Solar activity was at low levels. Region 2733 (N05, Lo=261, class/area Dso/090 on 27 Jan) produced the strongest flare of the period, a C5 at 30/0611 UTC. The region produced several other weaker B and C-class flares before rotating around the limb on 30 Jan. No Earth-directed CMEs were observed in available coronagraph imagery.

No proton events were observed at geosynchronous orbit.

The greater than 2 MeV electron flux at geosynchronous orbit ranged from normal to high levels. Flux levels decreased from high to normal to moderate levels on 31 Jan through most of 31 Feb due to geomagnetic activity associated with influence from a negative polarity CH HSS. Moderate to high levels were observed for the remainder of the reporting period.

Geomagnetic field activity was ranged from quiet to G1 (Minor) geomagnetic storm levels. Solar wind parameters became enhanced on 31 Jan due to the onset of influence from a negative polarity CH HSS. The passage of the CIR produced sustained southward Bz, with a maximum of -16 nT observed at 31/2026 UTC. The geomagnetic field responded with an isolated period of G1 (Minor) storm conditions late on 31 Jan. The wind speeds increased to between 550-625 km/s after 01/0920 UTC and persisted until the end of 03 Feb. An accompanying decrease in Bt to between 4-7 nT resulted in a geomagnetic response of quiet to active conditions over 01-03 Feb. The remainder of the reporting period was quiet under nominal solar wind conditions.

Space Weather Outlook 04 February - 02 March 2019

Solar activity is expected to be at very low levels throughout the forecast period.

No proton events are expected at geosynchronous orbit.

The greater than 2 MeV electron flux at geosynchronous orbit is expected to range from normal to high levels. High levels are expected on 04-10 Feb and 21 Feb - 02 Mar; moderate levels are expected on 11-13 Feb; mostly normal levels are expected on 14-20 Feb. All elevated levels of electron flux are anticipated due to influence from multiple, recurrent CH HSSs.

Geomagnetic field activity is expected to range from quiet to G1 (Minor) geomagnetic storm levels. G1 (Minor) conditions are expected on 20 Feb and 28 Feb - 01 Mar; active conditions are expected on 05 Feb, 19 Feb, 21 Feb and 27 Feb; unsettled conditions are expected on 04 Feb, 06 Feb, 22 Feb and 02 Mar. All enhancements in geomagnetic field conditions are anticipated due to multiple, recurrent CH HSSs. The remainder of the outlook period is expected to be mostly quiet under nominal solar wind conditions.

Daily Solar Data

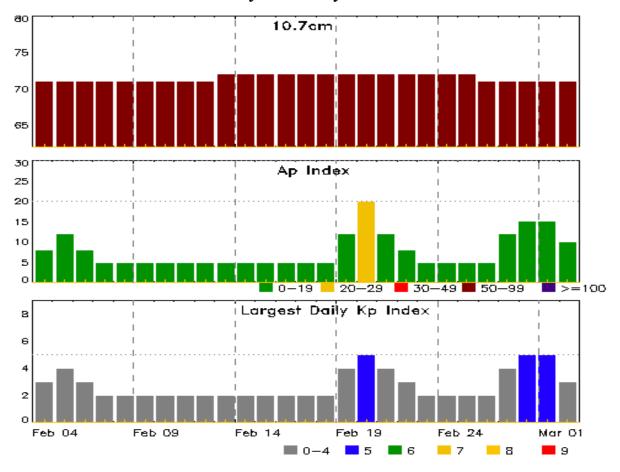
	Radio	Sun	Sunsp	oot	X-ray]	Flares			
	Flux	spot	Are	Area Ba		d	X-ra	<u>y</u>	Optical			
Date	10.7cm	No.	(10 ⁻⁶ he	emi.)	Flux		C M	X	S	1	2 3	4
28 January	76	16	80	A3.8	0	0	0	1	0	0	0	0
29 January	73	15	90	A5.1	2	0	0	1	0	0	0	0
30 January	74	12	90	A5.5	2	0	0	0	0	0	0	0
31 January	72	0	0	A3.6	0	0	0	0	0	0	0	0
01 February	72	0	0	A1.2	0	0	0	0	0	0	0	0
02 February	71	0	0	A0.0	0	0	0	0	0	0	0	0
03 February	71	0	0	A0.0	0	0	0	0	0	0	0	0

