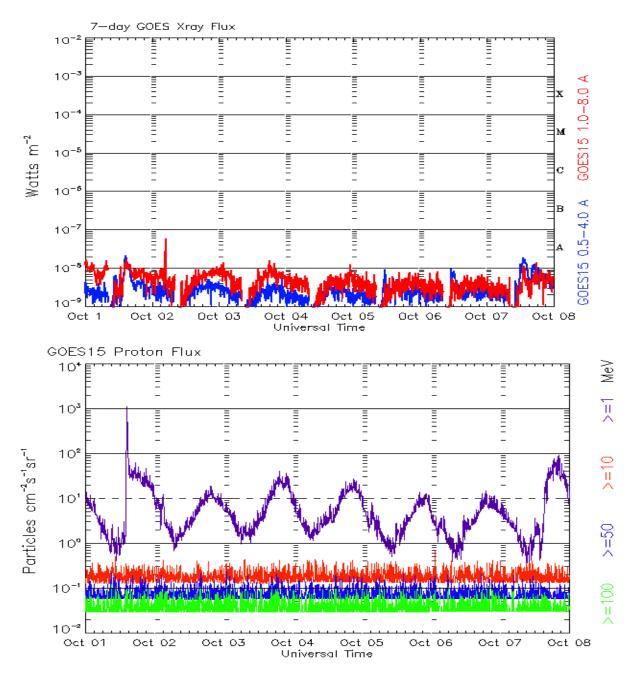
Observea moninty mean values												
		Sunspot N	Jumbers			Radio	Flux	Geoma	•			
	Observed value	<u>s</u> <u>Ratio</u>	Smoo	th values		Penticton	Smooth	Planetary	Smooth			
Month	SEC RI	RI/SEC	SEC	RI		10.7 cm	Value	Ap	Value			
				2016								
October	30.0	20.0	0.67	31.1	18.9	86.1	82.5	16	11.6			
November	22.4	12.8	0.57	29.4	17.9	9 78.7	81.1	10	11.6			
December	17.6	11.1	0.64	28.1	17.1	75.1	80.0	10	11.4			
				2017								
January	28.1	15.7	0.55	2017 27.3	16.7	77.4	79.4	10	11.3			
February	22.0	15.8	0.33	27.5	15.9		79.4		11.3			
March	22.0	10.6	0.71	23.5 24.6	15.4		78.6		11.5			
Ivia CII	23.4	10.0	0.42	24.0	г	r / 1 .0	70.0	15	11.5			
April	30.4	19.4	0.64	24.3	14.9	80.9	78.4	13	11.5			
May	18.1	11.3	0.62	23.1	14.0) 73.5	77.7	9	11.3			
June	18.0	11.5	0.64	22.0	13.3	3 74.8	77.3	7	11.3			
T 1	10.0	10.7	0.50	20.0	10.0		76.0	0	11.0			
July	18.8	10.7	0.59	20.8	12.6		76.8		11.0			
August	25.0	19.6	0.80	19.7	11.8		76.3		10.7			
September	42.2	26.2	0.62	18.6	11.0	92.0	75.9	19	10.3			
October	16.0	7.9	0.49	16.8	10.0) 76.4	75.1	11	9.8			
November	7.7	3.4	0.44	15.7	9.2	2 72.1	74.6	11	9.5			
December	7.6	4.9	0.64	15.7	9.1	71.5	74.4	8	9.4			
				2010								
January	7.8	4.1	0.51	2018 15.0	8.5	5 70.0	74.0	6	9.3			
February	16.0	4.1 6.4	0.31	13.7	7.6		74.0		9.3 9.1			
March	6.0	0.4 1.5	0.40	11.5	5.9		73.3		9.1 8.6			
Iviaren	0.0	1.5	0.23	11.5	5.7	, 00.4	/1./	0	0.0			
April	7.0	5.3	0.76			70.0		7				
May	15.0	7.9	0.53			70.9		8				
June	19.7	9.4	0.48			72.5		7				
July	1.3	1.0	0.77			69.7		6				
August	10.0	5.3	0.53			69.1		10				
September		2.0	0.35			68.3		9				
September	5.7	2.0	0.00			00.5		,				

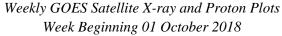
Recent Solar Indices (preliminary) Observed monthly mean values

Note: Values are final except for the most recent 6 months which are considered preliminary. Cycle 24 started in Dec 2008 with an RI=1.7.