Daily Particle Data

	(pro	Proton Fluer otons/cm ² -d			Electron Fluence (electrons/cm ² -day -si					
Date	>1 MeV >10 MeV		>100 MeV		>0.6 MeV	>2MeV	>4 MeV			
28 January	1.6e+06		1.7e+04	3.76	e+03	7.3e	e+07			
29 January	1.6e+06		1.6e + 04	3.6	e+03	-03 5.6e+07				
30 January	2.7e + 06		1.7e + 04	4.0	e+03	6.7e	e+07			
31 January	1.6	6e+06	1.7e + 04	3.86	e+03	1.1e	e+07			
01 February	2.0e+06		1.6e + 04	3.6	e+03	2.2e	e+07			
02 February	1.6e+06		1.6e + 04	3.86	e+03	2.6e	e+08			
03 February	1.0	0e+06	1.6e+04	3.86	e+03	4.1e	e+08			

Daily Geomagnetic Data

	N	liddle Latitude	F	High Latitude	Estimated			
	F	redericksburg		College	Planetary			
Date	A K-indices		A K-indices		A	K-indices		
28 January	0	1-0-0-0-0-0-0	1	0-0-0-1-1-0-0-0	1	1-0-0-0-0-0-0		
29 January	0	1-0-0-0-0-0-0	2	0-0-0-2-2-0-0-0	2	1-0-0-0-1-0-0-0		
30 January	0	0-0-0-0-0-1-0	0	0-0-0-0-0-1-0	2	0-0-0-0-0-1-1		
31 January	12	1-0-1-1-3-2-3-5	23	0-0-2-3-6-5-2-4	14	1-0-1-1-3-3-3-5		
01 February	10	2-3-3-2-2-2-3	40	3-4-5-5-6-6-3-2	17	3-4-3-2-3-3-3-4		
02 February	11	3-3-3-2-2-3-2-2	24	3-3-4-5-5-4-2-2	17	4-4-3-2-2-4-3-3		
03 February	8	3-3-3-0-1-1-1-2	12	3-3-3-2-3-3-2-2	22	4-3-3-1-1-2-2-3		



Alerts and Warnings Issued

Date & Time of Issue UTC	Type of Alert or Warning	Date & Time of Event UTC
28 Jan 1413	CONTINUED ALERT: Electron 2MeV Integral Flux >= 1000pfu	25/1730
29 Jan 1943	WATCH: Geomagnetic Storm Category G1 predict	ted
30 Jan 1617	WATCH: Geomagnetic Storm Category G1 predict	ted
30 Jan 1626	ALERT: Electron 2MeV Integral Flux >= 1000pf	iu 30/1627
31 Jan 1317	WARNING: Geomagnetic $K = 4$	31/1318 - 2100
31 Jan 1346	WARNING: Geomagnetic $K = 5$	31/1347 - 1800
31 Jan 2029	EXTENDED WARNING: Geomagnetic K = 4	4 31/1318 - 01/0900
31 Jan 2156	ALERT: Geomagnetic $K = 4$	31/2149
31 Jan 2200	WARNING: Geomagnetic $K = 5$	31/2201 - 01/0300
31 Jan 2219	ALERT: Geomagnetic $K = 5$	31/2219
31 Jan 2246	WARNING: Geomagnetic $K = 6$	31/2247 - 01/0300
01 Feb 0251	EXTENDED WARNING: Geomagnetic K = :	5 31/2201 - 01/0900
01 Feb 0256	EXTENDED WARNING: Geomagnetic K = 4	4 31/1318 - 01/1500
01 Feb 0854	EXTENDED WARNING: Geomagnetic K = 3	5 31/2201 - 01/1500
01 Feb 1456	EXTENDED WARNING: Geomagnetic K = 4	4 31/1318 - 01/2359
01 Feb 2220	EXTENDED WARNING: Geomagnetic K = 4	4 31/1318 - 02/1200
01 Feb 2234	ALERT: Electron 2MeV Integral Flux >= 1000pf	iu 01/2230
02 Feb 1424	CONTINUED ALERT: Electron 2MeV Integral Flux >= 1000pfu	01/2230
02 Feb 1629	WARNING: Geomagnetic $K = 4$	02/1635 - 2359
02 Feb 1803	ALERT: Geomagnetic $K = 4$	02/1759
03 Feb 0247	WARNING: Geomagnetic $K = 4$	03/0247 - 1500
03 Feb 0300	ALERT: Geomagnetic $K = 4$	03/0259
03 Feb 0859	CONTINUED ALERT: Electron 2MeV Integral Flux >= 1000pfu	01/2230

Twenty-seven Day Outlook

	Radio Flux	Planetary	Largest		Radio Flux	Planetary	Largest
Date	10.7cm	A Index	Kp Index	Date	10.7cm	A Index	Kp Index
04 Feb	71	8	3	18 Feb	72	5	2
05	71	12	4	19	72	12	4
06	71	8	3	20	72	20	5
07	71	5	2	21	72	12	4
08	71	5	2	22	72	8	3
09	71	5	2	23	72	5	2
10	71	5	2	24	72	5	2
11	71	5	2	25	72	5	2
12	71	5	2	26	71	5	2
13	72	5	2	27	71	12	4
14	72	5	2	28	71	15	5
15	72	5	2	01 Mar	71	15	5
16	72	5	2	02	71	10	3
17	72	5	2				

Energetic Events

		Time		X-ray		Optical Information			P	eak	Sweep Freq	
	Half			Integ		Location	Rgn	Radi	Radio Flux		Intensity	
Date	Begin	Max	Max	Class	Flux	Brtns	Lat CMD	#	245	2695	II	IV

No Events Observed

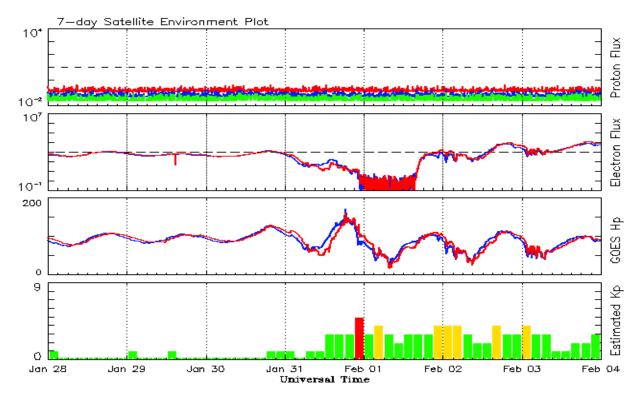
Flare List

					Optical					
		Time		X-ray	Imp/	Location	Rgn			
Date	Begin	Max	End	Class	Brtns	Lat CMD	#			
28 Jan	0100	0104	0108	B1.1	SF	N04W50	2733			
28 Jan	1732	1737	1916	B1.2			2733			
28 Jan	1948	1953	1958	B1.9			2733			
29 Jan	0503	0507	0523	B2.4	SF	N03W67	2733			
29 Jan	0636	0641	0645	B2.6			2733			
29 Jan	0720	0736	0742	B8.4			2733			
29 Jan	1021	1034	1040	C1.9			2733			
29 Jan	1503	1522	1536	B3.5			2733			
29 Jan	2118	2129	2148	C2.0			2733			
30 Jan	0209	0214	0220	B1.7			2733			
30 Jan	0433	0436	0440	B1.6			2733			
30 Jan	0513	0527	0535	B3.6			2733			
30 Jan	0556	0611	0619	C5.2			2733			
30 Jan	0741	0744	0746	B3.2			2733			