Weekly Geosynchronous Satellite Environment Summary Week Beginning 01 October 2018

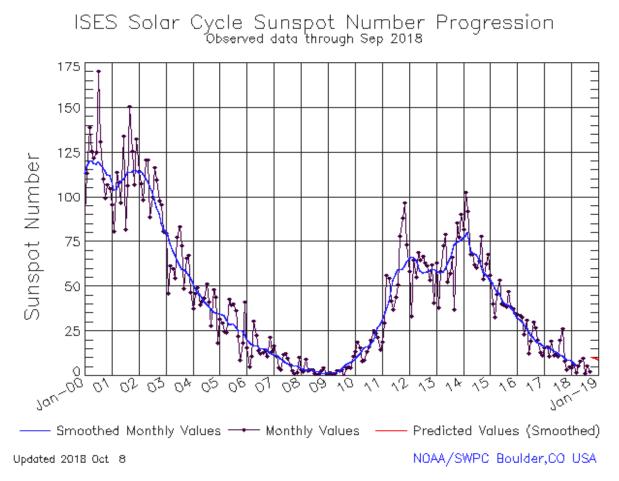
The proton flux plot contains the five-minute averaged integral proton flux (protons/cm²-sec -sr) as measured by the SWPC Primary GOES satellite, near West 75, for each of three energy thresholds: greater than 10, 50, and 100 MeV.


The electron flux plot contains the five-minute averaged integral electron flux (electrons/cm²-sec -sr) with energies greater than 2 MeV by the SWPC Primary GOES satellite.


The Hp plot contains the five minute averaged Hp magnetic field component in nanoteslas (nT) as by the SWPC Primary GOES satellite. The Hp component is parallel to the spin axis of the satellite, which is nearly parallel to the Earth's rotation axis.

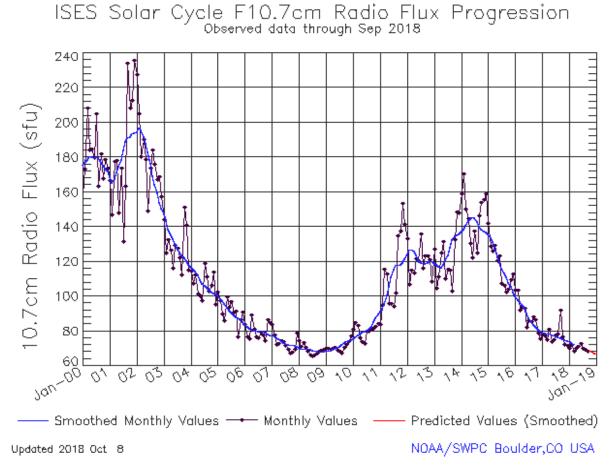
The Estimated 3-hour Planetary Kp-index is derived at the NOAA Space Weather Prediction Center using data from the following ground-based magnetometers: Boulder, Colorado; Chambon la Foret, France; Fredericksburg, Virginia; Fresno, California; Hartland, UK; Newport, Washington; Sitka, Alaska. These data are made available thanks to the cooperative efforts between SWPC and data providers around the world, which currently includes the U.S. Geological Survey, the British Geological Survey, and the Institut de Physique du Globe de Paris.

The data included here are those now available in real time at the SWPC and are incomplete in that they do not include the full set of parameters and energy ranges known to cause satellite operating anomalies. The proton and electron fluxes and Kp are 'global' parameters that are applicable to a first order approximation over large areas. H parallel is subject to more localized phenomena and the measurements generally are applicable to within a few degrees of longitude of the measuring satellite.