30 Jan	0828	0834	0843	B2.3			2733			
30 Jan	1031	1038	1043	B8.5			2733			
30 Jan	1116	1124	1132	C1.3			2733			
30 Jan	1410	1415	1418	B1.7			2733			
30 Jan	1522	1526	1529	B1.1			2733			
30 Jan	1700	1705	1707	B9.7			2733			
30 Jan	1920	1928	2000	B4.1			2733			
30 Jan	2027	2034	2040	B5.3			2733			
30 Jan	2228	2232	2235	B2.5			2733			
31 Jan	0054	0058	0103	B7.2			2733			
31 Jan	0221	0229	0240	B2.8			2733			
31 Jan	1538	1543	1548	B1.2			2733			
31 Jan	1642	1653	1716	B1.5			2733			
01 Feb	0457	0518	0530	B1.5			2733			
01 Feb	0837	0913	0944	B1.8			2733			

Region Summary

	Location	on	Su	inspot C	haracte	ristics		Flares							
		Helio	Area	Extent	stent Spot Spot Mag X-ray				Optical						
Date	Lat CMD	Lon	10 ⁻⁶ hemi.	(helio)	Class	Count	Class	C	M	X	S	1	2	3	4
	Region 2733														
22 Jan	N06E22	257	20	4	Cro	8	В								
23 Jan	N06E08	258	30	5	Cro	9	В								
24 Jan	N06W07	259	30	8	Dro	9	В								
25 Jan	N06W20	259	50	9	Dri	17	В								
26 Jan	N06W34	260	80	10	Dsi	16	В	1			1				
27 Jan	N05W48	261	90	10	Dso	12	В				1				
28 Jan	N06W61	261	80	10	Cso	6	В				1				
29 Jan	N05W76	263	90	10	Cso	5	В	2			1				
30 Jan	N04W89	262	90	9	Cao	2	В	2 5	0	0	4	0	0	0	0

Crossed West Limb. Absolute heliographic longitude: 259



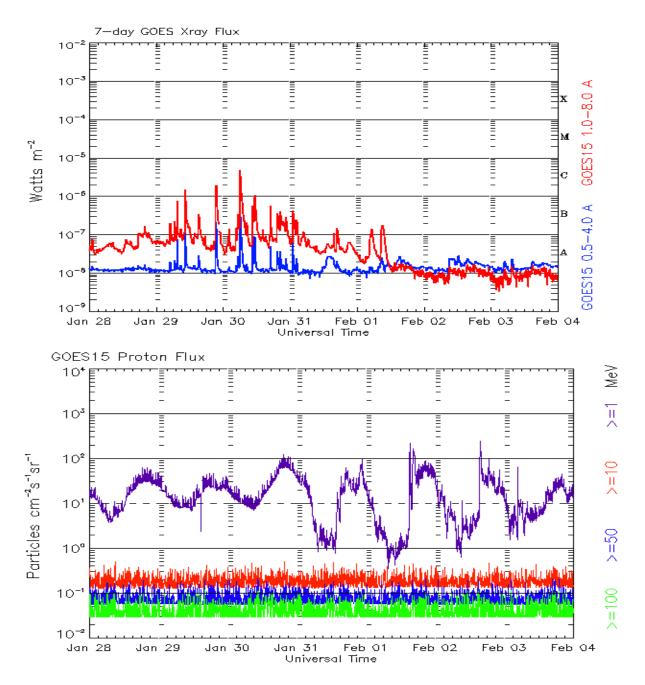
Recent Solar Indices (preliminary) Observed monthly mean values

	S	Sunspot N				Radio	Flux	Geoma	gnetic
	Observed values	•		th values	F	Penticton		Planetary	-
Month	SEC RI	RI/SEC	SEC			10.7 cm	Value	Ap	Value
				2017				•	
February	22.0	15.8	0.71	25.5	15.9	76.9	78.7	10	11.3
March	25.4	10.6	0.42	24.6	15.4	74.6	78.6	15	11.5
April	30.4	19.4	0.64	24.3	14.9	80.9	78.4	13	11.5
May	18.1	11.3	0.62	23.1	14.0	73.5	77.7	9	11.3
June	18.0	11.5	0.64	22.0	13.3	74.8	77.3	7	11.3
July	18.8	10.7	0.59	20.8	12.6	77.7	76.8	9	11.0
August	25.0	19.6	0.80	19.7	11.8	77.9	76.3	12	10.7
September	42.2	26.2	0.62	18.6	11.0	92.0	75.9	19	10.3
October	16.0	7.9	0.49	16.8	10.0	76.4	75.1	11	9.8
November	7.7	3.4	0.44	15.7	9.2	72.1	74.6	11	9.5
December	7.6	4.9	0.64	15.7	9.1	71.5	74.4	8	9.4
				2018					
January	7.8	4.1	0.51	15.0	8.5	70.0	74.0	6	9.3
February	16.0	6.4	0.40	13.7	7.6	72.0	73.3	7	9.1
March	6.0	1.5	0.25	11.5	5.9	68.4	71.9	8	8.6
April	7.0	5.3	0.76	9.6	4.7	70.0	70.6	7	8.0
May	15.0	7.9	0.53	9.2	4.5	70.9	70.2	8	7.6
June	19.7	9.4	0.48	9.1	4.4	72.5	70.0	7	7.4
July	1.3	1.0	0.77	9.4	4.3	69.7	70.0	6	7.3
August	10.0	5.2	0.53			69.1		10	
September	5.7	2.0	0.35			68.3		9	
October	6.9	2.9	0.42			69.5		7	
November	7.3	3.5	0.48			68.9		6	
December	5.6	1.9	0.34			70.0		7	
				2019					
January	16.0	4.7	0.29			71.6		6	

Note: Values are final except for the most recent 6 months which are considered preliminary. Cycle 24 started in Dec 2008 with an RI=1.7.

Weekly Geosynchronous Satellite Environment Summary Week Beginning 28 January 2019

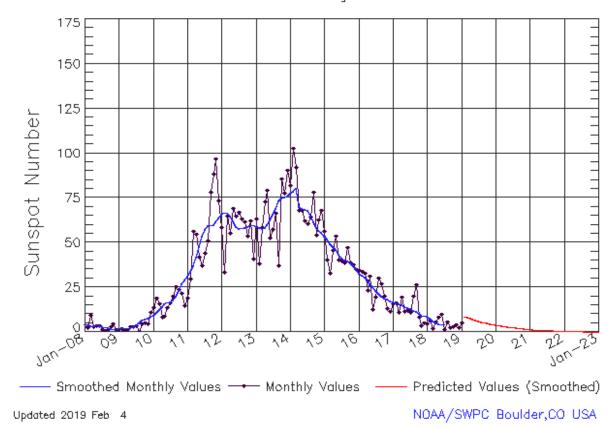
The proton flux plot contains the five-minute averaged integral proton flux (protons/cm²-sec -sr) as measured by the SWPC Primary GOES satellite, near West 75, for each of three energy thresholds: greater than 10, 50, and 100 MeV.


The electron flux plot contains the five-minute averaged integral electron flux (electrons/cm²-sec -sr) with energies greater than 2 MeV by the SWPC Primary GOES satellite.

The Hp plot contains the five minute averaged Hp magnetic field component in nanoteslas (nT) as by the SWPC Primary GOES satellite. The Hp component is parallel to the spin axis of the satellite, which is nearly parallel to the Earth's rotation axis.