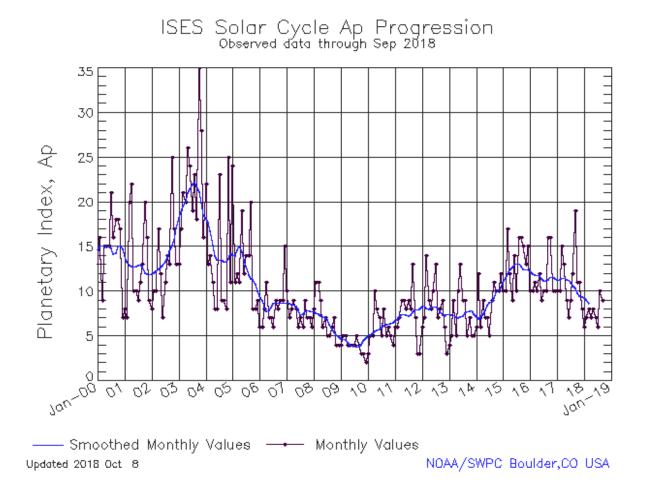
The x-ray plots contains five-minute averages x-ray flux (Watt/m²) as measure by the SWPC primary GOES X-ray satellite, usually at West 105 longitude, in two wavelength bands, 0.05 - 0.4 and 0.1 - 0.8 nm. The letters A, B, C, M and X refer to x-ray event levels for the 0.1 - 0.8 nm band.

The proton plot contains the five-minute averaged intergral flux units (pfu = protons/cnf - sec - sr) as measured by the primary SWPC GOES Proton satellite for each of the energy thresholds: >1, >10, >30, and >100 MeV. The P10 event threshold is 10 pfu at greater than 10 MeV.



			51100		<i>msp</i> ₀			curcu				
Year	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
2010	9	10	11	13	15	16	17	17	20	23	27	29
	(1)	(2)	(3)	(5)	(5)	(6)	(7)	(7)	(8)	(9)	(9)	(10)
2011	19	30	56	54	42	37	44	51	78	88	97	73
	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)
2012	58	33	64	55	69	65	67	63	61	53	62	41
	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)
2013	63	38	58	72	79	53	57	66	37	86	78	90
	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)
2014	82	102	92	68	68	62	60	64	78	54	62	68
	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)
2015	56	40	33	45	53	40	40	39	47	38	37	35
	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)
2016	34	34	33	23	31	12	19	30	27	20	13	11
	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)
2017	16	16	11	19	11	12	11	20	26	8	3	5
	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)
2018	4	6	2	5	8	9	1	5	2	11	10	10
	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)
2019	9	8	8	7	7	6	6	6	5	5	4	4
	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)

Smoothed Sunspot Number Prediction



Year	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
2010	76	77	78	78	79	80	80	81	82	85	88	90
	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)
2011	91	93	96	100	106	111	115	118	118	118	120	122
	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)
2012	124	127	127	126	124	121	120	119	119	119	120	120
	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)
2013	119	118	117	117	118	121	124	128	132	135	135	136
	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)
2014	137	139	141	144	145	146	145	143	140	138	137	137
	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)
2015	136	134	131	127	123	120	116	113	111	108	105	103
	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)
2016	100	98	97	95	93	90	88	86	84	83	81	80
	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)
2017	79	79	79	78	78	77	77	76	76	75	75	74
	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)
2018	74	73	72	71	70	70	69	69	69	68	68	67
	(***)	(***)	(***)	(1)	(1)	(2)	(3)	(4)	(4)	(5)	(6)	(7)
2019	67	66	66	65	65	65	64	64	63	63	63	63
	(8)	(8)	(9)	(9)	(9)	(9)	(9)	(9)	(9)	(9)	(9)	(9)

Smoothed F10.7cm Radio Flux Prediction

Solar Cycle Comparison charts are temporarily unavailable.

Preliminary Report and Forecast of Solar Geophysical Data (The Weekly)

Published every Monday by the Space Weather Prediction Center.

U.S. Department of Commerce NOAA / National Weather Service Space Weather Prediction Center 325 Broadway, Boulder CO 80305

Notice: The 27-day Outlook, Satellite Environment, X-ray and Proton plots have been redesigned. Comments and suggestions are welcome SWPC.Webmaster@noaa.gov

The Weekly has been published continuously since 1951 and is available online since 1997.

http://spaceweather.gov/weekly/ -- Current and previous year http://spaceweather.gov/ftpmenu/warehouse.html -- Online achive from 1997 http://spaceweather.gov/ftpmenu/ -- Some content as ascii text http://spaceweather.gov/SolarCycle/ -- Solar Cycle Progression web site

http://spaceweather.gov/contacts.html -- Contact and Copyright information http://spaceweather.gov/weekly/Usr_guide.pdf -- User Guide