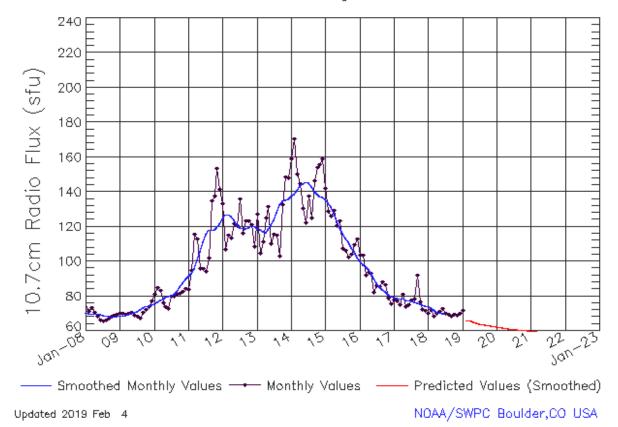
The Estimated 3-hour Planetary Kp-index is derived at the NOAA Space Weather Prediction Center using data from the following ground-based magnetometers: Boulder, Colorado; Chambon la Foret, France; Fredericksburg, Virginia; Fresno, California; Hartland, UK; Newport, Washington; Sitka, Alaska. These data are made available thanks to the cooperative efforts between SWPC and data providers around the world, which currently includes the U.S. Geological Survey, the British Geological Survey, and the Institut de Physique du Globe de Paris.

The data included here are those now available in real time at the SWPC and are incomplete in that they do not include the full set of parameters and energy ranges known to cause satellite operating anomalies. The proton and electron fluxes and Kp are 'global' parameters that are applicable to a first order approximation over large areas. H parallel is subject to more localized phenomena and the measurements generally are applicable to within a few degrees of longitude of the measuring satellite.

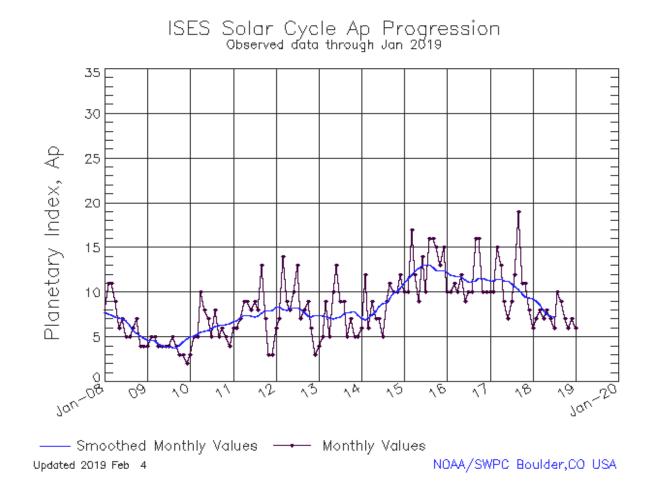

Weekly GOES Satellite X-ray and Proton Plots Week Beginning 28 January 2019

The x-ray plots contains five-minute averages x-ray flux (Watt/ m^2) as measure by the SWPC primary GOES X-ray satellite, usually at West 105 longitude, in two wavelength bands, 0.05 - 0.4 and 0.1 - 0.8 nm. The letters A, B, C, M and X refer to x-ray event levels for the 0.1 - 0.8 nm band.

The proton plot contains the five-minute averaged intergral flux units (pfu = protons/cm 2 -sec -sr) as measured by the primary SWPC GOES Proton satellite for each of the energy thresholds: >1, >10, >30, and >100 MeV. The P10 event threshold is 10 pfu at greater than 10 MeV.


ISES Solar Cycle Sunspot Number Progression Observed data through Jan 2019

Smoothed Sunspot Number Prediction


			Smoo	inea 5	ounspo	ı 14 min	ver i r	euiciio	<i>'11</i>			
Year	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
2010	7	9	11	13	14	16	17	17	20	23	27	29
	(1)	(2)	(3)	(5)	(5)	(6)	(7)	(7)	(8)	(9)	(9)	(10)
2011	19	30	56	54	42	37	44	51	78	88	97	73
	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)
2012	58	33	64	55	69	65	67	63	61	53	62	41
	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)
2013	63	38	58	72	79	53	57	66	37	86	78	90
	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)
2014	82	102	92	68	68	62	60	64	78	54	62	68
	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)
2015	56	40	33	45	53	40	40	39	47	38	37	35
	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)
2016	34	34	33	23	31	12	19	30	27	20	13	11
	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)
2017	16	16	11	19	11	12	11	20	26	8	3	5
	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)
2018	4	6	2	5	8	9	1	5	2	3	4	2
	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)
2019	5	8	8	7	7	6	6	6	5	5	4	4
	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)
2020	4	4	3	3	3	3	2	2	2	2	2	2
	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)
2021	2	1	1	1	1	1	1	1	1	1		имозичень.
10	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10) 🔽	OLUBO
<u>2</u> 922	1	0	0	SWPC	C PRF ₀ 226	66 04 F jebi	ruary 2 ()19	0	0	0	0	
	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	$(10)^{-1}$	(10)

ISES Solar Cycle F10.7cm Radio Flux Progression Observed data through Jan 2019

Smoothed F10.7cm Radio Flux Prediction

Year	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
2010	76	77	78	78	79	80	80	81	82	85	88	90
	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)
2011	91	93	96	100	106	111	115	118	118	118	120	122
	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)
2012	124	127	127	126	124	121	120	119	119	119	120	120
	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)
2013	119	118	117	117	118	121	124	128	132	135	135	136
	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)
2014	137	139	141	144	145	146	145	143	140	138	137	137
	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)
2015	136	134	131	127	123	120	116	113	111	108	105	103
	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)
2016	100	98	97	95	93	90	88	86	84	83	81	80
	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)
2017	79	79	79	78	78	77	77	76	76	75	75	74
	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)
2018	74	73	72	71	70	70	70	70	70	69	69	68
	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(1)	(1)	(2)	(3)	(4)
2019	68	67	67	66	66	65	65	64	63	63	63	63
	(4)	(5)	(6)	(7)	(8)	(8)	(9)	(9)	(9)	(9)	(9)	(9)
2020	62	62	62	62	61	61	61	61	61	60	60	60
	(9)	(9)	(9)	(9)	(9)	(9)	(9)	(9)	(9)	(9)	(9)	(9)
2021	60	60	60	60	60	60	60	59	59	59	59	59
NOAA	(9)	(9)	(9)	(9)	(9)	(9)	(9)	(9)	(9)	(9)	(9)	(9)
2022	59	59	59	S N/P	C PR f 5/220	66 04 55 eb	ruary 52 ()19	59	59	59	59	39
CHRANTMENT OF COM	(9)	(9)	(9)	(9)	(9)	(9)	(9)	(9)	(9)	(9)	(9)	(9)

Solar Cycle Comparison charts are temporarily unavailable.

Preliminary Report and Forecast of Solar Geophysical Data (The Weekly)

Published every Monday by the Space Weather Prediction Center.

U.S. Department of Commerce NOAA / National Weather Service Space Weather Prediction Center 325 Broadway, Boulder CO 80305

Notice: The 27-day Outlook, Satellite Environment, X-ray and Proton plots have been redesigned. Comments and suggestions are welcome SWPC.Webmaster@noaa.gov

The Weekly has been published continuously since 1951 and is available online since 1997.

http://spaceweather.gov/weekly/ -- Current and previous year

http://spaceweather.gov/ftpmenu/warehouse.html -- Online achive from 1997

http://spaceweather.gov/ftpmenu/ -- Some content as ascii text

http://spaceweather.gov/SolarCycle/ -- Solar Cycle Progression web site

http://spaceweather.gov/contacts.html -- Contact and Copyright information http://spaceweather.gov/weekly/Usr_guide.pdf -- User Guide

